Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys

Identifieur interne : 001344 ( PascalFrancis/Curation ); précédent : 001343; suivant : 001345

Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys

Auteurs : Y. Liu [Australie] ; D. Favier [France] ; L. Orgeas [France]

Source :

RBID : Pascal:04-0417886

Descripteurs français

English descriptors

Abstract

This paper proposes a mechanistic model to simulate the thermal and mechanical behaviour of shape memory alloys. The model is based on the thermodynamic concept of chemical, elastic and frictional energies for thermoelastic martensitic transformations and plasticity concept of grain interior and grain boundary phases. In a thermoelastic martensitic transformation system, a thermally induced transformation and a mechanically induced (stress-induced) transformation require different operating mechanisms from a mechanistic viewpoint. For a thermally induced transformation, the driving force arises from within the matrix and internal stresses are created as a result of frictional movement. For a mechanically induced transformation, the driving force is provided externally and the frictional movement occurs when the stress exceeds a critical value. This paper proposes a unified mechanistic model taking into account this difference. The model is able to describe, in a schematic and qualitative manner, the behaviour of a thermoelastic martensitic transformation system in both thermally induced and mechanically induced processes, including full and partial thermal transformation cycles, stress-induced martensitic transformation, pseudoelastic deformation and ferroelastic deformation via martensite variant reorientation. Such a model allows the discussion of several aspects concerning the thermal and mechanical behaviour of thermoelastic martensitic transformations, such as the non-linear pseudoelasticity, deformation-induced two-way memory effect, strain dependence of mechanical hysteresis and minor loop behaviour of deformation.
pA  
A01 01  1    @0 1155-4339
A03   1    @0 J. phys., IV
A05       @2 115
A08 01  1  ENG  @1 Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys
A09 01  1  ENG  @1 7th European Mechanics of Materials Conference : Adaptive Systems and Materials: Constitutive Materials and Hybrid Structures
A11 01  1    @1 LIU (Y.)
A11 02  1    @1 FAVIER (D.)
A11 03  1    @1 ORGEAS (L.)
A12 01  1    @1 LEXCELLENT (Christian) @9 ed.
A12 02  1    @1 PATOOR (Etienne) @9 ed.
A14 01      @1 School of Mechanical Engineering, University of Western Australia @2 Crawley WA 6009 @3 AUS @Z 1 aut.
A14 02      @1 Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53 @2 38041 Grenoble @3 FRA @Z 2 aut. @Z 3 aut.
A15 01      @1 Laboratoire de mécanique appliquée R. Chaléat, institut des microtechniques de Franche-Comté, 24 chemin de l'Epitaphe @2 25000 Besançon @3 FRA @Z 1 aut.
A15 02      @1 Laboratoire de physique et mécanique des matériaux, ENSAM-CER de Metz, 4 rue Augustin Fresnel @2 57078 Metz @3 FRA @Z 2 aut.
A20       @1 37-45
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 125C @5 354000113746270050
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 22 ref.
A47 01  1    @0 04-0417886
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal de physique. IV
A66 01      @0 FRA
