Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China

Identifieur interne : 001A71 ( Istex/Corpus ); précédent : 001A70; suivant : 001A72

Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China

Auteurs : Jean Braun ; Xavier Robert

Source :

RBID : ISTEX:8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2

English descriptors

Abstract

We have investigated whether low temperature thermochronological datasets can be used to constrain the rate of surface evolution during the post‐orogenic phase of a mountain belt. We use a numerical method to solve the heat transport equation in the Earth's crust, including the effects of a changing, finite‐amplitude topography and the resulting flexural isostatic rebound. We demonstrate that accurate estimates of the amount of relief loss can be obtained by applying a recently developed spectral method that is based on estimates of the relationship between age and surface elevation as a function of topographic wavelength. We also show that the rate at which topography decays with time following cessation of tectonic activity can be constrained from estimates of exhumation rate derived from the slope of age–elevation profiles collected across short wavelength topography. Using the Neighbourhood Algorithm to perform a thorough search through parameter space, we are able to find a tectonomorphic scenario that predicts age distributions compatible with a thermochronological dataset collected in the Dabie Shan of eastern China by Reiners et al. (American Journal of Science 2003, vol. 303, pp. 489–518). We demonstrate that, in the Dabie Shan, the mean topographic relief has decreased by a factor of 2·5 to 4·5 during the last 60–80 Ma, while the mountain belt experienced a mean exhumation rate of 0·01 to 0·04 km Ma−1. We confirm the conclusions of Reiners et al. that there is no need to invoke a discrete Cenozoic tectonic event to explain the observed age distribution. The thermochronological dataset can also be used to put constraints on the effective elastic thickness of the lithosphere underlying the orogen (10 to 30 km). There is, however, a trade‐off between elastic thickness, mean exhumation rate and amount of topographic relief loss. The most likely scenario also predicts that the topography has decreased at a constant rate since the end of orogenic activity about 100 Ma ago. Copyright © 2005 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/esp.1271

Links to Exploration step

ISTEX:8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China</title>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<affiliation>
<mods:affiliation>Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia. Now at Géosciences Rennes, Université de Rennes 1, Rennes, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Jean.Braun@univ‐rennes1.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Géosciences Rennes, Université de Rennes 1, Av. Gl Lectere, Rennes 35042, France.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robert, Xavier" sort="Robert, Xavier" uniqKey="Robert X" first="Xavier" last="Robert">Xavier Robert</name>
<affiliation>
<mods:affiliation>Département de Géologie, Ecole Normale Supérieure, Lyon, France. Now at Laboratoire de Géodynamique des Chaînes Alpines, Université Joseph Fourier, Grenoble, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1002/esp.1271</idno>
<idno type="url">https://api.istex.fr/document/8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A71</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A71</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China</title>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<affiliation>
<mods:affiliation>Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia. Now at Géosciences Rennes, Université de Rennes 1, Rennes, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Jean.Braun@univ‐rennes1.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Géosciences Rennes, Université de Rennes 1, Av. Gl Lectere, Rennes 35042, France.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robert, Xavier" sort="Robert, Xavier" uniqKey="Robert X" first="Xavier" last="Robert">Xavier Robert</name>
<affiliation>
<mods:affiliation>Département de Géologie, Ecole Normale Supérieure, Lyon, France. Now at Laboratoire de Géodynamique des Chaînes Alpines, Université Joseph Fourier, Grenoble, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Earth Surface Processes and Landforms</title>
<title level="j" type="sub">Quantifying Rates and Timescales of Geomorphic Processes: Part 2.</title>
<title level="j" type="alt">EARTH SURFACE PROCESSES AND LANDFORMS</title>
<idno type="ISSN">0197-9337</idno>
<idno type="eISSN">1096-9837</idno>
<imprint>
<biblScope unit="vol">30</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1203">1203</biblScope>
<biblScope unit="page" to="1225">1225</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2005-08">2005-08</date>
</imprint>
