Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation

Identifieur interne : 001D08 ( PascalFrancis/Checkpoint ); précédent : 001D07; suivant : 001D09

Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation

Auteurs : Marc T. M. Koper [Pays-Bas]

Source :

RBID : Pascal:12-0325112

Descripteurs français

English descriptors

Abstract

This paper discusses the relationship between the blank voltammetry of various hexagonally close-packed transition-metal electrodes, and DFT calculations of the binding energy of H, OH and 0 as well as UHV experiments on the dissociation of water on the same surfaces. The binding energies of H, OH and 0 can be used to predict the "phase diagram" of the electrode surface including the potentials of the transition between different surface states. The width of the voltammetric peaks corresponding to these transitions can be used to estimate the effective lateral interactions between the adsorbates involved, where effectively attractive interactions may often be explained by a replacement reaction. The detailed comparison shows that only for Pt(111) and Pd(111) the existence of a "double-layer region" is fully consistent with the available experimental and computational data. The Ru(0 001) surface does not have a double-layer region, but is covered with residues of water dissociation at every potential. The situation is unclear for Rh(111) and Ir(111) electrodes, for which a double-layer region has been claimed in the literature, but in both cases the claims are (at least partially) inconsistent with theoretical predictions.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0325112

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation</title>
<author>
<name sortKey="Koper, Marc T M" sort="Koper, Marc T M" uniqKey="Koper M" first="Marc T. M." last="Koper">Marc T. M. Koper</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Leiden Institute of Chemistry, Leiden University, PO Box 9502</s1>
<s2>2300 RA Leiden</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2300 RA Leiden</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0325112</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0325112 INIST</idno>
<idno type="RBID">Pascal:12-0325112</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001152</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004D65</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001D08</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001D08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation</title>
<author>
<name sortKey="Koper, Marc T M" sort="Koper, Marc T M" uniqKey="Koper M" first="Marc T. M." last="Koper">Marc T. M. Koper</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Leiden Institute of Chemistry, Leiden University, PO Box 9502</s1>
<s2>2300 RA Leiden</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2300 RA Leiden</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Electrochimica acta</title>
<title level="j" type="abbreviated">Electrochim. acta</title>
<idno type="ISSN">0013-4686</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Electrochimica acta</title>
<title level="j" type="abbreviated">Electrochim. acta</title>
<idno type="ISSN">0013-4686</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acidic solution</term>
<term>Aqueous solution</term>
<term>Comparative study</term>
<term>Crystal orientation</term>
<term>Cyclic voltammetry</term>
<term>Density functional method</term>
<term>Dissociation</term>
<term>Electrochemical double layer</term>
<term>Electrode electrolyte interface</term>
<term>Electrodes</term>
<term>Perchloric acid</term>
<term>Platinoid</term>
<term>Potential distribution</term>
<term>Single crystal</term>
<term>Theoretical study</term>
<term>Ultrahigh vacuum</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Voltammétrie cyclique</term>
<term>Electrode</term>
<term>Etude comparative</term>
<term>Méthode fonctionnelle densité</term>
<term>Etude théorique</term>
<term>Ultravide</term>
<term>Platinoïde</term>
<term>Dissociation</term>
<term>Double couche électrochimique</term>
<term>Solution aqueuse</term>
<term>Orientation cristalline</term>
<term>Monocristal</term>
<term>Solution acide</term>
<term>Acide perchlorique</term>
<term>Interface électrode électrolyte</term>
<term>Distribution potentiel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper discusses the relationship between the blank voltammetry of various hexagonally close-packed transition-metal electrodes, and DFT calculations of the binding energy of H, OH and 0 as well as UHV experiments on the dissociation of water on the same surfaces. The binding energies of H, OH and 0 can be used to predict the "phase diagram" of the electrode surface including the potentials of the transition between different surface states. The width of the voltammetric peaks corresponding to these transitions can be used to estimate the effective lateral interactions between the adsorbates involved, where effectively attractive interactions may often be explained by a replacement reaction. The detailed comparison shows that only for Pt(111) and Pd(111) the existence of a "double-layer region" is fully consistent with the available experimental and computational data. The Ru(0 001) surface does not have a double-layer region, but is covered with residues of water dissociation at every potential. The situation is unclear for Rh(111) and Ir(111) electrodes, for which a double-layer region has been claimed in the literature, but in both cases the claims are (at least partially) inconsistent with theoretical predictions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-4686</s0>
</fA01>
<fA02 i1="01">
<s0>ELCAAV</s0>
</fA02>
<fA03 i2="1">
<s0>Electrochim. acta</s0>
</fA03>
<fA05>
<s2>56</s2>
</fA05>
<fA06>
<s2>28</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Electrochemistry from Biology to Physics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KOPER (Marc T. M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BERGEL (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BOND (A. M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BRANKOVIC (S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>BULTEL (Y.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>DI QUARTO (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>GORTON (L.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="07" i2="1">
<s1>INZELT (G.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="08" i2="1">
<s1>LAPICQUE (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="09" i2="1">
<s1>LISDAT (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="10" i2="1">
<s1>OPALLO (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="11" i2="1">
<s1>SAVINOVA (E. R.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="12" i2="1">
<s1>TOH (C.S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="13" i2="1">
<s1>TSIRLINA (G. A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="14" i2="1">
<s1>VIVIER (V.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="15" i2="1">
