Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation

Identifieur interne : 001152 ( PascalFrancis/Corpus ); précédent : 001151; suivant : 001153

Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation

Auteurs : Marc T. M. Koper

Source :

RBID : Pascal:12-0325112

Descripteurs français

English descriptors

Abstract

This paper discusses the relationship between the blank voltammetry of various hexagonally close-packed transition-metal electrodes, and DFT calculations of the binding energy of H, OH and 0 as well as UHV experiments on the dissociation of water on the same surfaces. The binding energies of H, OH and 0 can be used to predict the "phase diagram" of the electrode surface including the potentials of the transition between different surface states. The width of the voltammetric peaks corresponding to these transitions can be used to estimate the effective lateral interactions between the adsorbates involved, where effectively attractive interactions may often be explained by a replacement reaction. The detailed comparison shows that only for Pt(111) and Pd(111) the existence of a "double-layer region" is fully consistent with the available experimental and computational data. The Ru(0 001) surface does not have a double-layer region, but is covered with residues of water dissociation at every potential. The situation is unclear for Rh(111) and Ir(111) electrodes, for which a double-layer region has been claimed in the literature, but in both cases the claims are (at least partially) inconsistent with theoretical predictions.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0013-4686
A02 01      @0 ELCAAV
A03   1    @0 Electrochim. acta
A05       @2 56
A06       @2 28
A08 01  1  ENG  @1 Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation
A09 01  1  ENG  @1 Electrochemistry from Biology to Physics
A11 01  1    @1 KOPER (Marc T. M.)
A12 01  1    @1 BERGEL (A.) @9 ed.
A12 02  1    @1 BOND (A. M.) @9 ed.
A12 03  1    @1 BRANKOVIC (S.) @9 ed.
A12 04  1    @1 BULTEL (Y.) @9 ed.
A12 05  1    @1 DI QUARTO (F.) @9 ed.
A12 06  1    @1 GORTON (L.) @9 ed.
A12 07  1    @1 INZELT (G.) @9 ed.
A12 08  1    @1 LAPICQUE (F.) @9 ed.
A12 09  1    @1 LISDAT (F.) @9 ed.
A12 10  1    @1 OPALLO (M.) @9 ed.
A12 11  1    @1 SAVINOVA (E. R.) @9 ed.
A12 12  1    @1 TOH (C.S.) @9 ed.
A12 13  1    @1 TSIRLINA (G. A.) @9 ed.
A12 14  1    @1 VIVIER (V.) @9 ed.
A12 15  1    @1 WINTER (M.) @9 ed.
A14 01      @1 Leiden Institute of Chemistry, Leiden University, PO Box 9502 @2 2300 RA Leiden @3 NLD @Z 1 aut.
A15 01      @1 CNRS @2 Toulouse @3 FRA @Z 1 aut.
A15 02      @1 Monash University @2 Clayton, Vic. @3 AUS @Z 2 aut.
A15 03      @1 University of Houston @2 Houston, TX @3 USA @Z 3 aut.
A15 04      @1 LEPMI @2 Grenoble @3 FRA @Z 4 aut.
A15 05      @1 University of Palermo @3 ITA @Z 5 aut.
A15 06      @1 Lund University @3 SWE @Z 6 aut.
A15 07      @1 Eotvos Lorand University @2 Budapest @3 HUN @Z 7 aut.
A15 08      @1 CNRS @2 Nancy @3 FRA @Z 8 aut.
A15 09      @1 Wildau University @3 DEU @Z 9 aut.
A15 10      @1 Polish Academy of Sciences @2 Warsaw @3 POL @Z 10 aut.
A15 11      @1 Université de Strasbourg @3 FRA @Z 11 aut.
A15 12      @1 Nanyang Technological University @3 SGP @Z 12 aut.
A15 13      @1 Moscow State University @3 RUS @Z 13 aut.
A15 14      @1 Université Pierre et Marie Curie @2 Paris @3 FRA @Z 14 aut.
A15 15      @1 University of Münster @3 DEU @Z 15 aut.
A18 01  1    @1 International Society of Electrochemistry (ISE) @2 1004 Lausanne @3 CHE @9 org-cong.
A20       @1 10645-10651
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 1516 @5 354000505919820420
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 47 ref.
A47 01  1    @0 12-0325112
