Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effect of the regular solution model in the condensation of protoplanetary dust

Identifieur interne : 001B67 ( PascalFrancis/Corpus ); précédent : 001B66; suivant : 001B68

The effect of the regular solution model in the condensation of protoplanetary dust

Auteurs : F. C. Pignatale ; S. T. Maddison ; V. Taquet ; G. Brooks ; K. Liffman

Source :

RBID : Pascal:11-0292146

Descripteurs français

English descriptors

Abstract

We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high-temperature region (T > 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature and the abundance of the first high-temperature peak of forsterite is also pressure sensitive. In the low-temperature regions (T ≤ 600 K), a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low-temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0035-8711
A02 01      @0 MNRAA4
A03   1    @0 Mon. Not. R. Astron. Soc.
A05       @2 414
A06       @2 3
A08 01  1  ENG  @1 The effect of the regular solution model in the condensation of protoplanetary dust
A11 01  1    @1 PIGNATALE (F. C.)
A11 02  1    @1 MADDISON (S. T.)
A11 03  1    @1 TAQUET (V.)
A11 04  1    @1 BROOKS (G.)
A11 05  1    @1 LIFFMAN (K.)
A14 01      @1 Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218 @2 Hawthorn, VIC 3122 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53 @2 38041 Grenoble @3 FRA @Z 2 aut. @Z 3 aut.
A14 03      @1 Mngistere de Physique Fondamentale d'Orsay, Universite Paris-11 @3 FRA @Z 3 aut.
A14 04      @1 Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218 @2 Hawthorn, VIC 3122 @3 AUS @Z 4 aut.
A14 05      @1 CSIRO/MSE, PO Box 56 @2 Heighett, VIC 3190 @3 AUS @Z 5 aut.
A20       @1 2386-2405
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 2067 @5 354000190369470450
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 11-0292146
A60       @1 P
A61       @0 A
A64 01  1    @0 Monthly Notices of the Royal Astronomical Society
A66 01      @0 USA
C01 01    ENG  @0 We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high-temperature region (T > 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature and the abundance of the first high-temperature peak of forsterite is also pressure sensitive. In the low-temperature regions (T ≤ 600 K), a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low-temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.
C02 01  3    @0 001E03
C03 01  X  FRE  @0 Solution régulière @5 26
C03 01  X  ENG  @0 Regular solution @5 26
C03 01  X  SPA  @0 Solución regular @5 26
C03 02  X  FRE  @0 Modèle @5 27
C03 02  X  ENG  @0 Models @5 27
C03 02  X  SPA  @0 Modelo @5 27
C03 03  3  FRE  @0 Condensation @5 28
C03 03  3  ENG  @0 Vapor condensation @5 28
C03 04  3  FRE  @0 Equilibre chimique @5 29
C03 04  3  ENG  @0 Chemical equilibrium @5 29
C03 05  3  FRE  @0 Thermodynamique @5 30
C03 05  3  ENG  @0 Thermodynamics @5 30
C03 06  X  FRE  @0 Energie libre Gibbs @5 31
C03 06  X  ENG  @0 Gibbs free energy @5 31
C03 06  X  SPA  @0 Energía libre Gibbs @5 31
C03 07  X  FRE  @0 Haute température @5 32
C03 07  X  ENG  @0 High temperature @5 32
C03 07  X  SPA  @0 Alta temperatura @5 32
C03 08  3  FRE  @0 Abondance @5 33
C03 08  3  ENG  @0 Abundance @5 33
C03 09  X  FRE  @0 Basse température @5 34
C03 09  X  ENG  @0 Low temperature @5 34
C03 09  X  SPA  @0 Baja temperatura @5 34
C03 10  3  FRE  @0 Matière circumstellaire @5 35
C03 10  3  ENG  @0 Circumstellar matter @5 35
N21       @1 199
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0292146 INIST
ET : The effect of the regular solution model in the condensation of protoplanetary dust
AU : PIGNATALE (F. C.); MADDISON (S. T.); TAQUET (V.); BROOKS (G.); LIFFMAN (K.)
AF : Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218/Hawthorn, VIC 3122/Australie (1 aut., 2 aut., 3 aut.); Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53/38041 Grenoble/France (2 aut., 3 aut.); Mngistere de Physique Fondamentale d'Orsay, Universite Paris-11/France (3 aut.); Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218/Hawthorn, VIC 3122/Australie (4 aut.); CSIRO/MSE, PO Box 56/Heighett, VIC 3190/Australie (5 aut.)
DT : Publication en série; Niveau analytique
SO : Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Etats-Unis; Da. 2011; Vol. 414; No. 3; Pp. 2386-2405; Bibl. 3/4 p.
LA : Anglais
EA : We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high-temperature region (T > 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature and the abundance of the first high-temperature peak of forsterite is also pressure sensitive. In the low-temperature regions (T ≤ 600 K), a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low-temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.
CC : 001E03
FD : Solution régulière; Modèle; Condensation; Equilibre chimique; Thermodynamique; Energie libre Gibbs; Haute température; Abondance; Basse température; Matière circumstellaire
ED : Regular solution; Models; Vapor condensation; Chemical equilibrium; Thermodynamics; Gibbs free energy; High temperature; Abundance; Low temperature; Circumstellar matter
SD : Solución regular; Modelo; Energía libre Gibbs; Alta temperatura; Baja temperatura
LO : INIST-2067.354000190369470450
ID : 11-0292146