<idno type="ISSN">0197-9337</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0197-9337</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>American journal</term>
<term>Apatite</term>
<term>Apparent exhumation rate</term>
<term>Braun</term>
<term>Centre</term>
<term>Closure</term>
<term>Closure temperature</term>
<term>Closure temperature isotherm</term>
<term>Continental lithosphere</term>
<term>Copyright</term>
<term>Crust</term>
<term>Crustal</term>
<term>Dabie</term>
<term>Dabie shan</term>
<term>Dataset</term>
<term>Datasets</term>
<term>Different values</term>
<term>Earth surf</term>
<term>Eastern china</term>
<term>Elastic plate thickness</term>
<term>Elastic thickness</term>
<term>Elevation</term>
<term>Erosion</term>
<term>Erosion rate</term>
<term>Erosional</term>
<term>Erosional decay</term>
<term>Erosional processes</term>
<term>Erosional response time</term>
<term>Exhumation</term>
<term>Exhumation rate</term>
<term>Exural</term>
<term>Exural rigidity</term>
<term>Exural strength</term>
<term>Exural wavelength</term>
<term>Gain estimates</term>
<term>Gain function</term>
<term>Gain values</term>
<term>Geophysical</term>
<term>Geophysical research</term>
<term>Geothermal gradient</term>
<term>Good estimate</term>
<term>Good estimates</term>
<term>Heat production</term>
<term>Heat transport equation</term>
<term>Imaginary parts</term>
<term>Isostasy</term>
<term>Isostatic</term>
<term>Isostatic compensation</term>
<term>Isostatic rebound</term>
<term>Isostatic response</term>
<term>Isostatic uplift</term>
<term>Isotherm</term>
<term>John wiley sons</term>
<term>Kooi</term>
<term>Landforms</term>
<term>Lateral strength</term>
<term>Lithosphere</term>
<term>Lithospheric</term>
<term>Long wavelength</term>
<term>Model parameters</term>
<term>Model predictions</term>
<term>Mountain belt</term>
<term>Neighbourhood algorithm</term>
<term>Nite</term>
<term>Orogen</term>
<term>Orogenic</term>
<term>Orogenic phase</term>
<term>Other parameters</term>
<term>Parameter space</term>
<term>Parameter values</term>
<term>Pecube</term>
<term>Plate thickness</term>
<term>Rebound</term>
<term>Reiners</term>
<term>Relief change</term>
<term>Relief evolution</term>
<term>Relief loss</term>
<term>Relief reduction</term>
<term>Robert figure</term>
<term>Sixth model</term>
<term>Small value</term>
<term>Small values</term>
<term>Spectral analysis</term>
<term>Spectral method</term>
<term>Ssion track</term>
<term>Steady state</term>
<term>Surf</term>
<term>Surface erosion</term>
<term>Surface topography</term>
<term>Tectonic</term>
<term>Tectonic activity</term>
<term>Temperature structure</term>
<term>Thermochronological</term>
<term>Thermochronological data</term>
<term>Thermochronological dataset</term>
<term>Thermochronological datasets</term>
<term>Topographic</term>
<term>Topographic decay</term>
<term>Topographic relief</term>
<term>Topography</term>
<term>Total erosion</term>
<term>Transect</term>
<term>Turcotte</term>
<term>Uplift</term>
<term>Wavelength</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>American journal</term>
<term>Apatite</term>
<term>Apparent exhumation rate</term>
<term>Braun</term>
<term>Centre</term>
<term>Closure</term>
<term>Closure temperature</term>
<term>Closure temperature isotherm</term>
<term>Continental lithosphere</term>
<term>Copyright</term>
<term>Crust</term>
<term>Crustal</term>
<term>Dabie</term>
<term>Dabie shan</term>
<term>Dataset</term>
<term>Datasets</term>
<term>Different values</term>
<term>Earth surf</term>
<term>Eastern china</term>
<term>Elastic plate thickness</term>
<term>Elastic thickness</term>
<term>Elevation</term>
<term>Erosion</term>
<term>Erosion rate</term>
<term>Erosional</term>
<term>Erosional decay</term>
<term>Erosional processes</term>
<term>Erosional response time</term>
<term>Exhumation</term>
<term>Exhumation rate</term>
<term>Exural</term>
<term>Exural rigidity</term>
<term>Exural strength</term>
<term>Exural wavelength</term>
<term>Gain estimates</term>
<term>Gain function</term>
<term>Gain values</term>
<term>Geophysical</term>
<term>Geophysical research</term>
<term>Geothermal gradient</term>
<term>Good estimate</term>
<term>Good estimates</term>
<term>Heat production</term>
<term>Heat transport equation</term>
<term>Imaginary parts</term>
<term>Isostasy</term>
<term>Isostatic</term>
<term>Isostatic compensation</term>
<term>Isostatic rebound</term>
<term>Isostatic response</term>
<term>Isostatic uplift</term>
<term>Isotherm</term>
<term>John wiley sons</term>
<term>Kooi</term>
<term>Landforms</term>
<term>Lateral strength</term>
<term>Lithosphere</term>
<term>Lithospheric</term>
<term>Long wavelength</term>
<term>Model parameters</term>
<term>Model predictions</term>
<term>Mountain belt</term>
<term>Neighbourhood algorithm</term>
<term>Nite</term>
<term>Orogen</term>
<term>Orogenic</term>
<term>Orogenic phase</term>
<term>Other parameters</term>
<term>Parameter space</term>
<term>Parameter values</term>
<term>Pecube</term>
<term>Plate thickness</term>
<term>Rebound</term>
<term>Reiners</term>
<term>Relief change</term>