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Electrochimica acta
A66 01      @0 GBR
C01 01    ENG  @0 This paper discusses the relationship between the blank voltammetry of various hexagonally close-packed transition-metal electrodes, and DFT calculations of the binding energy of H, OH and 0 as well as UHV experiments on the dissociation of water on the same surfaces. The binding energies of H, OH and 0 can be used to predict the "phase diagram" of the electrode surface including the potentials of the transition between different surface states. The width of the voltammetric peaks corresponding to these transitions can be used to estimate the effective lateral interactions between the adsorbates involved, where effectively attractive interactions may often be explained by a replacement reaction. The detailed comparison shows that only for Pt(111) and Pd(111) the existence of a "double-layer region" is fully consistent with the available experimental and computational data. The Ru(0 001) surface does not have a double-layer region, but is covered with residues of water dissociation at every potential. The situation is unclear for Rh(111) and Ir(111) electrodes, for which a double-layer region has been claimed in the literature, but in both cases the claims are (at least partially) inconsistent with theoretical predictions.
C02 01  X    @0 001C01H04D
C03 01  X  FRE  @0 Voltammétrie cyclique @5 01
C03 01  X  ENG  @0 Cyclic voltammetry @5 01
C03 01  X  SPA  @0 Voltametría cíclica @5 01
C03 02  X  FRE  @0 Electrode @5 03
C03 02  X  ENG  @0 Electrodes @5 03
C03 02  X  SPA  @0 Electrodo @5 03
C03 03  X  FRE  @0 Etude comparative @5 04
C03 03  X  ENG  @0 Comparative study @5 04
C03 03  X  SPA  @0 Estudio comparativo @5 04
C03 04  3  FRE  @0 Méthode fonctionnelle densité @5 05
C03 04  3  ENG  @0 Density functional method @5 05
C03 05  X  FRE  @0 Etude théorique @5 06
C03 05  X  ENG  @0 Theoretical study @5 06
C03 05  X  SPA  @0 Estudio teórico @5 06
C03 06  X  FRE  @0 Ultravide @5 07
C03 06  X  ENG  @0 Ultrahigh vacuum @5 07
C03 06  X  SPA  @0 Ultravacío @5 07
C03 07  X  FRE  @0 Platinoïde @2 NC @5 08
C03 07  X  ENG  @0 Platinoid @2 NC @5 08
C03 07  X  SPA  @0 Platinoide @2 NC @5 08
C03 08  X  FRE  @0 Dissociation @5 09
C03 08  X  ENG  @0 Dissociation @5 09
C03 08  X  SPA  @0 Disociación @5 09
C03 09  X  FRE  @0 Double couche électrochimique @5 10
C03 09  X  ENG  @0 Electrochemical double layer @5 10
C03 09  X  SPA  @0 Doble capa electroquímica @5 10
C03 10  X  FRE  @0 Solution aqueuse @5 11
C03 10  X  ENG  @0 Aqueous solution @5 11
C03 10  X  SPA  @0 Solución acuosa @5 11
C03 11  X  FRE  @0 Orientation cristalline @5 12
C03 11  X  ENG  @0 Crystal orientation @5 12
C03 11  X  SPA  @0 Orientación cristalina @5 12
C03 12  X  FRE  @0 Monocristal @5 13
C03 12  X  ENG  @0 Single crystal @5 13
C03 12  X  SPA  @0 Monocristal @5 13
C03 13  X  FRE  @0 Solution acide @5 14
C03 13  X  ENG  @0 Acidic solution @5 14
C03 13  X  SPA  @0 Solución ácida @5 14
C03 14  X  FRE  @0 Acide perchlorique @2 NK @5 15
C03 14  X  ENG  @0 Perchloric acid @2 NK @5 15
C03 14  X  SPA  @0 Perclórico ácido @2 NK @5 15
C03 15  X  FRE  @0 Interface électrode électrolyte @5 32
C03 15  X  ENG  @0 Electrode electrolyte interface @5 32
C03 15  X  SPA  @0 Interfase electrodo electrolito @5 32
C03 16  X  FRE  @0 Distribution potentiel @5 33
C03 16  X  ENG  @0 Potential distribution @5 33
C03 16  X  SPA  @0 Distribución potencial @5 33
C07 01  X  FRE  @0 Métal transition @2 NC @5 53
C07 01  X  ENG  @0 Transition metal @2 NC @5 53
C07 01  X  SPA  @0 Metal transición @2 NC @5 53
N21       @1 247
pR  
A30 01  1  ENG  @1 International Society of Electrochemistry (ISE) Meeting @2 61 @3 Nice FRA @4 2010-09-26

