Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A neutron/X-ray diffraction, IR, and 1H/29Si NMR spectroscopic investigation of armenite: Behavior of extra framework Ca cations and H2O molecules in microporous silicates

Identifieur interne : 001407 ( PascalFrancis/Checkpoint ); précédent : 001406; suivant : 001408

A neutron/X-ray diffraction, IR, and 1H/29Si NMR spectroscopic investigation of armenite: Behavior of extra framework Ca cations and H2O molecules in microporous silicates

Auteurs : Charles A. Geiger [Autriche] ; G. Diego Gatta [Italie] ; XIANYU XUE [Japon] ; Garry J. Mcintyre [France, Australie]

Source :

RBID : Pascal:12-0311881

Descripteurs français

English descriptors

Abstract

The crystal chemistry of armenite, ideally BaCa2Al6Si9O30 . 2 H2O, from Wasenalp, Valais, Switzerland was studied. Armenite typically forms in relatively low-temperature hydrothermal veins and fissures and has small pores containing Ca cations and H2O molecules as extra-framework species. Single-crystal neutron and X-ray diffraction measurements were made on armenite from the above locality for the first time. IR powder spectroscopic measurements were made from room temperature (RT) down to 10 K. 1H and 29Si NMR measurements were made at RT. Attention was given to investigating the behavior of the extra-framework species and hydrogen bonding. The diffraction results show new features not observed before in published diffraction studies on armenite crystals from other localities. The neutron results also give the first static description of the protons, allowing bond distances and angles relating to the H2O molecules and H-bonds to be determined. The diffraction results indicate Al/Si order in the framework. Four crystallographically independent Ca and H2O molecule sites were refined, whereby both sites appear to have partial occupancies such that locally a Ca atom can have only a single H2O molecule bonded to it through an ion-dipole interaction. The Ca cation is further bonded to six O atoms of the framework forming a quasi cluster around it. The IR spectrum of armenite is characterized in the OH-stretching region at RT by two broad bands at roughly 3470 and 3410 cm-1 and by a single H2O bending mode at 1654 cm-1. At 10 K four intense OH bands are located at 3479, 3454, 3401 and 3384 cm-1 and two H2O bending modes at 1650 and 1606 cm-1. The 29Si MAS NMR spectra show four resonances at -81.9, -83.2, -94.9 and -101.8 ppm that are assigned to crystallographically different Si sites in an ordered structure, although their relative intensities deviate somewhat from those predicted for complete Al/Si order. The 1H MAS spectra contain a single main resonance near 5.3 ppm and a smaller one near 2.7 ppm, which can be assigned to H2O molecules bonded to Ca and a second H2O type located in a partially occupied site, respectively. Bonding for the extra-framework "Ca-oxygen-anion-H2O-molecule quasi-clusters" and also the nature of H-bonding in the microporous zeolites scolecite, wairakite and epistilbite are analyzed. The average OH stretching wavenumbers shown by the IR spectra of armenite and scolecite are, for example, not far removed from that observed in liquid H2O, but greater than that of ice. What remains poorly understood in microporous silicates is how the ion-dipole interaction in quasi clusters affects H-bonding strength between the H2O molecules and the aluminosilicate framework.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0311881

