Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China

Identifieur interne : 00A315 ( Main/Exploration ); précédent : 00A314; suivant : 00A316

Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China

Auteurs : Jean Braun [France] ; Xavier Robert [France]

Source :

RBID : ISTEX:8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2

Descripteurs français

English descriptors

Abstract

We have investigated whether low temperature thermochronological datasets can be used to constrain the rate of surface evolution during the post‐orogenic phase of a mountain belt. We use a numerical method to solve the heat transport equation in the Earth's crust, including the effects of a changing, finite‐amplitude topography and the resulting flexural isostatic rebound. We demonstrate that accurate estimates of the amount of relief loss can be obtained by applying a recently developed spectral method that is based on estimates of the relationship between age and surface elevation as a function of topographic wavelength. We also show that the rate at which topography decays with time following cessation of tectonic activity can be constrained from estimates of exhumation rate derived from the slope of age–elevation profiles collected across short wavelength topography. Using the Neighbourhood Algorithm to perform a thorough search through parameter space, we are able to find a tectonomorphic scenario that predicts age distributions compatible with a thermochronological dataset collected in the Dabie Shan of eastern China by Reiners et al. (American Journal of Science 2003, vol. 303, pp. 489–518). We demonstrate that, in the Dabie Shan, the mean topographic relief has decreased by a factor of 2·5 to 4·5 during the last 60–80 Ma, while the mountain belt experienced a mean exhumation rate of 0·01 to 0·04 km Ma−1. We confirm the conclusions of Reiners et al. that there is no need to invoke a discrete Cenozoic tectonic event to explain the observed age distribution. The thermochronological dataset can also be used to put constraints on the effective elastic thickness of the lithosphere underlying the orogen (10 to 30 km). There is, however, a trade‐off between elastic thickness, mean exhumation rate and amount of topographic relief loss. The most likely scenario also predicts that the topography has decreased at a constant rate since the end of orogenic activity about 100 Ma ago. Copyright © 2005 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/esp.1271