<term>Relief evolution</term>
<term>Relief loss</term>
<term>Relief reduction</term>
<term>Robert figure</term>
<term>Sixth model</term>
<term>Small value</term>
<term>Small values</term>
<term>Spectral analysis</term>
<term>Spectral method</term>
<term>Ssion track</term>
<term>Steady state</term>
<term>Surf</term>
<term>Surface erosion</term>
<term>Surface topography</term>
<term>Tectonic</term>
<term>Tectonic activity</term>
<term>Temperature structure</term>
<term>Thermochronological</term>
<term>Thermochronological data</term>
<term>Thermochronological dataset</term>
<term>Thermochronological datasets</term>
<term>Topographic</term>
<term>Topographic decay</term>
<term>Topographic relief</term>
<term>Topography</term>
<term>Total erosion</term>
<term>Transect</term>
<term>Turcotte</term>
<term>Uplift</term>
<term>Wavelength</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="fr">We have investigated whether low temperature thermochronological datasets can be used to constrain the rate of surface evolution during the post‐orogenic phase of a mountain belt. We use a numerical method to solve the heat transport equation in the Earth's crust, including the effects of a changing, finite‐amplitude topography and the resulting flexural isostatic rebound. We demonstrate that accurate estimates of the amount of relief loss can be obtained by applying a recently developed spectral method that is based on estimates of the relationship between age and surface elevation as a function of topographic wavelength. We also show that the rate at which topography decays with time following cessation of tectonic activity can be constrained from estimates of exhumation rate derived from the slope of age–elevation profiles collected across short wavelength topography. Using the Neighbourhood Algorithm to perform a thorough search through parameter space, we are able to find a tectonomorphic scenario that predicts age distributions compatible with a thermochronological dataset collected in the Dabie Shan of eastern China by Reiners et al. (American Journal of Science 2003, vol. 303, pp. 489–518). We demonstrate that, in the Dabie Shan, the mean topographic relief has decreased by a factor of 2·5 to 4·5 during the last 60–80 Ma, while the mountain belt experienced a mean exhumation rate of 0·01 to 0·04 km Ma−1. We confirm the conclusions of Reiners et al. that there is no need to invoke a discrete Cenozoic tectonic event to explain the observed age distribution. The thermochronological dataset can also be used to put constraints on the effective elastic thickness of the lithosphere underlying the orogen (10 to 30 km). There is, however, a trade‐off between elastic thickness, mean exhumation rate and amount of topographic relief loss. The most likely scenario also predicts that the topography has decreased at a constant rate since the end of orogenic activity about 100 Ma ago. Copyright © 2005 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>erosional</json:string>
<json:string>exhumation</json:string>
<json:string>orogen</json:string>
<json:string>apatite</json:string>
<json:string>isostatic</json:string>
<json:string>lithosphere</json:string>
<json:string>exhumation rate</json:string>
<json:string>landforms</json:string>
<json:string>thermochronological</json:string>
<json:string>earth surf</json:string>
<json:string>copyright</json:string>
<json:string>john wiley sons</json:string>
<json:string>tectonic</json:string>
<json:string>dataset</json:string>
<json:string>orogenic</json:string>
<json:string>exural</json:string>
<json:string>dabie</json:string>
<json:string>erosional decay</json:string>
<json:string>reiners</json:string>
<json:string>braun</json:string>
<json:string>spectral method</json:string>
<json:string>dabie shan</json:string>
<json:string>topographic</json:string>
<json:string>geophysical</json:string>
<json:string>mountain belt</json:string>
<json:string>surface topography</json:string>
<json:string>erosional response time</json:string>
<json:string>elastic plate thickness</json:string>
<json:string>surf</json:string>
<json:string>datasets</json:string>
<json:string>orogenic phase</json:string>
<json:string>geophysical research</json:string>
<json:string>transect</json:string>
<json:string>relief loss</json:string>
<json:string>pecube</json:string>
<json:string>thermochronological data</json:string>
<json:string>closure temperature</json:string>
<json:string>isostasy</json:string>
<json:string>kooi</json:string>
<json:string>turcotte</json:string>
<json:string>closure</json:string>
<json:string>gain function</json:string>
<json:string>crustal</json:string>
<json:string>surface erosion</json:string>
<json:string>isotherm</json:string>
<json:string>nite</json:string>
<json:string>elastic thickness</json:string>
<json:string>isostatic rebound</json:string>
<json:string>relief reduction</json:string>
<json:string>lithospheric</json:string>
<json:string>exural wavelength</json:string>
<json:string>parameter space</json:string>
