Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate

Identifieur interne : 006052 ( PascalFrancis/Corpus ); précédent : 006051; suivant : 006053

Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate

Auteurs : Q.-H. Qin

Source :

RBID : Pascal:00-0108580

Descripteurs français

English descriptors

Abstract

'This paper treats the crack-microcrack interactions in an anisotropic piezoelectric solid. Based on the Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity and elastic displacement-electric potential(EDEP) defined on each crack trace is developed and solved numerically. In the analysis, the residual heat flux, stress and electric displacement (SED) on microcrack location to be released are evaluated directly from the near-tip fields of main crack. Numerical results for SED intensity factors in a three-crack system are presented to illustrate the application of the proposed formulation.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1155-4339
A03   1    @0 J. phys., IV
A05       @2 9
A06       @2 9
A08 01  1  ENG  @1 Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate
A09 01  1  ENG  @1 3rd European Mechanics of Materials Conference on Mechanics and Multi-Physics Processes in Solids: Experiments, Modelling, Applications
A11 01  1    @1 QIN (Q.-H.)
A12 01  1    @1 BUSSO (E.) @9 ed.
A12 02  1    @1 CAILLETAUD (G.) @9 ed.
A14 01      @1 Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic Engineering, The University of Sydney @2 Sydney NSW 2006 @3 AUS @Z 1 aut.
A15 01      @1 Dept. of Mechanical Engineering, Imperial College, University of London, Exhibition Road @2 London SW7 2BX @3 GBR @Z 1 aut.
A15 02      @1 Centre des Matériaux, Ecole des Mines de Paris, BP. 87 @2 91003 Ivry @3 FRA @Z 2 aut.
A18 01  1    @1 European Mechanics Society @3 EUR @9 patr.
A18 02  1    @1 French Society for Mechanics of Materials @3 FRA @9 patr.
A18 03  1    @1 Imperial College @2 London @3 GBR @9 patr.
A18 04  1    @1 Ecole des Mines de Paris @2 Ivry @3 FRA @9 patr.
A20       @1 227-237
A21       @1 1999
A23 01      @0 ENG
A43 01      @1 INIST @2 125C @5 354000081002900230
A44       @0 0000 @1 © 2000 INIST-CNRS. All rights reserved.
A45       @0 22 ref.
A47 01  1    @0 00-0108580
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal de physique. IV
A66 01      @0 FRA
C01 01    ENG  @0 'This paper treats the crack-microcrack interactions in an anisotropic piezoelectric solid. Based on the Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity and elastic displacement-electric potential(EDEP) defined on each crack trace is developed and solved numerically. In the analysis, the residual heat flux, stress and electric displacement (SED) on microcrack location to be released are evaluated directly from the near-tip fields of main crack. Numerical results for SED intensity factors in a three-crack system are presented to illustrate the application of the proposed formulation.
C02 01  X    @0 001B40F30N
C03 01  X  FRE  @0 Propriété électromécanique @5 01
C03 01  X  ENG  @0 Electromechanical properties @5 01
C03 01  X  SPA  @0 Propiedad electromecánica @5 01
C03 02  X  FRE  @0 Propriété thermomécanique @5 02
C03 02  X  ENG  @0 Thermomechanical properties @5 02
C03 02  X  SPA  @0 Propriedad termomecánica @5 02
C03 03  X  FRE  @0 Thermoélasticité @5 03
C03 03  X  ENG  @0 Thermoelasticity @5 03
C03 03  X  SPA  @0 Termoelasticidad @5 03
C03 04  X  FRE  @0 Piézoélectricité @5 04
C03 04  X  ENG  @0 Piezoelectricity @5 04
C03 04  X  SPA  @0 Piezoelectricidad @5 04
C03 05  X  FRE  @0 Contrainte résiduelle @5 05
C03 05  X  ENG  @0 Residual stress @5 05
C03 05  X  SPA  @0 Tensión residual @5 05
C03 06  X  FRE  @0 Plaque @5 06
C03 06  X  ENG  @0 Plate @5 06
C03 06  X  SPA  @0 Placa @5 06
C03 07  X  FRE  @0 Matériau anisotrope @5 07
C03 07  X  ENG  @0 Anisotropic material @5 07
C03 07  X  SPA  @0 Material anisótropo @5 07
C03 08  X  FRE  @0 Fissure @5 08
C03 08  X  ENG  @0 Crack @5 08
C03 08  X  SPA  @0 Fisura @5 08
C03 09  X  FRE  @0 Microfissure @5 09
C03 09  X  ENG  @0 Microcrack @5 09
C03 09  X  SPA  @0 Microfisura @5 09
C03 10  X  FRE  @0 Interaction @5 10
C03 10  X  ENG  @0 Interaction @5 10
C03 10  X  SPA  @0 Interacción @5 10
C03 11  X  FRE  @0 Méthode numérique @5 15
C03 11  X  ENG  @0 Numerical method @5 15
C03 11  X  SPA  @0 Método numérico @5 15
C03 12  X  FRE  @0 Equation intégrale @5 16
C03 12  X  ENG  @0 Integral equation @5 16
C03 12  X  SPA  @0 Ecuación integral @5 16
C03 13  X  FRE  @0 Singularité @5 17
C03 13  X  ENG  @0 Singularity @5 17
C03 13  X  SPA  @0 Singularidad @5 17
C03 14  X  FRE  @0 Principe superposition @5 18
C03 14  X  ENG  @0 Superposition principle @5 18
C03 14  X  SPA  @0 Principio superposición @5 18
C03 15  X  FRE  @0 Fonction Green @5 19
C03 15  X  ENG  @0 Green function @5 19
C03 15  X  SPA  @0 Función Green @5 19
C03 16  X  FRE  @0 4650 @2 PAC @4 INC @5 56
N21       @1 080
pR  
A30 01  1  ENG  @1 EUROMECH-MECAMAT'98: European Mechanics of Materials Conference @2 3 @3 Oxford GBR @4 1998-11-23