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China</title>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
</author>
<author>
<name sortKey="Robert, Xavier" sort="Robert, Xavier" uniqKey="Robert X" first="Xavier" last="Robert">Xavier Robert</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1002/esp.1271</idno>
<idno type="url">https://api.istex.fr/document/8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A71</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A71</idno>
<idno type="wicri:Area/Istex/Curation">001A71</idno>
<idno type="wicri:Area/Istex/Checkpoint">001873</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001873</idno>
<idno type="wicri:doubleKey">0197-9337:2005:Braun J:constraints:on:the</idno>
<idno type="wicri:Area/Main/Merge">00AE81</idno>
<idno type="wicri:Area/Main/Curation">00A315</idno>
<idno type="wicri:Area/Main/Exploration">00A315</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China</title>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia. Now at Géosciences Rennes, Université de Rennes 1, Rennes</wicri:regionArea>
<placeName>
<region type="region">Région Bretagne</region>
<region type="old region">Région Bretagne</region>
<settlement type="city">Rennes</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Correspondence address: Géosciences Rennes, Université de Rennes 1, Av. Gl Lectere, Rennes 35042</wicri:regionArea>
<orgName type="university">Université de Rennes 1</orgName>
<placeName>
<settlement type="city">Rennes</settlement>
<region type="region" nuts="2">Région Bretagne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Robert, Xavier" sort="Robert, Xavier" uniqKey="Robert X" first="Xavier" last="Robert">Xavier Robert</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Département de Géologie, Ecole Normale Supérieure, Lyon, France. Now at Laboratoire de Géodynamique des Chaînes Alpines, Université Joseph Fourier, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
<settlement type="city">Grenoble</settlement>
</placeName>
<orgName type="university">Université Joseph Fourier</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Earth Surface Processes and Landforms</title>
<title level="j" type="sub">Quantifying Rates and Timescales of Geomorphic Processes: Part 2.</title>
<title level="j" type="alt">EARTH SURFACE PROCESSES AND LANDFORMS</title>
<idno type="ISSN">0197-9337</idno>
<idno type="eISSN">1096-9837</idno>
<imprint>
<biblScope unit="vol">30</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1203">1203</biblScope>
<biblScope unit="page" to="1225">1225</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2005-08">2005-08</date>
</imprint>
<idno type="ISSN">0197-9337</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0197-9337</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>American journal</term>
<term>Apatite</term>
<term>Apparent exhumation rate</term>
<term>Braun</term>
<term>Centre</term>
<term>Closure</term>
<term>Closure temperature</term>
<term>Closure temperature isotherm</term>
<term>Continental lithosphere</term>
<term>Copyright</term>
<term>Crust</term>
<term>Crustal</term>
<term>Dabie</term>
<term>Dabie shan</term>
<term>Dataset</term>
<term>Datasets</term>
<term>Different values</term>
<term>Earth surf</term>
<term>Eastern china</term>
<term>Elastic plate thickness</term>
<term>Elastic thickness</term>
<term>Elevation</term>
<term>Erosion</term>
<term>Erosion rate</term>
<term>Erosional</term>
<term>Erosional decay</term>
<term>Erosional processes</term>
<term>Erosional response time</term>
<term>Exhumation</term>
<term>Exhumation rate</term>
<term>Exural</term>
<term>Exural rigidity</term>
<term>Exural strength</term>
<term>Exural wavelength</term>
<term>Gain estimates</term>
<term>Gain function</term>
<term>Gain values</term>
<term>Geophysical</term>
<term>Geophysical research</term>
<term>Geothermal gradient</term>
<term>Good estimate</term>
<term>Good estimates</term>
<term>Heat production</term>
<term>Heat transport equation</term>
<term>Imaginary parts</term>
<term>Isostasy</term>
<term>Isostatic</term>
<term>Isostatic compensation</term>
<term>Isostatic rebound</term>
<term>Isostatic response</term>
<term>Isostatic uplift</term>
<term>Isotherm</term>
<term>John wiley sons</term>
<term>Kooi</term>
<term>Landforms</term>
<term>Lateral strength</term>
<term>Lithosphere</term>
<term>Lithospheric</term>
<term>Long wavelength</term>
<term>Model parameters</term>
<term>Model predictions</term>
<term>Mountain belt</term>
<term>Neighbourhood algorithm</term>
<term>Nite</term>
<term>Orogen</term>
<term>Orogenic</term>
<term>Orogenic phase</term>
<term>Other parameters</term>
<term>Parameter space</term>
<term>Parameter values</term>
<term>Pecube</term>
<term>Plate thickness</term>
<term>Rebound</term>
<term>Reiners</term>
<term>Relief change</term>
<term>Relief evolution</term>
<term>Relief loss</term>
<term>Relief reduction</term>
<term>Robert figure</term>
<term>Sixth model</term>
<term>Small value</term>
<term>Small values</term>
<term>Spectral analysis</term>
<term>Spectral method</term>
<term>Ssion track</term>
<term>Steady state</term>
<term>Surf</term>
<term>Surface erosion</term>
<term>Surface topography</term>
<term>Tectonic</term>
<term>Tectonic activity</term>
<term>Temperature structure</term>
<term>Thermochronological</term>
<term>Thermochronological data</term>
<term>Thermochronological dataset</term>
<term>Thermochronological datasets</term>
<term>Topographic</term>
<term>Topographic decay</term>
<term>Topographic relief</term>
<term>Topography</term>
<term>Total erosion</term>
<term>Transect</term>
<term>Turcotte</term>
<term>Uplift</term>
<term>Wavelength</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>American journal</term>
<term>Apatite</term>