C01 01    ENG  @0 This paper proposes a mechanistic model to simulate the thermal and mechanical behaviour of shape memory alloys. The model is based on the thermodynamic concept of chemical, elastic and frictional energies for thermoelastic martensitic transformations and plasticity concept of grain interior and grain boundary phases. In a thermoelastic martensitic transformation system, a thermally induced transformation and a mechanically induced (stress-induced) transformation require different operating mechanisms from a mechanistic viewpoint. For a thermally induced transformation, the driving force arises from within the matrix and internal stresses are created as a result of frictional movement. For a mechanically induced transformation, the driving force is provided externally and the frictional movement occurs when the stress exceeds a critical value. This paper proposes a unified mechanistic model taking into account this difference. The model is able to describe, in a schematic and qualitative manner, the behaviour of a thermoelastic martensitic transformation system in both thermally induced and mechanically induced processes, including full and partial thermal transformation cycles, stress-induced martensitic transformation, pseudoelastic deformation and ferroelastic deformation via martensite variant reorientation. Such a model allows the discussion of several aspects concerning the thermal and mechanical behaviour of thermoelastic martensitic transformations, such as the non-linear pseudoelasticity, deformation-induced two-way memory effect, strain dependence of mechanical hysteresis and minor loop behaviour of deformation.
C02 01  3    @0 001B60B20D
C02 02  3    @0 001B80A30K
C02 03  3    @0 001B60B20F
C03 01  3  FRE  @0 Transformation martensitique @5 02
C03 01  3  ENG  @0 Martensitic transformations @5 02
C03 02  3  FRE  @0 Thermoélasticité @5 03
C03 02  3  ENG  @0 Thermoelasticity @5 03
C03 03  X  FRE  @0 Approche mécaniste @5 04
C03 03  X  ENG  @0 Mechanistic approach @5 04
C03 04  X  FRE  @0 Propriété thermomécanique @5 05
C03 04  X  ENG  @0 Thermomechanical properties @5 05
C03 04  X  SPA  @0 Propriedad termomecánica @5 05
C03 05  3  FRE  @0 Joint grain @5 06
C03 05  3  ENG  @0 Grain boundaries @5 06
C03 06  3  FRE  @0 Stabilité phase @5 07
C03 06  3  ENG  @0 Phase stability @5 07
C03 07  3  FRE  @0 Effet contrainte @5 08
C03 07  3  ENG  @0 Stress effects @5 08
C03 08  3  FRE  @0 Ferroélasticité @5 09
C03 08  3  ENG  @0 Ferroelasticity @5 09
C03 09  3  FRE  @0 Superélasticité @5 10
C03 09  3  ENG  @0 Superelasticity @5 10
C03 10  3  FRE  @0 Effet mémoire forme @5 11
C03 10  3  ENG  @0 Shape memory effects @5 11
C03 11  X  FRE  @0 Effet non linéaire @5 12
C03 11  X  ENG  @0 Non linear effect @5 12
C03 11  X  SPA  @0 Efecto no lineal @5 12
C03 12  X  FRE  @0 Hystérésis mécanique @5 13
C03 12  X  ENG  @0 Mechanical hysteresis @5 13
C03 12  X  SPA  @0 Histéresis mecánica @5 13
C03 13  3  FRE  @0 Polycristal @5 15
C03 13  3  ENG  @0 Polycrystals @5 15
C03 14  X  FRE  @0 Alliage mémoire forme @5 16
C03 14  X  ENG  @0 Shape memory alloy @5 16
C03 14  X  SPA  @0 Aleación memoria forma @5 16
C03 15  3  FRE  @0 Titane alliage @5 17
C03 15  3  ENG  @0 Titanium alloys @5 17
C03 16  3  FRE  @0 Nickel alliage @5 18
C03 16  3  ENG  @0 Nickel alloys @5 18
C03 17  3  FRE  @0 Alliage binaire @5 19
C03 17  3  ENG  @0 Binary alloys @5 19
C03 18  3  FRE  @0 Etude expérimentale @5 20
C03 18  3  ENG  @0 Experimental study @5 20
C03 19  3  FRE  @0 Equation Clausius Clapeyron @4 INC @5 53
C03 20  3  FRE  @0 6220D @4 INC @5 56
C03 21  3  FRE  @0 8130K @4 INC @5 57
C07 01  3  FRE  @0 Métal transition alliage @5 48
C07 01  3  ENG  @0 Transition element alloys @5 48
N21       @1 236
N44 01      @1 PSI
N82       @1 PSI
pR  
A30 01  1  ENG  @1 EUROMECH-MECAMAT'2003 @2 7 @3 Fréjus FRA @4 2003-05-18