Format Inist (serveur)

NO : PASCAL 00-0108580 INIST
ET : Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate
AU : QIN (Q.-H.); BUSSO (E.); CAILLETAUD (G.)
AF : Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic Engineering, The University of Sydney/Sydney NSW 2006/Australie (1 aut.); Dept. of Mechanical Engineering, Imperial College, University of London, Exhibition Road/London SW7 2BX/Royaume-Uni (1 aut.); Centre des Matériaux, Ecole des Mines de Paris, BP. 87/91003 Ivry/France (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Journal de physique. IV; ISSN 1155-4339; France; Da. 1999; Vol. 9; No. 9; Pp. 227-237; Bibl. 22 ref.
LA : Anglais
EA : 'This paper treats the crack-microcrack interactions in an anisotropic piezoelectric solid. Based on the Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity and elastic displacement-electric potential(EDEP) defined on each crack trace is developed and solved numerically. In the analysis, the residual heat flux, stress and electric displacement (SED) on microcrack location to be released are evaluated directly from the near-tip fields of main crack. Numerical results for SED intensity factors in a three-crack system are presented to illustrate the application of the proposed formulation.
CC : 001B40F30N
FD : Propriété électromécanique; Propriété thermomécanique; Thermoélasticité; Piézoélectricité; Contrainte résiduelle; Plaque; Matériau anisotrope; Fissure; Microfissure; Interaction; Méthode numérique; Equation intégrale; Singularité; Principe superposition; Fonction Green; 4650
ED : Electromechanical properties; Thermomechanical properties; Thermoelasticity; Piezoelectricity; Residual stress; Plate; Anisotropic material; Crack; Microcrack; Interaction; Numerical method; Integral equation; Singularity; Superposition principle; Green function
SD : Propiedad electromecánica; Propriedad termomecánica; Termoelasticidad; Piezoelectricidad; Tensión residual; Placa; Material anisótropo; Fisura; Microfisura; Interacción; Método numérico; Ecuación integral; Singularidad; Principio superposición; Función Green
LO : INIST-125C.354000081002900230
ID : 00-0108580