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A neutron/X-ray diffraction, IR, and
<sup>1</sup>
H/
<sup>29</sup>
Si NMR spectroscopic investigation of armenite: Behavior of extra framework Ca cations and H
<sub>2</sub>
O molecules in microporous silicates</title>
<author>
<name sortKey="Geiger, Charles A" sort="Geiger, Charles A" uniqKey="Geiger C" first="Charles A." last="Geiger">Charles A. Geiger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fachbereich für Materialforschung und Physik, Abteilung Mineralogie, Universität Salzburg, Hellbrunnerstr. 34</s1>
<s2>5020 Salzburg</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>5020 Salzburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Diego Gatta, G" sort="Diego Gatta, G" uniqKey="Diego Gatta G" first="G." last="Diego Gatta">G. Diego Gatta</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23</s1>
<s2>20133 Milano</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>20133 Milano</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>CNR-Istituto per la Dinamica dei Processi Ambientali</s1>
<s2>Milano</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>CNR-Istituto per la Dinamica dei Processi Ambientali</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xianyu Xue" sort="Xianyu Xue" uniqKey="Xianyu Xue" last="Xianyu Xue">XIANYU XUE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute for Study of the Earth's Interior, Okayama University</s1>
<s2>Misasa, Tottori 682-0193</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Misasa, Tottori 682-0193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcintyre, Garry J" sort="Mcintyre, Garry J" uniqKey="Mcintyre G" first="Garry J." last="Mcintyre">Garry J. Mcintyre</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institut Laue-Langevin, B.P. 156</s1>
<s2>38024 Grenoble</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38024 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232</s1>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0311881</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0311881 INIST</idno>
<idno type="RBID">Pascal:12-0311881</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001218</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004C99</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001407</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001407</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A neutron/X-ray diffraction, IR, and
<sup>1</sup>
H/
<sup>29</sup>
Si NMR spectroscopic investigation of armenite: Behavior of extra framework Ca cations and H
<sub>2</sub>
O molecules in microporous silicates</title>
<author>
<name sortKey="Geiger, Charles A" sort="Geiger, Charles A" uniqKey="Geiger C" first="Charles A." last="Geiger">Charles A. Geiger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fachbereich für Materialforschung und Physik, Abteilung Mineralogie, Universität Salzburg, Hellbrunnerstr. 34</s1>
<s2>5020 Salzburg</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>5020 Salzburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Diego Gatta, G" sort="Diego Gatta, G" uniqKey="Diego Gatta G" first="G." last="Diego Gatta">G. Diego Gatta</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23</s1>
<s2>20133 Milano</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>20133 Milano</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>CNR-Istituto per la Dinamica dei Processi Ambientali</s1>
<s2>Milano</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>CNR-Istituto per la Dinamica dei Processi Ambientali</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xianyu Xue" sort="Xianyu Xue" uniqKey="Xianyu Xue" last="Xianyu Xue">XIANYU XUE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute for Study of the Earth's Interior, Okayama University</s1>
<s2>Misasa, Tottori 682-0193</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Misasa, Tottori 682-0193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcintyre, Garry J" sort="Mcintyre, Garry J" uniqKey="Mcintyre G" first="Garry J." last="Mcintyre">Garry J. Mcintyre</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institut Laue-Langevin, B.P. 156</s1>
<s2>38024 Grenoble</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38024 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232</s1>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Zeitschrift für Kristallographie</title>
<title level="j" type="abbreviated">Z. Kristallogr.</title>
<idno type="ISSN">0044-2968</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Zeitschrift für Kristallographie</title>
<title level="j" type="abbreviated">Z. Kristallogr.</title>
<idno type="ISSN">0044-2968</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminosilicates</term>
<term>Bending</term>
<term>Bond angle</term>
<term>Bond lengths</term>
<term>Crystal chemistry</term>
<term>Dipole interactions</term>
<term>Hydrogen bonds</term>
<term>Ice</term>
<term>Infrared spectra</term>
<term>Mass spectroscopy</term>
<term>Monocrystals</term>
<term>Neutron diffraction</term>
<term>Nonstoichiometry</term>
<term>Nuclear magnetic resonance</term>
<term>Porous materials</term>
<term>Silicates</term>
<term>Silicon</term>
<term>Single bond</term>
<term>Stretching</term>
<term>XRD</term>
<term>Zeolites</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Diffraction neutron</term>
<term>Diffraction RX</term>
<term>Spectre IR</term>
<term>Résonance magnétique nucléaire</term>
<term>Cristallochimie</term>
<term>Liaison hydrogène</term>
<term>Angle liaison</term>
<term>Longueur liaison</term>
<term>Liaison simple</term>
<term>Interaction dipolaire</term>
<term>Etirement</term>
<term>Flexion</term>
<term>Spectrométrie masse</term>
<term>Non stoechiométrie</term>
<term>Matériau poreux</term>
<term>Silicate</term>
<term>Monocristal</term>
<term>Silicium</term>
<term>Zéolite</term>
<term>Glace</term>
<term>Aluminosilicate</term>
<term>Si</term>
<term>6112L</term>
<term>8105R</term>
<term>8275</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Glace</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The crystal chemistry of armenite, ideally BaCa
<sub>2</sub>
Al
<sub>6</sub>
Si
<sub>9</sub>
O
<sub>30</sub>
. 2 H
<sub>2</sub>
