Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys

Identifieur interne : 004A67 ( PascalFrancis/Checkpoint ); précédent : 004A66; suivant : 004A68

Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys

Auteurs : Y. Liu [Australie] ; D. Favier [France] ; L. Orgeas [France]

Source :

RBID : Pascal:04-0417886

Descripteurs français

English descriptors

Abstract

This paper proposes a mechanistic model to simulate the thermal and mechanical behaviour of shape memory alloys. The model is based on the thermodynamic concept of chemical, elastic and frictional energies for thermoelastic martensitic transformations and plasticity concept of grain interior and grain boundary phases. In a thermoelastic martensitic transformation system, a thermally induced transformation and a mechanically induced (stress-induced) transformation require different operating mechanisms from a mechanistic viewpoint. For a thermally induced transformation, the driving force arises from within the matrix and internal stresses are created as a result of frictional movement. For a mechanically induced transformation, the driving force is provided externally and the frictional movement occurs when the stress exceeds a critical value. This paper proposes a unified mechanistic model taking into account this difference. The model is able to describe, in a schematic and qualitative manner, the behaviour of a thermoelastic martensitic transformation system in both thermally induced and mechanically induced processes, including full and partial thermal transformation cycles, stress-induced martensitic transformation, pseudoelastic deformation and ferroelastic deformation via martensite variant reorientation. Such a model allows the discussion of several aspects concerning the thermal and mechanical behaviour of thermoelastic martensitic transformations, such as the non-linear pseudoelasticity, deformation-induced two-way memory effect, strain dependence of mechanical hysteresis and minor loop behaviour of deformation.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0417886