Links to Exploration step

Pascal:11-0292146

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The effect of the regular solution model in the condensation of protoplanetary dust</title>
<author>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Mngistere de Physique Fondamentale d'Orsay, Universite Paris-11</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brooks, G" sort="Brooks, G" uniqKey="Brooks G" first="G." last="Brooks">G. Brooks</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liffman, K" sort="Liffman, K" uniqKey="Liffman K" first="K." last="Liffman">K. Liffman</name>
<affiliation>
<inist:fA14 i1="05">
<s1>CSIRO/MSE, PO Box 56</s1>
<s2>Heighett, VIC 3190</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0292146</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0292146 INIST</idno>
<idno type="RBID">Pascal:11-0292146</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001B67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The effect of the regular solution model in the condensation of protoplanetary dust</title>
<author>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Mngistere de Physique Fondamentale d'Orsay, Universite Paris-11</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brooks, G" sort="Brooks, G" uniqKey="Brooks G" first="G." last="Brooks">G. Brooks</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liffman, K" sort="Liffman, K" uniqKey="Liffman K" first="K." last="Liffman">K. Liffman</name>
<affiliation>
<inist:fA14 i1="05">
<s1>CSIRO/MSE, PO Box 56</s1>
<s2>Heighett, VIC 3190</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abundance</term>
<term>Chemical equilibrium</term>
<term>Circumstellar matter</term>
<term>Gibbs free energy</term>
<term>High temperature</term>
<term>Low temperature</term>
<term>Models</term>
<term>Regular solution</term>
<term>Thermodynamics</term>
<term>Vapor condensation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Solution régulière</term>
<term>Modèle</term>
<term>Condensation</term>
<term>Equilibre chimique</term>
<term>Thermodynamique</term>
<term>Energie libre Gibbs</term>
<term>Haute température</term>
<term>Abondance</term>
<term>Basse température</term>
<term>Matière circumstellaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high-temperature region (T > 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg
<sub>2</sub>
SiO
<sub>4</sub>
and MgSiO
<sub>3</sub>
. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature and the abundance of the first high-temperature peak of forsterite is also pressure sensitive. In the low-temperature regions (T ≤ 600 K), a range of iron compounds (FeS, Fe
<sub>2</sub>
SiO
<sub>3</sub>
, FeAl
<sub>2</sub>
O
<sub>3</sub>
) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low-temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0035-8711</s0>
</fA01>
<fA02 i1="01">
<s0>MNRAA4</s0>
</fA02>
<fA03 i2="1">
<s0>Mon. Not. R. Astron. Soc.</s0>
</fA03>
<fA05>
<s2>414</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The effect of the regular solution model in the condensation of protoplanetary dust</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PIGNATALE (F. C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MADDISON (S. T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TAQUET (V.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BROOKS (G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LIFFMAN (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Mngistere de Physique Fondamentale d'Orsay, Universite Paris-11</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>CSIRO/MSE, PO Box 56</s1>
<s2>Heighett, VIC 3190</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2386-2405</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2067</s2>
<s5>354000190369470450</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0292146</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Monthly Notices of the Royal Astronomical Society</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high-temperature region (T > 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg
<sub>2</sub>
SiO
<sub>4</sub>
and MgSiO
<sub>3</sub>
. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature and the abundance of the first high-temperature peak of forsterite is also pressure sensitive. In the low-temperature regions (T ≤ 600 K), a range of iron compounds (FeS, Fe
<sub>2</sub>
SiO
<sub>3</sub>
, FeAl
<sub>2</sub>
O
<sub>3</sub>
) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low-temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Solution régulière</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Regular solution</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Solución regular</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Models</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Condensation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Vapor condensation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Equilibre chimique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Chemical equilibrium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Thermodynamique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thermodynamics</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Energie libre Gibbs</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Gibbs free energy</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Energía libre Gibbs</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Abondance</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Abundance</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Matière circumstellaire</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Circumstellar matter</s0>
<s5>35</s5>
</fC03>
<fN21>
<s1>199</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0292146 INIST</NO>
<ET>The effect of the regular solution model in the condensation of protoplanetary dust</ET>
<AU>PIGNATALE (F. C.); MADDISON (S. T.); TAQUET (V.); BROOKS (G.); LIFFMAN (K.)</AU>
<AF>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218/Hawthorn, VIC 3122/Australie (1 aut., 2 aut., 3 aut.); Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS. BP 53/38041 Grenoble/France (2 aut., 3 aut.); Mngistere de Physique Fondamentale d'Orsay, Universite Paris-11/France (3 aut.); Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218/Hawthorn, VIC 3122/Australie (4 aut.); CSIRO/MSE, PO Box 56/Heighett, VIC 3190/Australie (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Etats-Unis; Da. 2011; Vol. 414; No. 3; Pp. 2386-2405; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high-temperature region (T > 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg
<sub>2</sub>
SiO
<sub>4</sub>
and MgSiO
<sub>3</sub>
. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature and the abundance of the first high-temperature peak of forsterite is also pressure sensitive. In the low-temperature regions (T ≤ 600 K), a range of iron compounds (FeS, Fe
<sub>2</sub>
SiO
<sub>3</sub>
, FeAl
<sub>2</sub>
O
<sub>3</sub>
) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low-temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.</EA>
<CC>001E03</CC>
<FD>Solution régulière; Modèle; Condensation; Equilibre chimique; Thermodynamique; Energie libre Gibbs; Haute température; Abondance; Basse température; Matière circumstellaire</FD>
<ED>Regular solution; Models; Vapor condensation; Chemical equilibrium; Thermodynamics; Gibbs free energy; High temperature; Abundance; Low temperature; Circumstellar matter</ED>
<SD>Solución regular; Modelo; Energía libre Gibbs; Alta temperatura; Baja temperatura</SD>
<LO>INIST-2067.354000190369470450</LO>
<ID>11-0292146</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001B67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0292146
   |texte=   The effect of the regular solution model in the condensation of protoplanetary dust
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024