Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Wavelet deconvolution with noisy eigenvalues

Identifieur interne : 003512 ( PascalFrancis/Checkpoint ); précédent : 003511; suivant : 003513

Wavelet deconvolution with noisy eigenvalues

Auteurs : Laurent Cavalier [France] ; Marc Raimondo [Australie]

Source :

RBID : Pascal:07-0268082

Descripteurs français

English descriptors

Abstract

Over the last decade, there has been a lot of interest in wavelet-vaguelette methods for the recovery of noisy signals or images in motion blur. Nonlinear wavelet estimators are known to have good adaptive properties and to outperform linear approximations over a wide range of signals and images, see e.g., the recent WaveD method of Johnstone, Kerkyacharian, Picard, and Raimondo (2004) or the ForWarD method of Neelamani, Choi, and Baraniuk (2004) and also Fan and Koo (2002) in the density setting. In the deblurring setting, wavelet-vaguelette methods rely on the complete knowledge of a convolution operator's eigenvalues. This is an unlikely situation in practice, however. A more realistic scenario, such as would arise when passing the Fourier basis as an input signal through a linear-time-invariant system, is to imagine that one also observes a set of noisy eigenvalues. In this paper, we define a version of the WaveD estimator which is near-optimal when used with noisy eigenvalues. A key feature of our method includes a data-driven method for choosing the fine resolution level in WaveD estimation. Asymptotic theory is illustrated with a wide range of finite sample examples.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0268082