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0417886

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys</title>
<author>
<name sortKey="Liu, Y" sort="Liu, Y" uniqKey="Liu Y" first="Y." last="Liu">Y. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical Engineering, University of Western Australia</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Favier, D" sort="Favier, D" uniqKey="Favier D" first="D." last="Favier">D. Favier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Orgeas, L" sort="Orgeas, L" uniqKey="Orgeas L" first="L." last="Orgeas">L. Orgeas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0417886</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0417886 INIST</idno>
<idno type="RBID">Pascal:04-0417886</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004D70</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001344</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys</title>
<author>
<name sortKey="Liu, Y" sort="Liu, Y" uniqKey="Liu Y" first="Y." last="Liu">Y. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical Engineering, University of Western Australia</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Favier, D" sort="Favier, D" uniqKey="Favier D" first="D." last="Favier">D. Favier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Orgeas, L" sort="Orgeas, L" uniqKey="Orgeas L" first="L." last="Orgeas">L. Orgeas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal de physique. IV</title>
<title level="j" type="abbreviated">J. phys., IV</title>
<idno type="ISSN">1155-4339</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal de physique. IV</title>
<title level="j" type="abbreviated">J. phys., IV</title>
<idno type="ISSN">1155-4339</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary alloys</term>
<term>Experimental study</term>
<term>Ferroelasticity</term>
<term>Grain boundaries</term>
<term>Martensitic transformations</term>
<term>Mechanical hysteresis</term>
<term>Mechanistic approach</term>
<term>Nickel alloys</term>
<term>Non linear effect</term>
<term>Phase stability</term>
<term>Polycrystals</term>
<term>Shape memory alloy</term>
<term>Shape memory effects</term>
<term>Stress effects</term>
<term>Superelasticity</term>
<term>Thermoelasticity</term>
<term>Thermomechanical properties</term>
<term>Titanium alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transformation martensitique</term>
<term>Thermoélasticité</term>
<term>Approche mécaniste</term>
<term>Propriété thermomécanique</term>
<term>Joint grain</term>
<term>Stabilité phase</term>
<term>Effet contrainte</term>
<term>Ferroélasticité</term>
<term>Superélasticité</term>
<term>Effet mémoire forme</term>
<term>Effet non linéaire</term>
<term>Hystérésis mécanique</term>
<term>Polycristal</term>
<term>Alliage mémoire forme</term>
<term>Titane alliage</term>
<term>Nickel alliage</term>
<term>Alliage binaire</term>
<term>Etude expérimentale</term>
<term>Equation Clausius Clapeyron</term>
<term>6220D</term>
<term>8130K</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper proposes a mechanistic model to simulate the thermal and mechanical behaviour of shape memory alloys. The model is based on the thermodynamic concept of chemical, elastic and frictional energies for thermoelastic martensitic transformations and plasticity concept of grain interior and grain boundary phases. In a thermoelastic martensitic transformation system, a thermally induced transformation and a mechanically induced (stress-induced) transformation require different operating mechanisms from a mechanistic viewpoint. For a thermally induced transformation, the driving force arises from within the matrix and internal stresses are created as a result of frictional movement. For a mechanically induced transformation, the driving force is provided externally and the frictional movement occurs when the stress exceeds a critical value. This paper proposes a unified mechanistic model taking into account this difference. The model is able to describe, in a schematic and qualitative manner, the behaviour of a thermoelastic martensitic transformation system in both thermally induced and mechanically induced processes, including full and partial thermal transformation cycles, stress-induced martensitic transformation, pseudoelastic deformation and ferroelastic deformation via martensite variant reorientation. Such a model allows the discussion of several aspects concerning the thermal and mechanical behaviour of thermoelastic martensitic transformations, such as the non-linear pseudoelasticity, deformation-induced two-way memory effect, strain dependence of mechanical hysteresis and minor loop behaviour of deformation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1155-4339</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys., IV</s0>
</fA03>
<fA05>
<s2>115</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>7th European Mechanics of Materials Conference : Adaptive Systems and Materials: Constitutive Materials and Hybrid Structures</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LIU (Y.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FAVIER (D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ORGEAS (L.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>LEXCELLENT (Christian)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PATOOR (Etienne)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Mechanical Engineering, University of Western Australia</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire Sols-Solides-Structures, UMR CNRS 5521, UJF-INPG, BP. 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laboratoire de mécanique appliquée R. Chaléat, institut des microtechniques de Franche-Comté, 24 chemin de l'Epitaphe</s1>
<s2>25000 Besançon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Laboratoire de physique et mécanique des matériaux, ENSAM-CER de Metz, 4 rue Augustin Fresnel</s1>
<s2>57078 Metz</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>37-45</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>125C</s2>
<s5>354000113746270050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0417886</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal de physique. IV</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper proposes a mechanistic model to simulate the thermal and mechanical behaviour of shape memory alloys. The model is based on the thermodynamic concept of chemical, elastic and frictional energies for thermoelastic martensitic transformations and plasticity concept of grain interior and grain boundary phases. In a thermoelastic martensitic transformation system, a thermally induced transformation and a mechanically induced (stress-induced) transformation require different operating mechanisms from a mechanistic viewpoint. For a thermally induced transformation, the driving force arises from within the matrix and internal stresses are created as a result of frictional movement. For a mechanically induced transformation, the driving force is provided externally and the frictional movement occurs when the stress exceeds a critical value. This paper proposes a unified mechanistic model taking into account this difference. The model is able to describe, in a schematic and qualitative manner, the behaviour of a thermoelastic martensitic transformation system in both thermally induced and mechanically induced processes, including full and partial thermal transformation cycles, stress-induced martensitic transformation, pseudoelastic deformation and ferroelastic deformation via martensite variant reorientation. Such a model allows the discussion of several aspects concerning the thermal and mechanical behaviour of thermoelastic martensitic transformations, such as the non-linear pseudoelasticity, deformation-induced two-way memory effect, strain dependence of mechanical hysteresis and minor loop behaviour of deformation.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60B20D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A30K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60B20F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Transformation martensitique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Martensitic transformations</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Thermoélasticité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thermoelasticity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Approche mécaniste</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Mechanistic approach</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Propriété thermomécanique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thermomechanical properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Propriedad termomecánica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Joint grain</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Grain boundaries</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Stabilité phase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Phase stability</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Effet contrainte</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Stress effects</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Ferroélasticité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Ferroelasticity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Superélasticité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Superelasticity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet mémoire forme</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Shape memory effects</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Hystérésis mécanique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Mechanical hysteresis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Histéresis mecánica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Alliage mémoire forme</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Shape memory alloy</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Aleación memoria forma</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Titane alliage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Titanium alloys</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Nickel alliage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Nickel alloys</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Alliage binaire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Binary alloys</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Equation Clausius Clapeyron</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>6220D</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8130K</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Métal transition alliage</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Transition element alloys</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>236</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EUROMECH-MECAMAT'2003</s1>
<s2>7</s2>
<s3>Fréjus FRA</s3>
<s4>2003-05-18</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001344 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 001344 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:04-0417886
   |texte=   Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024