<s1>WINTER (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Leiden Institute of Chemistry, Leiden University, PO Box 9502</s1>
<s2>2300 RA Leiden</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>CNRS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Monash University</s1>
<s2>Clayton, Vic.</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of Houston</s1>
<s2>Houston, TX</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>LEPMI</s1>
<s2>Grenoble</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>University of Palermo</s1>
<s3>ITA</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="06">
<s1>Lund University</s1>
<s3>SWE</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA15 i1="07">
<s1>Eotvos Lorand University</s1>
<s2>Budapest</s2>
<s3>HUN</s3>
<sZ>7 aut.</sZ>
</fA15>
<fA15 i1="08">
<s1>CNRS</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>8 aut.</sZ>
</fA15>
<fA15 i1="09">
<s1>Wildau University</s1>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
</fA15>
<fA15 i1="10">
<s1>Polish Academy of Sciences</s1>
<s2>Warsaw</s2>
<s3>POL</s3>
<sZ>10 aut.</sZ>
</fA15>
<fA15 i1="11">
<s1>Université de Strasbourg</s1>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</fA15>
<fA15 i1="12">
<s1>Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>12 aut.</sZ>
</fA15>
<fA15 i1="13">
<s1>Moscow State University</s1>
<s3>RUS</s3>
<sZ>13 aut.</sZ>
</fA15>
<fA15 i1="14">
<s1>Université Pierre et Marie Curie</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>14 aut.</sZ>
</fA15>
<fA15 i1="15">
<s1>University of Münster</s1>
<s3>DEU</s3>
<sZ>15 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>International Society of Electrochemistry (ISE)</s1>
<s2>1004 Lausanne</s2>
<s3>CHE</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>10645-10651</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1516</s2>
<s5>354000505919820420</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>47 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0325112</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Electrochimica acta</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper discusses the relationship between the blank voltammetry of various hexagonally close-packed transition-metal electrodes, and DFT calculations of the binding energy of H, OH and 0 as well as UHV experiments on the dissociation of water on the same surfaces. The binding energies of H, OH and 0 can be used to predict the "phase diagram" of the electrode surface including the potentials of the transition between different surface states. The width of the voltammetric peaks corresponding to these transitions can be used to estimate the effective lateral interactions between the adsorbates involved, where effectively attractive interactions may often be explained by a replacement reaction. The detailed comparison shows that only for Pt(111) and Pd(111) the existence of a "double-layer region" is fully consistent with the available experimental and computational data. The Ru(0 001) surface does not have a double-layer region, but is covered with residues of water dissociation at every potential. The situation is unclear for Rh(111) and Ir(111) electrodes, for which a double-layer region has been claimed in the literature, but in both cases the claims are (at least partially) inconsistent with theoretical predictions.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01H04D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Voltammétrie cyclique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Cyclic voltammetry</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Voltametría cíclica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Electrode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electrodes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Electrodo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Ultravide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ultrahigh vacuum</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Ultravacío</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Platinoïde</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Platinoid</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Platinoide</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dissociation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Dissociation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Disociación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Double couche électrochimique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electrochemical double layer</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Doble capa electroquímica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Solution aqueuse</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Aqueous solution</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Solución acuosa</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Orientation cristalline</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Crystal orientation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Orientación cristalina</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Monocristal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Single crystal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Monocristal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Solution acide</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Acidic solution</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Solución ácida</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Acide perchlorique</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Perchloric acid</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Perclórico ácido</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Interface électrode électrolyte</s0>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Electrode electrolyte interface</s0>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Interfase electrodo electrolito</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Distribution potentiel</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Potential distribution</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Distribución potencial</s0>
<s5>33</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Métal transition</s0>
<s2>NC</s2>
<s5>53</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Transition metal</s0>
<s2>NC</s2>
<s5>53</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Metal transición</s0>
<s2>NC</s2>
<s5>53</s5>
</fC07>
<fN21>
<s1>247</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Society of Electrochemistry (ISE) Meeting</s1>
<s2>61</s2>
<s3>Nice FRA</s3>
<s4>2010-09-26</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
</list>
<tree>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Koper, Marc T M" sort="Koper, Marc T M" uniqKey="Koper M" first="Marc T. M." last="Koper">Marc T. M. Koper</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 001D08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:12-0325112
   |texte=   Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024