<json:string>uplift</json:string>
<json:string>total erosion</json:string>
<json:string>thermochronological dataset</json:string>
<json:string>relief evolution</json:string>
<json:string>model parameters</json:string>
<json:string>wavelength</json:string>
<json:string>continental lithosphere</json:string>
<json:string>plate thickness</json:string>
<json:string>isostatic response</json:string>
<json:string>robert figure</json:string>
<json:string>topography</json:string>
<json:string>centre</json:string>
<json:string>erosion</json:string>
<json:string>heat transport equation</json:string>
<json:string>different values</json:string>
<json:string>american journal</json:string>
<json:string>isostatic compensation</json:string>
<json:string>eastern china</json:string>
<json:string>small value</json:string>
<json:string>erosional processes</json:string>
<json:string>topographic relief</json:string>
<json:string>isostatic uplift</json:string>
<json:string>model predictions</json:string>
<json:string>tectonic activity</json:string>
<json:string>temperature structure</json:string>
<json:string>closure temperature isotherm</json:string>
<json:string>exural strength</json:string>
<json:string>gain estimates</json:string>
<json:string>elevation</json:string>
<json:string>crust</json:string>
<json:string>heat production</json:string>
<json:string>steady state</json:string>
<json:string>topographic decay</json:string>
<json:string>spectral analysis</json:string>
<json:string>good estimate</json:string>
<json:string>long wavelength</json:string>
<json:string>geothermal gradient</json:string>
<json:string>exural rigidity</json:string>
<json:string>lateral strength</json:string>
<json:string>relief change</json:string>
<json:string>imaginary parts</json:string>
<json:string>ssion track</json:string>
<json:string>erosion rate</json:string>
<json:string>other parameters</json:string>
<json:string>small values</json:string>
<json:string>apparent exhumation rate</json:string>
<json:string>neighbourhood algorithm</json:string>
<json:string>thermochronological datasets</json:string>
<json:string>parameter values</json:string>
<json:string>good estimates</json:string>
<json:string>sixth model</json:string>
<json:string>gain values</json:string>
<json:string>rebound</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Jean Braun</name>
<affiliations>
<json:string>Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia. Now at Géosciences Rennes, Université de Rennes 1, Rennes, France</json:string>
<json:string>E-mail: Jean.Braun@univ‐rennes1.fr</json:string>
<json:string>Correspondence address: Géosciences Rennes, Université de Rennes 1, Av. Gl Lectere, Rennes 35042, France.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Xavier Robert</name>
<affiliations>
<json:string>Département de Géologie, Ecole Normale Supérieure, Lyon, France. Now at Laboratoire de Géodynamique des Chaînes Alpines, Université Joseph Fourier, Grenoble, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>thermochronology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>erosion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Dabie Shan</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>flexure</value>
</json:item>
</subject>
<articleId>
<json:string>ESP1271</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-VJ14G8WC-S</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We have investigated whether low temperature thermochronological datasets can be used to constrain the rate of surface evolution during the post‐orogenic phase of a mountain belt. We use a numerical method to solve the heat transport equation in the Earth's crust, including the effects of a changing, finite‐amplitude topography and the resulting flexural isostatic rebound. We demonstrate that accurate estimates of the amount of relief loss can be obtained by applying a recently developed spectral method that is based on estimates of the relationship between age and surface elevation as a function of topographic wavelength. We also show that the rate at which topography decays with time following cessation of tectonic activity can be constrained from estimates of exhumation rate derived from the slope of age–elevation profiles collected across short wavelength topography. Using the Neighbourhood Algorithm to perform a thorough search through parameter space, we are able to find a tectonomorphic scenario that predicts age distributions compatible with a thermochronological dataset collected in the Dabie Shan of eastern China by Reiners et al. (American Journal of Science 2003, vol. 303, pp. 489–518). We demonstrate that, in the Dabie Shan, the mean topographic relief has decreased by a factor of 2·5 to 4·5 during the last 60–80 Ma, while the mountain belt experienced a mean exhumation rate of 0·01 to 0·04 km Ma−1. We confirm the conclusions of Reiners et al. that there is no need to invoke a discrete Cenozoic tectonic event to explain the observed age distribution. The thermochronological dataset can also be used to put constraints on the effective elastic thickness of the lithosphere underlying the orogen (10 to 30 km). There is, however, a trade‐off between elastic thickness, mean exhumation rate and amount of topographic relief loss. The most likely scenario also predicts that the topography has decreased at a constant rate since the end of orogenic activity about 100 Ma ago. Copyright © 2005 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>10278</pdfWordCount>
