Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate

Identifieur interne : 005E47 ( PascalFrancis/Checkpoint ); précédent : 005E46; suivant : 005E48

Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate

Auteurs : Q.-H. Qin [Australie]

Source :

RBID : Pascal:00-0108580

Descripteurs français

English descriptors

Abstract

'This paper treats the crack-microcrack interactions in an anisotropic piezoelectric solid. Based on the Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity and elastic displacement-electric potential(EDEP) defined on each crack trace is developed and solved numerically. In the analysis, the residual heat flux, stress and electric displacement (SED) on microcrack location to be released are evaluated directly from the near-tip fields of main crack. Numerical results for SED intensity factors in a three-crack system are presented to illustrate the application of the proposed formulation.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0108580

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate</title>
<author>
<name sortKey="Qin, Q H" sort="Qin, Q H" uniqKey="Qin Q" first="Q.-H." last="Qin">Q.-H. Qin</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic Engineering, The University of Sydney</s1>
<s2>Sydney NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">00-0108580</idno>
<date when="1999">1999</date>
<idno type="stanalyst">PASCAL 00-0108580 INIST</idno>
<idno type="RBID">Pascal:00-0108580</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">006052</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000118</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">005E47</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">005E47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate</title>
<author>
<name sortKey="Qin, Q H" sort="Qin, Q H" uniqKey="Qin Q" first="Q.-H." last="Qin">Q.-H. Qin</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic Engineering, The University of Sydney</s1>
<s2>Sydney NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal de physique. IV</title>
<title level="j" type="abbreviated">J. phys., IV</title>
<idno type="ISSN">1155-4339</idno>
<imprint>
<date when="1999">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal de physique. IV</title>
<title level="j" type="abbreviated">J. phys., IV</title>
<idno type="ISSN">1155-4339</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anisotropic material</term>
<term>Crack</term>
<term>Electromechanical properties</term>
<term>Green function</term>
<term>Integral equation</term>
<term>Interaction</term>
<term>Microcrack</term>
<term>Numerical method</term>
<term>Piezoelectricity</term>
<term>Plate</term>
<term>Residual stress</term>
<term>Singularity</term>
<term>Superposition principle</term>
<term>Thermoelasticity</term>
<term>Thermomechanical properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété électromécanique</term>
<term>Propriété thermomécanique</term>
<term>Thermoélasticité</term>
<term>Piézoélectricité</term>
<term>Contrainte résiduelle</term>
<term>Plaque</term>
<term>Matériau anisotrope</term>
<term>Fissure</term>
<term>Microfissure</term>
<term>Interaction</term>
<term>Méthode numérique</term>
<term>Equation intégrale</term>
<term>Singularité</term>
<term>Principe superposition</term>
<term>Fonction Green</term>
<term>4650</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">'This paper treats the crack-microcrack interactions in an anisotropic piezoelectric solid. Based on the Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity and elastic displacement-electric potential(EDEP) defined on each crack trace is developed and solved numerically. In the analysis, the residual heat flux, stress and electric displacement (SED) on microcrack location to be released are evaluated directly from the near-tip fields of main crack. Numerical results for SED intensity factors in a three-crack system are presented to illustrate the application of the proposed formulation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1155-4339</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys., IV</s0>
</fA03>
<fA05>
<s2>9</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>3rd European Mechanics of Materials Conference on Mechanics and Multi-Physics Processes in Solids: Experiments, Modelling, Applications</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>QIN (Q.-H.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BUSSO (E.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>CAILLETAUD (G.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic Engineering, The University of Sydney</s1>
<s2>Sydney NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Dept. of Mechanical Engineering, Imperial College, University of London, Exhibition Road</s1>
<s2>London SW7 2BX</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Centre des Matériaux, Ecole des Mines de Paris, BP. 87</s1>
<s2>91003 Ivry</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Mechanics Society</s1>
<s3>EUR</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>French Society for Mechanics of Materials</s1>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Imperial College</s1>
<s2>London</s2>
<s3>GBR</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="04" i2="1">
<s1>Ecole des Mines de Paris</s1>
<s2>Ivry</s2>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>227-237</s1>
</fA20>
<fA21>
<s1>1999</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>125C</s2>
<s5>354000081002900230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2000 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>00-0108580</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal de physique. IV</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>'This paper treats the crack-microcrack interactions in an anisotropic piezoelectric solid. Based on the Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity and elastic displacement-electric potential(EDEP) defined on each crack trace is developed and solved numerically. In the analysis, the residual heat flux, stress and electric displacement (SED) on microcrack location to be released are evaluated directly from the near-tip fields of main crack. Numerical results for SED intensity factors in a three-crack system are presented to illustrate the application of the proposed formulation.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001B40F30N</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété électromécanique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electromechanical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiedad electromecánica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Propriété thermomécanique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thermomechanical properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Propriedad termomecánica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Thermoélasticité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Thermoelasticity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Termoelasticidad</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Piézoélectricité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Piezoelectricity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Piezoelectricidad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Contrainte résiduelle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Residual stress</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tensión residual</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Plaque</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Plate</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Placa</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Matériau anisotrope</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Anisotropic material</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Material anisótropo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Fissure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Crack</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fisura</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Microfissure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Microcrack</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Microfisura</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Interaction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Interaction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Interacción</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Méthode numérique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Numerical method</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Método numérico</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Equation intégrale</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Integral equation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Ecuación integral</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Singularité</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Singularity</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Singularidad</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Principe superposition</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Superposition principle</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Principio superposición</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Fonction Green</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Green function</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Función Green</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>4650</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>080</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EUROMECH-MECAMAT'98: European Mechanics of Materials Conference</s1>
<s2>3</s2>
<s3>Oxford GBR</s3>
<s4>1998-11-23</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
</region>
<settlement>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Qin, Q H" sort="Qin, Q H" uniqKey="Qin Q" first="Q.-H." last="Qin">Q.-H. Qin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005E47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 005E47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:00-0108580
   |texte=   Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024