O, from Wasenalp, Valais, Switzerland was studied. Armenite typically forms in relatively low-temperature hydrothermal veins and fissures and has small pores containing Ca cations and H
<sub>2</sub>
O molecules as extra-framework species. Single-crystal neutron and X-ray diffraction measurements were made on armenite from the above locality for the first time. IR powder spectroscopic measurements were made from room temperature (RT) down to 10 K.
<sup>1</sup>
H and
<sup>29</sup>
Si NMR measurements were made at RT. Attention was given to investigating the behavior of the extra-framework species and hydrogen bonding. The diffraction results show new features not observed before in published diffraction studies on armenite crystals from other localities. The neutron results also give the first static description of the protons, allowing bond distances and angles relating to the H
<sub>2</sub>
O molecules and H-bonds to be determined. The diffraction results indicate Al/Si order in the framework. Four crystallographically independent Ca and H
<sub>2</sub>
O molecule sites were refined, whereby both sites appear to have partial occupancies such that locally a Ca atom can have only a single H
<sub>2</sub>
O molecule bonded to it through an ion-dipole interaction. The Ca cation is further bonded to six O atoms of the framework forming a quasi cluster around it. The IR spectrum of armenite is characterized in the OH-stretching region at RT by two broad bands at roughly 3470 and 3410 cm
<sup>-1</sup>
and by a single H
<sub>2</sub>
O bending mode at 1654 cm
<sup>-1</sup>
. At 10 K four intense OH bands are located at 3479, 3454, 3401 and 3384 cm
<sup>-1</sup>
and two H
<sub>2</sub>
O bending modes at 1650 and 1606 cm
<sup>-1</sup>
. The
<sup>29</sup>
Si MAS NMR spectra show four resonances at -81.9, -83.2, -94.9 and -101.8 ppm that are assigned to crystallographically different Si sites in an ordered structure, although their relative intensities deviate somewhat from those predicted for complete Al/Si order. The
<sup>1</sup>
H MAS spectra contain a single main resonance near 5.3 ppm and a smaller one near 2.7 ppm, which can be assigned to H
<sub>2</sub>
O molecules bonded to Ca and a second H
<sub>2</sub>
O type located in a partially occupied site, respectively. Bonding for the extra-framework "Ca-oxygen-anion-H
<sub>2</sub>
O-molecule quasi-clusters" and also the nature of H-bonding in the microporous zeolites scolecite, wairakite and epistilbite are analyzed. The average OH stretching wavenumbers shown by the IR spectra of armenite and scolecite are, for example, not far removed from that observed in liquid H
<sub>2</sub>
O, but greater than that of ice. What remains poorly understood in microporous silicates is how the ion-dipole interaction in quasi clusters affects H-bonding strength between the H
<sub>2</sub>
O molecules and the aluminosilicate framework.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0044-2968</s0>
</fA01>
<fA02 i1="01">
<s0>ZEKRDZ</s0>
</fA02>
<fA03 i2="1">
<s0>Z. Kristallogr.</s0>
</fA03>
<fA05>
<s2>227</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A neutron/X-ray diffraction, IR, and
<sup>1</sup>
H/
<sup>29</sup>
Si NMR spectroscopic investigation of armenite: Behavior of extra framework Ca cations and H
<sub>2</sub>
O molecules in microporous silicates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GEIGER (Charles A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DIEGO GATTA (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XIANYU XUE</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MCINTYRE (Garry J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Fachbereich für Materialforschung und Physik, Abteilung Mineralogie, Universität Salzburg, Hellbrunnerstr. 34</s1>
<s2>5020 Salzburg</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23</s1>
<s2>20133 Milano</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>CNR-Istituto per la Dinamica dei Processi Ambientali</s1>
<s2>Milano</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute for Study of the Earth's Interior, Okayama University</s1>
<s2>Misasa, Tottori 682-0193</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institut Laue-Langevin, B.P. 156</s1>
<s2>38024 Grenoble</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232</s1>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>411-426</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>915</s2>
<s5>354000506636250030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0311881</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Zeitschrift für Kristallographie</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The crystal chemistry of armenite, ideally BaCa
<sub>2</sub>
Al
<sub>6</sub>
Si
<sub>9</sub>
O
<sub>30</sub>
. 2 H
<sub>2</sub>
O, from Wasenalp, Valais, Switzerland was studied. Armenite typically forms in relatively low-temperature hydrothermal veins and fissures and has small pores containing Ca cations and H
<sub>2</sub>
O molecules as extra-framework species. Single-crystal neutron and X-ray diffraction measurements were made on armenite from the above locality for the first time. IR powder spectroscopic measurements were made from room temperature (RT) down to 10 K.
<sup>1</sup>
H and
<sup>29</sup>
Si NMR measurements were made at RT. Attention was given to investigating the behavior of the extra-framework species and hydrogen bonding. The diffraction results show new features not observed before in published diffraction studies on armenite crystals from other localities. The neutron results also give the first static description of the protons, allowing bond distances and angles relating to the H
<sub>2</sub>
O molecules and H-bonds to be determined. The diffraction results indicate Al/Si order in the framework. Four crystallographically independent Ca and H
<sub>2</sub>
O molecule sites were refined, whereby both sites appear to have partial occupancies such that locally a Ca atom can have only a single H
<sub>2</sub>
O molecule bonded to it through an ion-dipole interaction. The Ca cation is further bonded to six O atoms of the framework forming a quasi cluster around it. The IR spectrum of armenite is characterized in the OH-stretching region at RT by two broad bands at roughly 3470 and 3410 cm