<pdfCharCount>56667</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>23</pdfPageCount>
<pdfPageSize>583 x 754 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>323</abstractWordCount>
<abstractCharCount>2052</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Earth Surface Processes and Landforms</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1096-9837</json:string>
</doi>
<issn>
<json:string>0197-9337</json:string>
</issn>
<eissn>
<json:string>1096-9837</json:string>
</eissn>
<publisherId>
<json:string>ESP</json:string>
</publisherId>
<volume>30</volume>
<issue>9</issue>
<pages>
<first>1203</first>
<last>1225</last>
<total>9</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<author>
<json:item>
<name>Arjun M. Heimsath</name>
</json:item>
<json:item>
<name>Todd A. Ehlers</name>
</json:item>
</author>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2005</json:string>
<json:string>3200</json:string>
<json:string>2600</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Sons, Ltd.</json:string>
<json:string>Australian Research Council</json:string>
<json:string>Research School of Earth Sciences, The Australian National University, Canberra ACT</json:string>
<json:string>Sons, Ltd</json:string>
<json:string>American Journal of Science</json:string>
<json:string>Australian National University</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>X. Robert</json:string>
<json:string>Inference</json:string>
<json:string>John Wiley</json:string>
<json:string>Joseph Fourier</json:string>
<json:string>Robert Figure</json:string>
<json:string>Comparison</json:string>
<json:string>J. Braun</json:string>
<json:string>P. Reiners</json:string>
</persName>
<placeName>
<json:string>Grenoble</json:string>
<json:string>Rennes</json:string>
<json:string>China</json:string>
<json:string>France</json:string>
<json:string>Lyon</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Hilley and Strecker, 2004</json:string>
<json:string>Dodson, 1973</json:string>
<json:string>Reiners et al. (2003)</json:string>
<json:string>Hack, 1960</json:string>
<json:string>Zuber et al., 1989</json:string>
<json:string>Braun, 2002a</json:string>
<json:string>Whipple and Meade, 2004</json:string>
<json:string>Braun et al., 1999</json:string>
<json:string>Bechtel et al., 1990</json:string>
<json:string>Kooi and Beaumont, 1996</json:string>
<json:string>Jenkins and Watts, 1968</json:string>
<json:string>van der Beek et al. (1995)</json:string>
<json:string>Roe et al., 2005</json:string>
<json:string>Turcotte, 1979</json:string>
<json:string>Braun (2002a)</json:string>
<json:string>Lague et al., 2003</json:string>
<json:string>Grimmer et al., 2002</json:string>
<json:string>Huang and Turcotte, 1989</json:string>
<json:string>see Jenkins and Watts, 1968, p. 437</json:string>
<json:string>Molnar and England, 1990</json:string>
<json:string>Sambridge (1999)</json:string>
<json:string>Wang and Mareschal, 1999</json:string>
<json:string>Forsyth, 1985</json:string>
<json:string>Reiners et al.</json:string>
<json:string>see Jenkins and Watts, 1968, p. 244</json:string>
<json:string>Maggi et al., 2000</json:string>
<json:string>Davis, 1899</json:string>
<json:string>Wolf et al. (1998)</json:string>
<json:string>Turcotte and Schubert, 1982</json:string>
<json:string>Penck, 1924</json:string>
<json:string>Grimmer et al. (2002)</json:string>
<json:string>Schmid et al., 2001</json:string>
<json:string>Tomkin and Braun, 2002</json:string>
<json:string>Braun (2002a,b)</json:string>
<json:string>Stüwe et al., 1994</json:string>
<json:string>Braun, 2002a,b</json:string>
<json:string>Braun, 2002b</json:string>
<json:string>Montgomery, 1994</json:string>
<json:string>Braun (2003)</json:string>
<json:string>Reiners et al., 2003</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-VJ14G8WC-S</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geosciences, multidisciplinary</json:string>
<json:string>2 - geography, physical</json:string>
</wos>
<scienceMetrix>
<json:string>1 - economic & social sciences</json:string>
<json:string>2 - social sciences</json:string>
<json:string>3 - geography</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth and Planetary Sciences (miscellaneous)</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth-Surface Processes</json:string>
<json:string>1 - Social Sciences</json:string>
<json:string>2 - Social Sciences</json:string>
<json:string>3 - Geography, Planning and Development</json:string>
</scopus>
</categories>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1002/esp.1271</json:string>