Format Inist (serveur)

NO : PASCAL 12-0325112 INIST
ET : Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation
AU : KOPER (Marc T. M.); BERGEL (A.); BOND (A. M.); BRANKOVIC (S.); BULTEL (Y.); DI QUARTO (F.); GORTON (L.); INZELT (G.); LAPICQUE (F.); LISDAT (F.); OPALLO (M.); SAVINOVA (E. R.); TOH (C.S.); TSIRLINA (G. A.); VIVIER (V.); WINTER (M.)
AF : Leiden Institute of Chemistry, Leiden University, PO Box 9502/2300 RA Leiden/Pays-Bas (1 aut.); CNRS/Toulouse/France (1 aut.); Monash University/Clayton, Vic./Australie (2 aut.); University of Houston/Houston, TX/Etats-Unis (3 aut.); LEPMI/Grenoble/France (4 aut.); University of Palermo/Italie (5 aut.); Lund University/Suède (6 aut.); Eotvos Lorand University/Budapest/Hongrie (7 aut.); CNRS/Nancy/France (8 aut.); Wildau University/Allemagne (9 aut.); Polish Academy of Sciences/Warsaw/Pologne (10 aut.); Université de Strasbourg/France (11 aut.); Nanyang Technological University/Singapour (12 aut.); Moscow State University/Russie (13 aut.); Université Pierre et Marie Curie/Paris/France (14 aut.); University of Münster/Allemagne (15 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Electrochimica acta; ISSN 0013-4686; Coden ELCAAV; Royaume-Uni; Da. 2011; Vol. 56; No. 28; Pp. 10645-10651; Bibl. 47 ref.
LA : Anglais
EA : This paper discusses the relationship between the blank voltammetry of various hexagonally close-packed transition-metal electrodes, and DFT calculations of the binding energy of H, OH and 0 as well as UHV experiments on the dissociation of water on the same surfaces. The binding energies of H, OH and 0 can be used to predict the "phase diagram" of the electrode surface including the potentials of the transition between different surface states. The width of the voltammetric peaks corresponding to these transitions can be used to estimate the effective lateral interactions between the adsorbates involved, where effectively attractive interactions may often be explained by a replacement reaction. The detailed comparison shows that only for Pt(111) and Pd(111) the existence of a "double-layer region" is fully consistent with the available experimental and computational data. The Ru(0 001) surface does not have a double-layer region, but is covered with residues of water dissociation at every potential. The situation is unclear for Rh(111) and Ir(111) electrodes, for which a double-layer region has been claimed in the literature, but in both cases the claims are (at least partially) inconsistent with theoretical predictions.
CC : 001C01H04D
FD : Voltammétrie cyclique; Electrode; Etude comparative; Méthode fonctionnelle densité; Etude théorique; Ultravide; Platinoïde; Dissociation; Double couche électrochimique; Solution aqueuse; Orientation cristalline; Monocristal; Solution acide; Acide perchlorique; Interface électrode électrolyte; Distribution potentiel
FG : Métal transition
ED : Cyclic voltammetry; Electrodes; Comparative study; Density functional method; Theoretical study; Ultrahigh vacuum; Platinoid; Dissociation; Electrochemical double layer; Aqueous solution; Crystal orientation; Single crystal; Acidic solution; Perchloric acid; Electrode electrolyte interface; Potential distribution
EG : Transition metal
SD : Voltametría cíclica; Electrodo; Estudio comparativo; Estudio teórico; Ultravacío; Platinoide; Disociación; Doble capa electroquímica; Solución acuosa; Orientación cristalina; Monocristal; Solución ácida; Perclórico ácido; Interfase electrodo electrolito; Distribución potencial
LO : INIST-1516.354000505919820420
ID : 12-0325112