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys</title>
<author>
<name sortKey="Liu, Y" sort="Liu, Y" uniqKey="Liu Y" first="Y." last="Liu">Y. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical Engineering, University of Western Australia</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Crawley WA 6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Favier, D" sort="Favier, D" uniqKey="Favier D" first="D." last="Favier">D. Favier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Orgeas, L" sort="Orgeas, L" uniqKey="Orgeas L" first="L." last="Orgeas">L. Orgeas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0417886</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0417886 INIST</idno>
<idno type="RBID">Pascal:04-0417886</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004D70</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001344</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">004A67</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">004A67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys</title>
<author>
<name sortKey="Liu, Y" sort="Liu, Y" uniqKey="Liu Y" first="Y." last="Liu">Y. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical Engineering, University of Western Australia</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Crawley WA 6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Favier, D" sort="Favier, D" uniqKey="Favier D" first="D." last="Favier">D. Favier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Orgeas, L" sort="Orgeas, L" uniqKey="Orgeas L" first="L." last="Orgeas">L. Orgeas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal de physique. IV</title>
<title level="j" type="abbreviated">J. phys., IV</title>
<idno type="ISSN">1155-4339</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal de physique. IV</title>
<title level="j" type="abbreviated">J. phys., IV</title>
<idno type="ISSN">1155-4339</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary alloys</term>
<term>Experimental study</term>
<term>Ferroelasticity</term>
<term>Grain boundaries</term>
<term>Martensitic transformations</term>
<term>Mechanical hysteresis</term>
<term>Mechanistic approach</term>
<term>Nickel alloys</term>
<term>Non linear effect</term>
<term>Phase stability</term>
<term>Polycrystals</term>
<term>Shape memory alloy</term>
<term>Shape memory effects</term>
<term>Stress effects</term>
<term>Superelasticity</term>
<term>Thermoelasticity</term>
<term>Thermomechanical properties</term>
<term>Titanium alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transformation martensitique</term>
<term>Thermoélasticité</term>
<term>Approche mécaniste</term>
<term>Propriété thermomécanique</term>
<term>Joint grain</term>
<term>Stabilité phase</term>
<term>Effet contrainte</term>
<term>Ferroélasticité</term>
<term>Superélasticité</term>
<term>Effet mémoire forme</term>
<term>Effet non linéaire</term>
<term>Hystérésis mécanique</term>
<term>Polycristal</term>
<term>Alliage mémoire forme</term>
<term>Titane alliage</term>
<term>Nickel alliage</term>
<term>Alliage binaire</term>
<term>Etude expérimentale</term>
<term>Equation Clausius Clapeyron</term>
<term>6220D</term>
<term>8130K</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper proposes a mechanistic model to simulate the thermal and mechanical behaviour of shape memory alloys. The model is based on the thermodynamic concept of chemical, elastic and frictional energies for thermoelastic martensitic transformations and plasticity concept of grain interior and grain boundary phases. In a thermoelastic martensitic transformation system, a thermally induced transformation and a mechanically induced (stress-induced) transformation require different operating mechanisms from a mechanistic viewpoint. For a thermally induced transformation, the driving force arises from within the matrix and internal stresses are created as a result of frictional movement. For a mechanically induced transformation, the driving force is provided externally and the frictional movement occurs when the stress exceeds a critical value. This paper proposes a unified mechanistic model taking into account this difference. The model is able to describe, in a schematic and qualitative manner, the behaviour of a thermoelastic martensitic transformation system in both thermally induced and mechanically induced processes, including full and partial thermal transformation cycles, stress-induced martensitic transformation, pseudoelastic deformation and ferroelastic deformation via martensite variant reorientation. Such a model allows the discussion of several aspects concerning the thermal and mechanical behaviour of thermoelastic martensitic transformations, such as the non-linear pseudoelasticity, deformation-induced two-way memory effect, strain dependence of mechanical hysteresis and minor loop behaviour of deformation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1155-4339</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys., IV</s0>
</fA03>
<fA05>
<s2>115</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>7th European Mechanics of Materials Conference : Adaptive Systems and Materials: Constitutive Materials and Hybrid Structures</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LIU (Y.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FAVIER (D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ORGEAS (L.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>LEXCELLENT (Christian)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PATOOR (Etienne)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Mechanical Engineering, University of Western Australia</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laboratoire de mécanique appliquée R. Chaléat, institut des microtechniques de Franche-Comté, 24 chemin de l'Epitaphe</s1>
<s2>25000 Besançon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Laboratoire de physique et mécanique des matériaux, ENSAM-CER de Metz, 4 rue Augustin Fresnel</s1>
<s2>57078 Metz</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>37-45</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>125C</s2>
<s5>354000113746270050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0417886</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal de physique. IV</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper proposes a mechanistic model to simulate the thermal and mechanical behaviour of shape memory alloys. The model is based on the thermodynamic concept of chemical, elastic and frictional energies for thermoelastic martensitic transformations and plasticity concept of grain interior and grain boundary phases. In a thermoelastic martensitic transformation system, a thermally induced transformation and a mechanically induced (stress-induced) transformation require different operating mechanisms from a mechanistic viewpoint. For a thermally induced transformation, the driving force arises from within the matrix and internal stresses are created as a result of frictional movement. For a mechanically induced transformation, the driving force is provided externally and the frictional movement occurs when the stress exceeds a critical value. This paper proposes a unified mechanistic model taking into account this difference. The model is able to describe, in a schematic and qualitative manner, the behaviour of a thermoelastic martensitic transformation system in both thermally induced and mechanically induced processes, including full and partial thermal transformation cycles, stress-induced martensitic transformation, pseudoelastic deformation and ferroelastic deformation via martensite variant reorientation. Such a model allows the discussion of several aspects concerning the thermal and mechanical behaviour of thermoelastic martensitic transformations, such as the non-linear pseudoelasticity, deformation-induced two-way memory effect, strain dependence of mechanical hysteresis and minor loop behaviour of deformation.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60B20D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A30K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60B20F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Transformation martensitique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Martensitic transformations</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Thermoélasticité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thermoelasticity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Approche mécaniste</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Mechanistic approach</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Propriété thermomécanique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thermomechanical properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Propriedad termomecánica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Joint grain</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Grain boundaries</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Stabilité phase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Phase stability</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Effet contrainte</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Stress effects</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Ferroélasticité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Ferroelasticity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Superélasticité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Superelasticity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet mémoire forme</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Shape memory effects</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Hystérésis mécanique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Mechanical hysteresis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Histéresis mecánica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Alliage mémoire forme</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Shape memory alloy</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Aleación memoria forma</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Titane alliage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Titanium alloys</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Nickel alliage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Nickel alloys</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Alliage binaire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Binary alloys</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Equation Clausius Clapeyron</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>6220D</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8130K</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Métal transition alliage</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Transition element alloys</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>236</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EUROMECH-MECAMAT'2003</s1>
<s2>7</s2>
<s3>Fréjus FRA</s3>
<s4>2003-05-18</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Grenoble</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Liu, Y" sort="Liu, Y" uniqKey="Liu Y" first="Y." last="Liu">Y. Liu</name>
</noRegion>
</country>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Favier, D" sort="Favier, D" uniqKey="Favier D" first="D." last="Favier">D. Favier</name>
</region>
<name sortKey="Orgeas, L" sort="Orgeas, L" uniqKey="Orgeas L" first="L." last="Orgeas">L. Orgeas</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004A67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 004A67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:04-0417886
   |texte=   Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024