Links to Exploration step

Pascal:00-0108580

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate</title>
<author>
<name sortKey="Qin, Q H" sort="Qin, Q H" uniqKey="Qin Q" first="Q.-H." last="Qin">Q.-H. Qin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic Engineering, The University of Sydney</s1>
<s2>Sydney NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">00-0108580</idno>
<date when="1999">1999</date>
<idno type="stanalyst">PASCAL 00-0108580 INIST</idno>
<idno type="RBID">Pascal:00-0108580</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">006052</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate</title>
<author>
<name sortKey="Qin, Q H" sort="Qin, Q H" uniqKey="Qin Q" first="Q.-H." last="Qin">Q.-H. Qin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic Engineering, The University of Sydney</s1>
<s2>Sydney NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal de physique. IV</title>
<title level="j" type="abbreviated">J. phys., IV</title>
<idno type="ISSN">1155-4339</idno>
<imprint>
<date when="1999">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal de physique. IV</title>
<title level="j" type="abbreviated">J. phys., IV</title>
<idno type="ISSN">1155-4339</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anisotropic material</term>
<term>Crack</term>
<term>Electromechanical properties</term>
<term>Green function</term>
<term>Integral equation</term>
<term>Interaction</term>
<term>Microcrack</term>
<term>Numerical method</term>
<term>Piezoelectricity</term>
<term>Plate</term>
<term>Residual stress</term>
<term>Singularity</term>
<term>Superposition principle</term>
<term>Thermoelasticity</term>
<term>Thermomechanical properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété électromécanique</term>
<term>Propriété thermomécanique</term>
<term>Thermoélasticité</term>
<term>Piézoélectricité</term>
<term>Contrainte résiduelle</term>
<term>Plaque</term>
<term>Matériau anisotrope</term>
<term>Fissure</term>
<term>Microfissure</term>
<term>Interaction</term>
<term>Méthode numérique</term>
<term>Equation intégrale</term>
<term>Singularité</term>
<term>Principe superposition</term>
<term>Fonction Green</term>
<term>4650</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">'This paper treats the crack-microcrack interactions in an anisotropic piezoelectric solid. Based on the Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity and elastic displacement-electric potential(EDEP) defined on each crack trace is developed and solved numerically. In the analysis, the residual heat flux, stress and electric displacement (SED) on microcrack location to be released are evaluated directly from the near-tip fields of main crack. Numerical results for SED intensity factors in a three-crack system are presented to illustrate the application of the proposed formulation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1155-4339</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys., IV</s0>
</fA03>
<fA05>
<s2>9</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>3rd European Mechanics of Materials Conference on Mechanics and Multi-Physics Processes in Solids: Experiments, Modelling, Applications</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>QIN (Q.-H.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BUSSO (E.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>CAILLETAUD (G.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic Engineering, The University of Sydney</s1>
<s2>Sydney NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Dept. of Mechanical Engineering, Imperial College, University of London, Exhibition Road</s1>
<s2>London SW7 2BX</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Centre des Matériaux, Ecole des Mines de Paris, BP. 87</s1>
<s2>91003 Ivry</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Mechanics Society</s1>
<s3>EUR</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>French Society for Mechanics of Materials</s1>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Imperial College</s1>
<s2>London</s2>
<s3>GBR</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="04" i2="1">
<s1>Ecole des Mines de Paris</s1>
<s2>Ivry</s2>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>227-237</s1>
</fA20>
<fA21>
<s1>1999</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>125C</s2>
<s5>354000081002900230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2000 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>00-0108580</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal de physique. IV</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>'This paper treats the crack-microcrack interactions in an anisotropic piezoelectric solid. Based on the Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity and elastic displacement-electric potential(EDEP) defined on each crack trace is developed and solved numerically. In the analysis, the residual heat flux, stress and electric displacement (SED) on microcrack location to be released are evaluated directly from the near-tip fields of main crack. Numerical results for SED intensity factors in a three-crack system are presented to illustrate the application of the proposed formulation.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001B40F30N</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété électromécanique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electromechanical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiedad electromecánica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Propriété thermomécanique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thermomechanical properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Propriedad termomecánica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Thermoélasticité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Thermoelasticity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Termoelasticidad</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Piézoélectricité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Piezoelectricity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Piezoelectricidad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Contrainte résiduelle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Residual stress</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tensión residual</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Plaque</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Plate</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Placa</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Matériau anisotrope</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Anisotropic material</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Material anisótropo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Fissure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Crack</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fisura</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Microfissure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Microcrack</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Microfisura</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Interaction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Interaction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Interacción</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Méthode numérique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Numerical method</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Método numérico</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Equation intégrale</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Integral equation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Ecuación integral</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Singularité</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Singularity</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Singularidad</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Principe superposition</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Superposition principle</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Principio superposición</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Fonction Green</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Green function</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Función Green</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>4650</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>080</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EUROMECH-MECAMAT'98: European Mechanics of Materials Conference</s1>
<s2>3</s2>
<s3>Oxford GBR</s3>
<s4>1998-11-23</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 00-0108580 INIST</NO>
<ET>Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate</ET>
<AU>QIN (Q.-H.); BUSSO (E.); CAILLETAUD (G.)</AU>
<AF>Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic Engineering, The University of Sydney/Sydney NSW 2006/Australie (1 aut.); Dept. of Mechanical Engineering, Imperial College, University of London, Exhibition Road/London SW7 2BX/Royaume-Uni (1 aut.); Centre des Matériaux, Ecole des Mines de Paris, BP. 87/91003 Ivry/France (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Journal de physique. IV; ISSN 1155-4339; France; Da. 1999; Vol. 9; No. 9; Pp. 227-237; Bibl. 22 ref.</SO>
<LA>Anglais</LA>
<EA>'This paper treats the crack-microcrack interactions in an anisotropic piezoelectric solid. Based on the Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity and elastic displacement-electric potential(EDEP) defined on each crack trace is developed and solved numerically. In the analysis, the residual heat flux, stress and electric displacement (SED) on microcrack location to be released are evaluated directly from the near-tip fields of main crack. Numerical results for SED intensity factors in a three-crack system are presented to illustrate the application of the proposed formulation.</EA>
<CC>001B40F30N</CC>
<FD>Propriété électromécanique; Propriété thermomécanique; Thermoélasticité; Piézoélectricité; Contrainte résiduelle; Plaque; Matériau anisotrope; Fissure; Microfissure; Interaction; Méthode numérique; Equation intégrale; Singularité; Principe superposition; Fonction Green; 4650</FD>
<ED>Electromechanical properties; Thermomechanical properties; Thermoelasticity; Piezoelectricity; Residual stress; Plate; Anisotropic material; Crack; Microcrack; Interaction; Numerical method; Integral equation; Singularity; Superposition principle; Green function</ED>
<SD>Propiedad electromecánica; Propriedad termomecánica; Termoelasticidad; Piezoelectricidad; Tensión residual; Placa; Material anisótropo; Fisura; Microfisura; Interacción; Método numérico; Ecuación integral; Singularidad; Principio superposición; Función Green</SD>
<LO>INIST-125C.354000081002900230</LO>
<ID>00-0108580</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006052 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 006052 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:00-0108580
   |texte=   Thermopiezoelectric interaction of crack-microcrack system in a piezoelectric plate
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024