Links to Exploration step

Pascal:12-0325112

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation</title>
<author>
<name sortKey="Koper, Marc T M" sort="Koper, Marc T M" uniqKey="Koper M" first="Marc T. M." last="Koper">Marc T. M. Koper</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Leiden Institute of Chemistry, Leiden University, PO Box 9502</s1>
<s2>2300 RA Leiden</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0325112</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0325112 INIST</idno>
<idno type="RBID">Pascal:12-0325112</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001152</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation</title>
<author>
<name sortKey="Koper, Marc T M" sort="Koper, Marc T M" uniqKey="Koper M" first="Marc T. M." last="Koper">Marc T. M. Koper</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Leiden Institute of Chemistry, Leiden University, PO Box 9502</s1>
<s2>2300 RA Leiden</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Electrochimica acta</title>
<title level="j" type="abbreviated">Electrochim. acta</title>
<idno type="ISSN">0013-4686</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Electrochimica acta</title>
<title level="j" type="abbreviated">Electrochim. acta</title>
<idno type="ISSN">0013-4686</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acidic solution</term>
<term>Aqueous solution</term>
<term>Comparative study</term>
<term>Crystal orientation</term>
<term>Cyclic voltammetry</term>
<term>Density functional method</term>
<term>Dissociation</term>
<term>Electrochemical double layer</term>
<term>Electrode electrolyte interface</term>
<term>Electrodes</term>
<term>Perchloric acid</term>
<term>Platinoid</term>
<term>Potential distribution</term>
<term>Single crystal</term>
<term>Theoretical study</term>
<term>Ultrahigh vacuum</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Voltammétrie cyclique</term>
<term>Electrode</term>
<term>Etude comparative</term>
<term>Méthode fonctionnelle densité</term>
<term>Etude théorique</term>
<term>Ultravide</term>
<term>Platinoïde</term>
<term>Dissociation</term>
<term>Double couche électrochimique</term>
<term>Solution aqueuse</term>
<term>Orientation cristalline</term>
<term>Monocristal</term>
<term>Solution acide</term>
<term>Acide perchlorique</term>
<term>Interface électrode électrolyte</term>
<term>Distribution potentiel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper discusses the relationship between the blank voltammetry of various hexagonally close-packed transition-metal electrodes, and DFT calculations of the binding energy of H, OH and 0 as well as UHV experiments on the dissociation of water on the same surfaces. The binding energies of H, OH and 0 can be used to predict the "phase diagram" of the electrode surface including the potentials of the transition between different surface states. The width of the voltammetric peaks corresponding to these transitions can be used to estimate the effective lateral interactions between the adsorbates involved, where effectively attractive interactions may often be explained by a replacement reaction. The detailed comparison shows that only for Pt(111) and Pd(111) the existence of a "double-layer region" is fully consistent with the available experimental and computational data. The Ru(0 001) surface does not have a double-layer region, but is covered with residues of water dissociation at every potential. The situation is unclear for Rh(111) and Ir(111) electrodes, for which a double-layer region has been claimed in the literature, but in both cases the claims are (at least partially) inconsistent with theoretical predictions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-4686</s0>
</fA01>
<fA02 i1="01">
<s0>ELCAAV</s0>
</fA02>
<fA03 i2="1">
<s0>Electrochim. acta</s0>
</fA03>
<fA05>
<s2>56</s2>
</fA05>
<fA06>
<s2>28</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Electrochemistry from Biology to Physics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KOPER (Marc T. M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BERGEL (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BOND (A. M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BRANKOVIC (S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>BULTEL (Y.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>DI QUARTO (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>GORTON (L.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="07" i2="1">
<s1>INZELT (G.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="08" i2="1">
<s1>LAPICQUE (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="09" i2="1">
<s1>LISDAT (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="10" i2="1">
<s1>OPALLO (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="11" i2="1">
<s1>SAVINOVA (E. R.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="12" i2="1">
<s1>TOH (C.S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="13" i2="1">
<s1>TSIRLINA (G. A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="14" i2="1">
<s1>VIVIER (V.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="15" i2="1">
<s1>WINTER (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Leiden Institute of Chemistry, Leiden University, PO Box 9502</s1>