</doi>
<id>8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<licence>Copyright © 2005 John Wiley & Sons, Ltd.</licence>
</availability>
<date type="published" when="2005-08"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China</title>
<title level="a" type="short" xml:lang="en">Post‐orogenic erosional decay</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Jean</forename>
<surname>Braun</surname>
</persName>
<email>Jean.Braun@univ‐rennes1.fr</email>
<affiliation>Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia. Now at Géosciences Rennes, Université de Rennes 1, Rennes, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Géosciences Rennes, Université de Rennes 1, Av. Gl Lectere, Rennes 35042, France.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Xavier</forename>
<surname>Robert</surname>
</persName>
<affiliation>Département de Géologie, Ecole Normale Supérieure, Lyon, France. Now at Laboratoire de Géodynamique des Chaînes Alpines, Université Joseph Fourier, Grenoble, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2</idno>
<idno type="ark">ark:/67375/WNG-VJ14G8WC-S</idno>
<idno type="DOI">10.1002/esp.1271</idno>
<idno type="unit">ESP1271</idno>
<idno type="toTypesetVersion">file:ESP.ESP1271.pdf</idno>
</analytic>
<monogr>
<editor xml:id="editor-0000">
<persName>
<forename type="first">Arjun M.</forename>
<surname>Heimsath</surname>
</persName>
</editor>
<editor xml:id="editor-0001">
<persName>
<forename type="first">Todd A.</forename>
<surname>Ehlers</surname>
</persName>
</editor>
<title level="j" type="main">Earth Surface Processes and Landforms</title>
<title level="j" type="sub">Quantifying Rates and Timescales of Geomorphic Processes: Part 2.</title>
<title level="j" type="alt">EARTH SURFACE PROCESSES AND LANDFORMS</title>
<idno type="pISSN">0197-9337</idno>
<idno type="eISSN">1096-9837</idno>
<idno type="book-DOI">10.1002/(ISSN)1096-9837</idno>
<idno type="book-part-DOI">10.1002/esp.v30:9</idno>
<idno type="product">ESP</idno>
<imprint>
<biblScope unit="vol">30</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1203">1203</biblScope>
<biblScope unit="page" to="1225">1225</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2005-08"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="fr" style="main">
<head>Abstract</head>
<p>We have investigated whether low temperature thermochronological datasets can be used to constrain the rate of surface evolution during the post‐orogenic phase of a mountain belt. We use a numerical method to solve the heat transport equation in the Earth's crust, including the effects of a changing, finite‐amplitude topography and the resulting flexural isostatic rebound. We demonstrate that accurate estimates of the amount of relief loss can be obtained by applying a recently developed spectral method that is based on estimates of the relationship between age and surface elevation as a function of topographic wavelength. We also show that the rate at which topography decays with time following cessation of tectonic activity can be constrained from estimates of exhumation rate derived from the slope of age–elevation profiles collected across short wavelength topography. Using the Neighbourhood Algorithm to perform a thorough search through parameter space, we are able to find a tectonomorphic scenario that predicts age distributions compatible with a thermochronological dataset collected in the Dabie Shan of eastern China by Reiners
<hi rend="italic">et al.</hi>
(
<hi rend="italic">American Journal of Science</hi>
2003, vol. 303, pp. 489–518). We demonstrate that, in the Dabie Shan, the mean topographic relief has decreased by a factor of 2·5 to 4·5 during the last 60–80 Ma, while the mountain belt experienced a mean exhumation rate of 0·01 to 0·04 km Ma
<hi rend="superscript">−1</hi>
. We confirm the conclusions of Reiners
<hi rend="italic">et al.</hi>
that there is no need to invoke a discrete Cenozoic tectonic event to explain the observed age distribution. The thermochronological dataset can also be used to put constraints on the effective elastic thickness of the lithosphere underlying the orogen (10 to 30 km). There is, however, a trade‐off between elastic thickness, mean exhumation rate and amount of topographic relief loss. The most likely scenario also predicts that the topography has decreased at a constant rate since the end of orogenic activity about 100 Ma ago. Copyright © 2005 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">thermochronology</term>
<term xml:id="kwd2">erosion</term>
<term xml:id="kwd3">Dabie Shan</term>
<term xml:id="kwd4">flexure</term>
</keywords>
<keywords rend="articleCategory">
<term>Research Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Research Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9837</doi>
<issn type="print">0197-9337</issn>
<issn type="electronic">1096-9837</issn>
<idGroup>
<id type="product" value="ESP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="EARTH SURFACE PROCESSES AND LANDFORMS">Earth Surface Processes and Landforms</title>
