Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effect of the regular solution model in the condensation of protoplanetary dust

Identifieur interne : 006A30 ( Main/Merge ); précédent : 006A29; suivant : 006A31

The effect of the regular solution model in the condensation of protoplanetary dust

Auteurs : F. C. Pignatale [Australie] ; S. T. Maddison [Australie, France] ; V. Taquet [Australie, France] ; G. Brooks [Australie] ; K. Liffman [Australie]

Source :

RBID : Pascal:11-0292146

Descripteurs français

English descriptors

Abstract

We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high-temperature region (T > 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature and the abundance of the first high-temperature peak of forsterite is also pressure sensitive. In the low-temperature regions (T ≤ 600 K), a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low-temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0292146

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The effect of the regular solution model in the condensation of protoplanetary dust</title>
<author>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, VIC 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, VIC 3122</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, VIC 3122</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Mngistere de Physique Fondamentale d'Orsay, Universite Paris-11</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Universite Paris-11</wicri:noRegion>
<placeName>
<settlement type="city">Orsay</settlement>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brooks, G" sort="Brooks, G" uniqKey="Brooks G" first="G." last="Brooks">G. Brooks</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, VIC 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liffman, K" sort="Liffman, K" uniqKey="Liffman K" first="K." last="Liffman">K. Liffman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>CSIRO/MSE, PO Box 56</s1>
<s2>Heighett, VIC 3190</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Heighett, VIC 3190</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0292146</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0292146 INIST</idno>
<idno type="RBID">Pascal:11-0292146</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001B67</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004377</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001579</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001579</idno>
<idno type="wicri:doubleKey">0035-8711:2011:Pignatale F:the:effect:of</idno>
<idno type="wicri:Area/Main/Merge">006A30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The effect of the regular solution model in the condensation of protoplanetary dust</title>
<author>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, VIC 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, VIC 3122</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, VIC 3122</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Mngistere de Physique Fondamentale d'Orsay, Universite Paris-11</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Universite Paris-11</wicri:noRegion>
<placeName>
<settlement type="city">Orsay</settlement>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brooks, G" sort="Brooks, G" uniqKey="Brooks G" first="G." last="Brooks">G. Brooks</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, VIC 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liffman, K" sort="Liffman, K" uniqKey="Liffman K" first="K." last="Liffman">K. Liffman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>CSIRO/MSE, PO Box 56</s1>
<s2>Heighett, VIC 3190</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Heighett, VIC 3190</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abundance</term>
<term>Chemical equilibrium</term>
<term>Circumstellar matter</term>
<term>Gibbs free energy</term>
<term>High temperature</term>
<term>Low temperature</term>
<term>Models</term>
<term>Regular solution</term>
<term>Thermodynamics</term>
<term>Vapor condensation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Solution régulière</term>
<term>Modèle</term>
<term>Condensation</term>
<term>Equilibre chimique</term>
<term>Thermodynamique</term>
<term>Energie libre Gibbs</term>
<term>Haute température</term>
<term>Abondance</term>
<term>Basse température</term>
<term>Matière circumstellaire</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Condensation</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high-temperature region (T > 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg
<sub>2</sub>
SiO
<sub>4</sub>
and MgSiO
<sub>3</sub>
. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature and the abundance of the first high-temperature peak of forsterite is also pressure sensitive. In the low-temperature regions (T ≤ 600 K), a range of iron compounds (FeS, Fe
<sub>2</sub>
SiO
<sub>3</sub>
, FeAl
<sub>2</sub>
O
<sub>3</sub>
) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low-temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Grenoble</li>
<li>Orsay</li>
</settlement>
<orgName>
<li>Université Paris-Sud</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
</noRegion>
<name sortKey="Brooks, G" sort="Brooks, G" uniqKey="Brooks G" first="G." last="Brooks">G. Brooks</name>
<name sortKey="Liffman, K" sort="Liffman, K" uniqKey="Liffman K" first="K." last="Liffman">K. Liffman</name>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
</country>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
</region>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006A30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 006A30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     Pascal:11-0292146
   |texte=   The effect of the regular solution model in the condensation of protoplanetary dust
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024