<s2>2300 RA Leiden</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>CNRS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Monash University</s1>
<s2>Clayton, Vic.</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of Houston</s1>
<s2>Houston, TX</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>LEPMI</s1>
<s2>Grenoble</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>University of Palermo</s1>
<s3>ITA</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="06">
<s1>Lund University</s1>
<s3>SWE</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA15 i1="07">
<s1>Eotvos Lorand University</s1>
<s2>Budapest</s2>
<s3>HUN</s3>
<sZ>7 aut.</sZ>
</fA15>
<fA15 i1="08">
<s1>CNRS</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>8 aut.</sZ>
</fA15>
<fA15 i1="09">
<s1>Wildau University</s1>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
</fA15>
<fA15 i1="10">
<s1>Polish Academy of Sciences</s1>
<s2>Warsaw</s2>
<s3>POL</s3>
<sZ>10 aut.</sZ>
</fA15>
<fA15 i1="11">
<s1>Université de Strasbourg</s1>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</fA15>
<fA15 i1="12">
<s1>Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>12 aut.</sZ>
</fA15>
<fA15 i1="13">
<s1>Moscow State University</s1>
<s3>RUS</s3>
<sZ>13 aut.</sZ>
</fA15>
<fA15 i1="14">
<s1>Université Pierre et Marie Curie</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>14 aut.</sZ>
</fA15>
<fA15 i1="15">
<s1>University of Münster</s1>
<s3>DEU</s3>
<sZ>15 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>International Society of Electrochemistry (ISE)</s1>
<s2>1004 Lausanne</s2>
<s3>CHE</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>10645-10651</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1516</s2>
<s5>354000505919820420</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>47 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0325112</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Electrochimica acta</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper discusses the relationship between the blank voltammetry of various hexagonally close-packed transition-metal electrodes, and DFT calculations of the binding energy of H, OH and 0 as well as UHV experiments on the dissociation of water on the same surfaces. The binding energies of H, OH and 0 can be used to predict the "phase diagram" of the electrode surface including the potentials of the transition between different surface states. The width of the voltammetric peaks corresponding to these transitions can be used to estimate the effective lateral interactions between the adsorbates involved, where effectively attractive interactions may often be explained by a replacement reaction. The detailed comparison shows that only for Pt(111) and Pd(111) the existence of a "double-layer region" is fully consistent with the available experimental and computational data. The Ru(0 001) surface does not have a double-layer region, but is covered with residues of water dissociation at every potential. The situation is unclear for Rh(111) and Ir(111) electrodes, for which a double-layer region has been claimed in the literature, but in both cases the claims are (at least partially) inconsistent with theoretical predictions.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01H04D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Voltammétrie cyclique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Cyclic voltammetry</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Voltametría cíclica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Electrode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electrodes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Electrodo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Ultravide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ultrahigh vacuum</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Ultravacío</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Platinoïde</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Platinoid</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Platinoide</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dissociation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Dissociation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Disociación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Double couche électrochimique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electrochemical double layer</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Doble capa electroquímica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Solution aqueuse</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Aqueous solution</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Solución acuosa</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Orientation cristalline</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Crystal orientation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Orientación cristalina</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Monocristal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Single crystal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Monocristal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Solution