<title type="subtitle">The Journal of the British Geomorphological Research Group</title>
<title type="short">Earth Surf. Process. Landforms</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="90">
<doi origin="wiley" registered="yes">10.1002/esp.v30:9</doi>
<titleGroup>
<title type="specialIssueTitle">Quantifying Rates and Timescales of Geomorphic Processes: Part 2.</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="30">30</numbering>
<numbering type="journalIssue">9</numbering>
</numberingGroup>
<creators>
<creator xml:id="sped1" creatorRole="sponsoringEditor">
<personName>
<givenNames>Arjun M.</givenNames>
<familyName>Heimsath</familyName>
</personName>
</creator>
<creator xml:id="sped2" creatorRole="sponsoringEditor">
<personName>
<givenNames>Todd A.</givenNames>
<familyName>Ehlers</familyName>
</personName>
</creator>
</creators>
<coverDate startDate="2005-08">August 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="9" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/esp.1271</doi>
<idGroup>
<id type="unit" value="ESP1271"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2005 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2004-09-01"></event>
<event type="manuscriptRevised" date="2005-03-01"></event>
<event type="manuscriptAccepted" date="2005-03-17"></event>
<event type="firstOnline" date="2005-08-30"></event>
<event type="publishedOnlineFinalForm" date="2005-08-30"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.6 mode:FullText source:HeaderRef result:HeaderRef" date="2010-04-22"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1203</numbering>
<numbering type="pageLast">1225</numbering>
</numberingGroup>
<correspondenceTo>Géosciences Rennes, Université de Rennes 1, Av. Gl Lectere, Rennes 35042, France.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:ESP.ESP1271.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="12"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="34"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China</title>
<title type="short" xml:lang="en">Post‐orogenic erosional decay</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Jean</givenNames>
<familyName>Braun</familyName>
</personName>
<contactDetails>
<email normalForm="Jean.Braun@univ-rennes1.fr">Jean.Braun@univ‐rennes1.fr</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Xavier</givenNames>
<familyName>Robert</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia. Now at Géosciences Rennes, Université de Rennes 1, Rennes, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="FR" type="organization">
<unparsedAffiliation>Département de Géologie, Ecole Normale Supérieure, Lyon, France. Now at Laboratoire de Géodynamique des Chaînes Alpines, Université Joseph Fourier, Grenoble, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">thermochronology</keyword>
<keyword xml:id="kwd2">erosion</keyword>
<keyword xml:id="kwd3">Dabie Shan</keyword>
<keyword xml:id="kwd4">flexure</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="fr">
<title type="main">Abstract</title>
<p>We have investigated whether low temperature thermochronological datasets can be used to constrain the rate of surface evolution during the post‐orogenic phase of a mountain belt. We use a numerical method to solve the heat transport equation in the Earth's crust, including the effects of a changing, finite‐amplitude topography and the resulting flexural isostatic rebound. We demonstrate that accurate estimates of the amount of relief loss can be obtained by applying a recently developed spectral method that is based on estimates of the relationship between age and surface elevation as a function of topographic wavelength. We also show that the rate at which topography decays with time following cessation of tectonic activity can be constrained from estimates of exhumation rate derived from the slope of age–elevation profiles collected across short wavelength topography. Using the Neighbourhood Algorithm to perform a thorough search through parameter space, we are able to find a tectonomorphic scenario that predicts age distributions compatible with a thermochronological dataset collected in the Dabie Shan of eastern China by Reiners
<i>et al.</i>
(
<i>American Journal of Science</i>
2003, vol. 303, pp. 489–518). We demonstrate that, in the Dabie Shan, the mean topographic relief has decreased by a factor of 2·5 to 4·5 during the last 60–80 Ma, while the mountain belt experienced a mean exhumation rate of 0·01 to 0·04 km Ma
<sup>−1</sup>
. We confirm the conclusions of Reiners
<i>et al.</i>
that there is no need to invoke a discrete Cenozoic tectonic event to explain the observed age distribution. The thermochronological dataset can also be used to put constraints on the effective elastic thickness of the lithosphere underlying the orogen (10 to 30 km). There is, however, a trade‐off between elastic thickness, mean exhumation rate and amount of topographic relief loss. The most likely scenario also predicts that the topography has decreased at a constant rate since the end of orogenic activity about 100 Ma ago. Copyright © 2005 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Post‐orogenic erosional decay</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jean</namePart>