<sup>-1</sup>
and by a single H
<sub>2</sub>
O bending mode at 1654 cm
<sup>-1</sup>
. At 10 K four intense OH bands are located at 3479, 3454, 3401 and 3384 cm
<sup>-1</sup>
and two H
<sub>2</sub>
O bending modes at 1650 and 1606 cm
<sup>-1</sup>
. The
<sup>29</sup>
Si MAS NMR spectra show four resonances at -81.9, -83.2, -94.9 and -101.8 ppm that are assigned to crystallographically different Si sites in an ordered structure, although their relative intensities deviate somewhat from those predicted for complete Al/Si order. The
<sup>1</sup>
H MAS spectra contain a single main resonance near 5.3 ppm and a smaller one near 2.7 ppm, which can be assigned to H
<sub>2</sub>
O molecules bonded to Ca and a second H
<sub>2</sub>
O type located in a partially occupied site, respectively. Bonding for the extra-framework "Ca-oxygen-anion-H
<sub>2</sub>
O-molecule quasi-clusters" and also the nature of H-bonding in the microporous zeolites scolecite, wairakite and epistilbite are analyzed. The average OH stretching wavenumbers shown by the IR spectra of armenite and scolecite are, for example, not far removed from that observed in liquid H
<sub>2</sub>
O, but greater than that of ice. What remains poorly understood in microporous silicates is how the ion-dipole interaction in quasi clusters affects H-bonding strength between the H
<sub>2</sub>
O molecules and the aluminosilicate framework.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A12L</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05R</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001C01I05</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Diffraction neutron</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Neutron diffraction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>XRD</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Spectre IR</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Infrared spectra</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Résonance magnétique nucléaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nuclear magnetic resonance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Cristallochimie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Crystal chemistry</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Liaison hydrogène</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Hydrogen bonds</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Angle liaison</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Bond angle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Longueur liaison</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Bond lengths</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Liaison simple</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Single bond</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Enlace simple</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Interaction dipolaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Dipole interactions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Etirement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Stretching</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Estiramiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Flexion</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Bending</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Spectrométrie masse</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Mass spectroscopy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Non stoechiométrie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Nonstoichiometry</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Matériau poreux</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Porous materials</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Silicate</s0>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Silicates</s0>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Zéolite</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Zeolites</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Glace</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Ice</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Aluminosilicate</s0>
<s2>NA</s2>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Aluminosilicates</s0>
<s2>NA</s2>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Aluminosilicato</s0>
<s2>NA</s2>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>6112L</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8105R</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8275</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>240</s1>
</fN21>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Autriche</li>
<li>France</li>
<li>Italie</li>
<li>Japon</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Grenoble</li>
</settlement>
</list>
<tree>
<country name="Autriche">
<noRegion>
<name sortKey="Geiger, Charles A" sort="Geiger, Charles A" uniqKey="Geiger C" first="Charles A." last="Geiger">Charles A. Geiger</name>
</noRegion>
</country>
<country name="Italie">
<noRegion>
<name sortKey="Diego Gatta, G" sort="Diego Gatta, G" uniqKey="Diego Gatta G" first="G." last="Diego Gatta">G. Diego Gatta</name>
</noRegion>
<name sortKey="Diego Gatta, G" sort="Diego Gatta, G" uniqKey="Diego Gatta G" first="G." last="Diego Gatta">G. Diego Gatta</name>
</country>
<country name="Japon">
<noRegion>
<name sortKey="Xianyu Xue" sort="Xianyu Xue" uniqKey="Xianyu Xue" last="Xianyu Xue">XIANYU XUE</name>
</noRegion>
</country>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Mcintyre, Garry J" sort="Mcintyre, Garry J" uniqKey="Mcintyre G" first="Garry J." last="Mcintyre">Garry J. Mcintyre</name>
</region>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Mcintyre, Garry J" sort="Mcintyre, Garry J" uniqKey="Mcintyre G" first="Garry J." last="Mcintyre">Garry J. Mcintyre</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001407 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 001407 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:12-0311881
   |texte=   A neutron/X-ray diffraction, IR, and 1H/29Si NMR spectroscopic investigation of armenite: Behavior of extra framework Ca cations and H2O molecules in microporous silicates
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024