acide</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Acidic solution</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Solución ácida</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Acide perchlorique</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Perchloric acid</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Perclórico ácido</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Interface électrode électrolyte</s0>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Electrode electrolyte interface</s0>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Interfase electrodo electrolito</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Distribution potentiel</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Potential distribution</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Distribución potencial</s0>
<s5>33</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Métal transition</s0>
<s2>NC</s2>
<s5>53</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Transition metal</s0>
<s2>NC</s2>
<s5>53</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Metal transición</s0>
<s2>NC</s2>
<s5>53</s5>
</fC07>
<fN21>
<s1>247</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Society of Electrochemistry (ISE) Meeting</s1>
<s2>61</s2>
<s3>Nice FRA</s3>
<s4>2010-09-26</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 12-0325112 INIST</NO>
<ET>Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation</ET>
<AU>KOPER (Marc T. M.); BERGEL (A.); BOND (A. M.); BRANKOVIC (S.); BULTEL (Y.); DI QUARTO (F.); GORTON (L.); INZELT (G.); LAPICQUE (F.); LISDAT (F.); OPALLO (M.); SAVINOVA (E. R.); TOH (C.S.); TSIRLINA (G. A.); VIVIER (V.); WINTER (M.)</AU>
<AF>Leiden Institute of Chemistry, Leiden University, PO Box 9502/2300 RA Leiden/Pays-Bas (1 aut.); CNRS/Toulouse/France (1 aut.); Monash University/Clayton, Vic./Australie (2 aut.); University of Houston/Houston, TX/Etats-Unis (3 aut.); LEPMI/Grenoble/France (4 aut.); University of Palermo/Italie (5 aut.); Lund University/Suède (6 aut.); Eotvos Lorand University/Budapest/Hongrie (7 aut.); CNRS/Nancy/France (8 aut.); Wildau University/Allemagne (9 aut.); Polish Academy of Sciences/Warsaw/Pologne (10 aut.); Université de Strasbourg/France (11 aut.); Nanyang Technological University/Singapour (12 aut.); Moscow State University/Russie (13 aut.); Université Pierre et Marie Curie/Paris/France (14 aut.); University of Münster/Allemagne (15 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Electrochimica acta; ISSN 0013-4686; Coden ELCAAV; Royaume-Uni; Da. 2011; Vol. 56; No. 28; Pp. 10645-10651; Bibl. 47 ref.</SO>
<LA>Anglais</LA>
<EA>This paper discusses the relationship between the blank voltammetry of various hexagonally close-packed transition-metal electrodes, and DFT calculations of the binding energy of H, OH and 0 as well as UHV experiments on the dissociation of water on the same surfaces. The binding energies of H, OH and 0 can be used to predict the "phase diagram" of the electrode surface including the potentials of the transition between different surface states. The width of the voltammetric peaks corresponding to these transitions can be used to estimate the effective lateral interactions between the adsorbates involved, where effectively attractive interactions may often be explained by a replacement reaction. The detailed comparison shows that only for Pt(111) and Pd(111) the existence of a "double-layer region" is fully consistent with the available experimental and computational data. The Ru(0 001) surface does not have a double-layer region, but is covered with residues of water dissociation at every potential. The situation is unclear for Rh(111) and Ir(111) electrodes, for which a double-layer region has been claimed in the literature, but in both cases the claims are (at least partially) inconsistent with theoretical predictions.</EA>
<CC>001C01H04D</CC>
<FD>Voltammétrie cyclique; Electrode; Etude comparative; Méthode fonctionnelle densité; Etude théorique; Ultravide; Platinoïde; Dissociation; Double couche électrochimique; Solution aqueuse; Orientation cristalline; Monocristal; Solution acide; Acide perchlorique; Interface électrode électrolyte; Distribution potentiel</FD>
<FG>Métal transition</FG>
<ED>Cyclic voltammetry; Electrodes; Comparative study; Density functional method; Theoretical study; Ultrahigh vacuum; Platinoid; Dissociation; Electrochemical double layer; Aqueous solution; Crystal orientation; Single crystal; Acidic solution; Perchloric acid; Electrode electrolyte interface; Potential distribution</ED>
<EG>Transition metal</EG>
<SD>Voltametría cíclica; Electrodo; Estudio comparativo; Estudio teórico; Ultravacío; Platinoide; Disociación; Doble capa electroquímica; Solución acuosa; Orientación cristalina; Monocristal; Solución ácida; Perclórico ácido; Interfase electrodo electrolito; Distribución potencial</SD>
<LO>INIST-1516.354000505919820420</LO>
<ID>12-0325112</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001152 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001152 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0325112
   |texte=   Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024