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Wavelet deconvolution with noisy eigenvalues</title>
<author>
<name sortKey="Cavalier, Laurent" sort="Cavalier, Laurent" uniqKey="Cavalier L" first="Laurent" last="Cavalier">Laurent Cavalier</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Université Aix-Marseille 1, CMI</s1>
<s2>13453 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Raimondo, Marc" sort="Raimondo, Marc" uniqKey="Raimondo M" first="Marc" last="Raimondo">Marc Raimondo</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>School of Mathematics and Statistics, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0268082</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0268082 INIST</idno>
<idno type="RBID">Pascal:07-0268082</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003C06</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002482</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">003512</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">003512</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Wavelet deconvolution with noisy eigenvalues</title>
<author>
<name sortKey="Cavalier, Laurent" sort="Cavalier, Laurent" uniqKey="Cavalier L" first="Laurent" last="Cavalier">Laurent Cavalier</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Université Aix-Marseille 1, CMI</s1>
<s2>13453 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Raimondo, Marc" sort="Raimondo, Marc" uniqKey="Raimondo M" first="Marc" last="Raimondo">Marc Raimondo</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>School of Mathematics and Statistics, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on signal processing</title>
<title level="j" type="abbreviated">IEEE trans. signal process.</title>
<idno type="ISSN">1053-587X</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on signal processing</title>
<title level="j" type="abbreviated">IEEE trans. signal process.</title>
<idno type="ISSN">1053-587X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive estimation</term>
<term>Blurred image</term>
<term>Convolution</term>
<term>Deconvolution</term>
<term>Eigenvalue</term>
<term>Image processing</term>
<term>Image restoration</term>
<term>Input signal</term>
<term>Linear approximation</term>
<term>Linear system</term>
<term>Noisy image</term>
<term>Performance evaluation</term>
<term>Signal processing</term>
<term>Signal reconstruction</term>
<term>Signal restoration</term>
<term>Singular value decomposition</term>
<term>Wavelet transformation</term>
<term>Wigner Ville distribution</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Déconvolution</term>
<term>Valeur propre</term>
<term>Transformation ondelette</term>
<term>Reconstruction signal</term>
<term>Restauration signal</term>
<term>Image bruitée</term>
<term>Image floue</term>
<term>Evaluation performance</term>
<term>Approximation linéaire</term>
<term>Restauration image</term>
<term>Convolution</term>
<term>Signal entrée</term>
<term>Système linéaire</term>
<term>Estimation adaptative</term>
<term>Décomposition valeur singulière</term>
<term>Distribution Wigner Ville</term>
<term>Traitement signal</term>
<term>Traitement image</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Over the last decade, there has been a lot of interest in wavelet-vaguelette methods for the recovery of noisy signals or images in motion blur. Nonlinear wavelet estimators are known to have good adaptive properties and to outperform linear approximations over a wide range of signals and images, see e.g., the recent WaveD method of Johnstone, Kerkyacharian, Picard, and Raimondo (2004) or the ForWarD method of Neelamani, Choi, and Baraniuk (2004) and also Fan and Koo (2002) in the density setting. In the deblurring setting, wavelet-vaguelette methods rely on the complete knowledge of a convolution operator's eigenvalues. This is an unlikely situation in practice, however. A more realistic scenario, such as would arise when passing the Fourier basis as an input signal through a linear-time-invariant system, is to imagine that one also observes a set of noisy eigenvalues. In this paper, we define a version of the WaveD estimator which is near-optimal when used with noisy eigenvalues. A key feature of our method includes a data-driven method for choosing the fine resolution level in WaveD estimation. Asymptotic theory is illustrated with a wide range of finite sample examples.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1053-587X</s0>
</fA01>
<fA02 i1="01">
<s0>ITPRED</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. signal process.</s0>
</fA03>
<fA05>
<s2>55</s2>
</fA05>
<fA06>
<s2>6</s2>
<s3>p. 1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Wavelet deconvolution with noisy eigenvalues</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CAVALIER (Laurent)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAIMONDO (Marc)</s1>
</fA11>
<fA14 i1="01">
<s1>Université Aix-Marseille 1, CMI</s1>
<s2>13453 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Mathematics and Statistics, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>2414-2424</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222E3</s2>
<s5>354000149646890050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0268082</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on signal processing</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Over the last decade, there has been a lot of interest in wavelet-vaguelette methods for the recovery of noisy signals or images in motion blur. Nonlinear wavelet estimators are known to have good adaptive properties and to outperform linear approximations over a wide range of signals and images, see e.g., the recent WaveD method of Johnstone, Kerkyacharian, Picard, and Raimondo (2004) or the ForWarD method of Neelamani, Choi, and Baraniuk (2004) and also Fan and Koo (2002) in the density setting. In the deblurring setting, wavelet-vaguelette methods rely on the complete knowledge of a convolution operator's eigenvalues. This is an unlikely situation in practice, however. A more realistic scenario, such as would arise when passing the Fourier basis as an input signal through a linear-time-invariant system, is to imagine that one also observes a set of noisy eigenvalues. In this paper, we define a version of the WaveD estimator which is near-optimal when used with noisy eigenvalues. A key feature of our method includes a data-driven method for choosing the fine resolution level in WaveD estimation. Asymptotic theory is illustrated with a wide range of finite sample examples.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D04A04A2</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D04A05C</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D04A05D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Déconvolution</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Deconvolution</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Desconvolución</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Valeur propre</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Eigenvalue</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Valor propio</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Transformation ondelette</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Wavelet transformation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Transformación ondita</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Reconstruction signal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Signal reconstruction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Reconstrucción señal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Restauration signal</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Signal restoration</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Image bruitée</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Noisy image</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Imagen sonora</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Image floue</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Blurred image</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Imagen borrosa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Approximation linéaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Linear approximation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Aproximación lineal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Restauration image</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Image restoration</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Restauración imagen</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Convolution</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Convolution</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Convolución</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Signal entrée</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Input signal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Señal entrada</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Système linéaire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Linear system</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Sistema lineal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Estimation adaptative</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Adaptive estimation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estimación adaptativa</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Décomposition valeur singulière</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Singular value decomposition</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Decomposición valor singular</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Distribution Wigner Ville</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Wigner Ville distribution</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Distribución Wigner Ville</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Traitement signal</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Signal processing</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Procesamiento señal</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Traitement image</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Image processing</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Procesamiento imagen</s0>
<s5>32</s5>
</fC03>
<fN21>
<s1>176</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Marseille</li>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Cavalier, Laurent" sort="Cavalier, Laurent" uniqKey="Cavalier L" first="Laurent" last="Cavalier">Laurent Cavalier</name>
</region>
</country>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Raimondo, Marc" sort="Raimondo, Marc" uniqKey="Raimondo M" first="Marc" last="Raimondo">Marc Raimondo</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003512 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 003512 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:07-0268082
   |texte=   Wavelet deconvolution with noisy eigenvalues
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024