<term>Apparent exhumation rate</term>
<term>Braun</term>
<term>Centre</term>
<term>Closure</term>
<term>Closure temperature</term>
<term>Closure temperature isotherm</term>
<term>Continental lithosphere</term>
<term>Copyright</term>
<term>Crust</term>
<term>Crustal</term>
<term>Dabie</term>
<term>Dabie shan</term>
<term>Dataset</term>
<term>Datasets</term>
<term>Different values</term>
<term>Earth surf</term>
<term>Eastern china</term>
<term>Elastic plate thickness</term>
<term>Elastic thickness</term>
<term>Elevation</term>
<term>Erosion</term>
<term>Erosion rate</term>
<term>Erosional</term>
<term>Erosional decay</term>
<term>Erosional processes</term>
<term>Erosional response time</term>
<term>Exhumation</term>
<term>Exhumation rate</term>
<term>Exural</term>
<term>Exural rigidity</term>
<term>Exural strength</term>
<term>Exural wavelength</term>
<term>Gain estimates</term>
<term>Gain function</term>
<term>Gain values</term>
<term>Geophysical</term>
<term>Geophysical research</term>
<term>Geothermal gradient</term>
<term>Good estimate</term>
<term>Good estimates</term>
<term>Heat production</term>
<term>Heat transport equation</term>
<term>Imaginary parts</term>
<term>Isostasy</term>
<term>Isostatic</term>
<term>Isostatic compensation</term>
<term>Isostatic rebound</term>
<term>Isostatic response</term>
<term>Isostatic uplift</term>
<term>Isotherm</term>
<term>John wiley sons</term>
<term>Kooi</term>
<term>Landforms</term>
<term>Lateral strength</term>
<term>Lithosphere</term>
<term>Lithospheric</term>
<term>Long wavelength</term>
<term>Model parameters</term>
<term>Model predictions</term>
<term>Mountain belt</term>
<term>Neighbourhood algorithm</term>
<term>Nite</term>
<term>Orogen</term>
<term>Orogenic</term>
<term>Orogenic phase</term>
<term>Other parameters</term>
<term>Parameter space</term>
<term>Parameter values</term>
<term>Pecube</term>
<term>Plate thickness</term>
<term>Rebound</term>
<term>Reiners</term>
<term>Relief change</term>
<term>Relief evolution</term>
<term>Relief loss</term>
<term>Relief reduction</term>
<term>Robert figure</term>
<term>Sixth model</term>
<term>Small value</term>
<term>Small values</term>
<term>Spectral analysis</term>
<term>Spectral method</term>
<term>Ssion track</term>
<term>Steady state</term>
<term>Surf</term>
<term>Surface erosion</term>
<term>Surface topography</term>
<term>Tectonic</term>
<term>Tectonic activity</term>
<term>Temperature structure</term>
<term>Thermochronological</term>
<term>Thermochronological data</term>
<term>Thermochronological dataset</term>
<term>Thermochronological datasets</term>
<term>Topographic</term>
<term>Topographic decay</term>
<term>Topographic relief</term>
<term>Topography</term>
<term>Total erosion</term>
<term>Transect</term>
<term>Turcotte</term>
<term>Uplift</term>
<term>Wavelength</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Droit d'auteur</term>
<term>érosion</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="fr">We have investigated whether low temperature thermochronological datasets can be used to constrain the rate of surface evolution during the post‐orogenic phase of a mountain belt. We use a numerical method to solve the heat transport equation in the Earth's crust, including the effects of a changing, finite‐amplitude topography and the resulting flexural isostatic rebound. We demonstrate that accurate estimates of the amount of relief loss can be obtained by applying a recently developed spectral method that is based on estimates of the relationship between age and surface elevation as a function of topographic wavelength. We also show that the rate at which topography decays with time following cessation of tectonic activity can be constrained from estimates of exhumation rate derived from the slope of age–elevation profiles collected across short wavelength topography. Using the Neighbourhood Algorithm to perform a thorough search through parameter space, we are able to find a tectonomorphic scenario that predicts age distributions compatible with a thermochronological dataset collected in the Dabie Shan of eastern China by Reiners et al. (American Journal of Science 2003, vol. 303, pp. 489–518). We demonstrate that, in the Dabie Shan, the mean topographic relief has decreased by a factor of 2·5 to 4·5 during the last 60–80 Ma, while the mountain belt experienced a mean exhumation rate of 0·01 to 0·04 km Ma−1. We confirm the conclusions of Reiners et al. that there is no need to invoke a discrete Cenozoic tectonic event to explain the observed age distribution. The thermochronological dataset can also be used to put constraints on the effective elastic thickness of the lithosphere underlying the orogen (10 to 30 km). There is, however, a trade‐off between elastic thickness, mean exhumation rate and amount of topographic relief loss. The most likely scenario also predicts that the topography has decreased at a constant rate since the end of orogenic activity about 100 Ma ago. Copyright © 2005 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
<li>Région Bretagne</li>
</region>
<settlement>
<li>Grenoble</li>
<li>Rennes</li>
</settlement>
<orgName>
<li>Université Joseph Fourier</li>
<li>Université de Rennes 1</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Région Bretagne">
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
</region>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<name sortKey="Robert, Xavier" sort="Robert, Xavier" uniqKey="Robert X" first="Xavier" last="Robert">Xavier Robert</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A315 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 00A315 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2
   |texte=   Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024