<namePart type="family">Braun</namePart>
<affiliation>Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia. Now at Géosciences Rennes, Université de Rennes 1, Rennes, France</affiliation>
<affiliation>E-mail: Jean.Braun@univ‐rennes1.fr</affiliation>
<affiliation>Correspondence address: Géosciences Rennes, Université de Rennes 1, Av. Gl Lectere, Rennes 35042, France.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xavier</namePart>
<namePart type="family">Robert</namePart>
<affiliation>Département de Géologie, Ecole Normale Supérieure, Lyon, France. Now at Laboratoire de Géodynamique des Chaînes Alpines, Université Joseph Fourier, Grenoble, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2005-08</dateIssued>
<dateCaptured encoding="w3cdtf">2004-09-01</dateCaptured>
<dateValid encoding="w3cdtf">2005-03-17</dateValid>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">12</extent>
<extent unit="tables">2</extent>
<extent unit="references">34</extent>
</physicalDescription>
<abstract lang="fr">We have investigated whether low temperature thermochronological datasets can be used to constrain the rate of surface evolution during the post‐orogenic phase of a mountain belt. We use a numerical method to solve the heat transport equation in the Earth's crust, including the effects of a changing, finite‐amplitude topography and the resulting flexural isostatic rebound. We demonstrate that accurate estimates of the amount of relief loss can be obtained by applying a recently developed spectral method that is based on estimates of the relationship between age and surface elevation as a function of topographic wavelength. We also show that the rate at which topography decays with time following cessation of tectonic activity can be constrained from estimates of exhumation rate derived from the slope of age–elevation profiles collected across short wavelength topography. Using the Neighbourhood Algorithm to perform a thorough search through parameter space, we are able to find a tectonomorphic scenario that predicts age distributions compatible with a thermochronological dataset collected in the Dabie Shan of eastern China by Reiners et al. (American Journal of Science 2003, vol. 303, pp. 489–518). We demonstrate that, in the Dabie Shan, the mean topographic relief has decreased by a factor of 2·5 to 4·5 during the last 60–80 Ma, while the mountain belt experienced a mean exhumation rate of 0·01 to 0·04 km Ma−1. We confirm the conclusions of Reiners et al. that there is no need to invoke a discrete Cenozoic tectonic event to explain the observed age distribution. The thermochronological dataset can also be used to put constraints on the effective elastic thickness of the lithosphere underlying the orogen (10 to 30 km). There is, however, a trade‐off between elastic thickness, mean exhumation rate and amount of topographic relief loss. The most likely scenario also predicts that the topography has decreased at a constant rate since the end of orogenic activity about 100 Ma ago. Copyright © 2005 John Wiley & Sons, Ltd.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>thermochronology</topic>
<topic>erosion</topic>
<topic>Dabie Shan</topic>
<topic>flexure</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Earth Surface Processes and Landforms</title>
<subTitle>The Journal of the British Geomorphological Research Group</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Earth Surf. Process. Landforms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arjun M.</namePart>
<namePart type="family">Heimsath</namePart>
</name>
<name type="personal">
<namePart type="given">Todd A.</namePart>
<namePart type="family">Ehlers</namePart>
</name>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0197-9337</identifier>
<identifier type="eISSN">1096-9837</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9837</identifier>
<identifier type="PublisherID">ESP</identifier>
<part>
<date>2005</date>
<detail type="title">
<title>Quantifying Rates and Timescales of Geomorphic Processes: Part 2.</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>1203</start>
<end>1225</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2</identifier>
<identifier type="ark">ark:/67375/WNG-VJ14G8WC-S</identifier>
<identifier type="DOI">10.1002/esp.1271</identifier>
<identifier type="ArticleID">ESP1271</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2005 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001A71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:8D6F88E32E92DC8546DBE3A2C946E87EB34FDCA2
   |texte=   Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: application to the Dabie Shan, China
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024