Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy

Identifieur interne : 006493 ( Main/Exploration ); précédent : 006492; suivant : 006494

Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy

Auteurs : Mary-Alix Kaczmarek [Australie, France] ; Andréa Tommasi [France]

Source :

RBID : ISTEX:FA8335D2714D1B408DB7F97FD91DDDE328C63A0A

Descripteurs français

English descriptors

Abstract

Analysis of the microstructures in the km‐scale mantle shear zone that separates the northern and the central parts of the Lanzo peridotite massif provides evidence of an evolution in time and space of deformation processes accommodating shearing in the shallow mantle within an extensional setting. This shear zone displays an asymmetric distribution of deformation facies. From south to north, gradual reorientation of the foliation of coarse porphyroclastic plagioclase‐bearing peridotites is followed by development of protomylonites, mylonites, and mm‐scale ultramylonite bands. A sharp grain size gradient marks the northern boundary. Early deformation under near‐solidus conditions in the south is recorded by preservation of weakly deformed interstitial plagioclase and almost random clinopyroxene and plagioclase crystal orientations. Feedback between deformation and melt transport probably led to melt focusing and strain weakening in the shear zone. Overprint of melt‐rock reaction microstructures by solid‐state deformation and decrease in recrystallized grain size in the protomylonites and mylonites indicate continued deformation under decreasing temperature. Less enriched peridotite compositions and absence of ultramafic dykes or widespread melt‐impregnation microstructures north of the shear zone and clinopyroxene and amphibole enrichment in the mylonites and ultramylonites suggest that the shear zone acted as both a thermal barrier and a high‐permeability channel for late crystallizing fluids. These observations, together with chemical data indicating faster cooling of central Lanzo relative to the northern body, corroborate that this shear zone is a mantle detachment fault. All deformation facies have crystal preferred orientations consistent with deformation by dislocation creep with dominant activation of the (010)[100] and (100)[001] systems in olivine and orthopyroxene, respectively. Dynamic recrystallization produces dispersion of olivine CPO but not a change of dominant deformation mechanism. Evidence for activation of grain boundary sliding is limited to mm‐scale ultramylonite bands, where solid‐state reactions produced very fine grained polymineralic aggregates. Except for these latest stages of deformation, strain localization does not result from the microstructural evolution; the grain size decrease is a consequence of the need to deform a rock volume whose strength continuously increases because of decreasing temperature conditions. Strain localization in the intermediate levels thus essentially results from the more localizing behavior of both the deep, partially molten, and shallow parts of this extensional shear zone distribution.

Url:
DOI: 10.1029/2011GC003627


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</title>
<author>
<name sortKey="Kaczmarek, Mary Lix" sort="Kaczmarek, Mary Lix" uniqKey="Kaczmarek M" first="Mary-Alix" last="Kaczmarek">Mary-Alix Kaczmarek</name>
</author>
<author>
<name sortKey="Tommasi, Andrea" sort="Tommasi, Andrea" uniqKey="Tommasi A" first="Andréa" last="Tommasi">Andréa Tommasi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FA8335D2714D1B408DB7F97FD91DDDE328C63A0A</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1029/2011GC003627</idno>
<idno type="url">https://api.istex.fr/document/FA8335D2714D1B408DB7F97FD91DDDE328C63A0A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002F25</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002F25</idno>
<idno type="wicri:Area/Istex/Curation">002F25</idno>
<idno type="wicri:Area/Istex/Checkpoint">000913</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000913</idno>
<idno type="wicri:doubleKey">1525-2027:2011:Kaczmarek M:anatomy:of:an</idno>
<idno type="wicri:Area/Main/Merge">006870</idno>
<idno type="wicri:Area/Main/Curation">006493</idno>
<idno type="wicri:Area/Main/Exploration">006493</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</title>
<author>
<name sortKey="Kaczmarek, Mary Lix" sort="Kaczmarek, Mary Lix" uniqKey="Kaczmarek M" first="Mary-Alix" last="Kaczmarek">Mary-Alix Kaczmarek</name>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Géosciences Montpellier, Université Montpellier 2 and CNRS, Place E. Bataillon,, F‐34095, Montpellier CEDEX 5</wicri:regionArea>
<wicri:noRegion>34095, Montpellier CEDEX 5</wicri:noRegion>
<wicri:noRegion>Montpellier CEDEX 5</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Now at Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845</wicri:regionArea>
<wicri:noRegion>Western Australia 6845</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Tommasi, Andrea" sort="Tommasi, Andrea" uniqKey="Tommasi A" first="Andréa" last="Tommasi">Andréa Tommasi</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Géosciences Montpellier, Université Montpellier 2 and CNRS, Place E. Bataillon,, F‐34095, Montpellier CEDEX 5</wicri:regionArea>
<wicri:noRegion>34095, Montpellier CEDEX 5</wicri:noRegion>
<wicri:noRegion>Montpellier CEDEX 5</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Geochemistry, Geophysics, Geosystems</title>
<title level="j" type="alt">GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS</title>
<idno type="ISSN">1525-2027</idno>
<idno type="eISSN">1525-2027</idno>
<imprint>
<biblScope unit="vol">12</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page-count">24</biblScope>
<date type="published" when="2011-08">2011-08</date>
</imprint>
<idno type="ISSN">1525-2027</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1525-2027</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amphibole</term>
<term>Anisotropy</term>
<term>Aspect ratios</term>
<term>Asymmetric distribution</term>
<term>Average euler angles</term>
<term>Average grain size</term>
<term>Average recrystallized grain size</term>
<term>Band trend</term>
<term>Boudier</term>
<term>Central domain</term>
<term>Clear correlation</term>
<term>Clinopyroxene</term>
<term>Clinopyroxenes</term>
<term>Coarse porphyroclastic peridotites</term>
<term>Correlated misorientations</term>
<term>Cpos</term>
<term>Crystal reference frame</term>
<term>Deformation</term>
<term>Deformation facies</term>
<term>Deformation microstructures</term>
<term>Diffusional processes</term>
<term>Dislocation</term>
<term>Dominant activation</term>
<term>Dominant deformation mechanism</term>
<term>Ductile</term>
<term>Dynamic recrystallization</term>
<term>Early deformation</term>
<term>Earth planet</term>
<term>Exhumation</term>
<term>Exsolutions</term>
<term>Extensional</term>
<term>Extensional shear zone</term>
<term>Facies</term>
<term>Foliation</term>
<term>Foliation plane</term>
<term>Footwall</term>
<term>Geochemistry</term>
<term>Geochemistry geophysics geosystems</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geophysics</term>
<term>Geosystems</term>
<term>Grain boundary</term>
<term>Grain size decrease</term>
<term>Grain size reduction</term>
<term>Grain sizes</term>
<term>Grained bands</term>
<term>Hirth</term>
<term>Hornblende</term>
<term>Individual measurements</term>
<term>Interpenetrating grain boundaries</term>
<term>Irregular shapes</term>
<term>Kaczmarek</term>
<term>Kohlstedt</term>
<term>Lanzo</term>
<term>Lanzo massif</term>
<term>Lanzo peridotite</term>
<term>Lanzo peridotite massif</term>
<term>Latest stages</term>
<term>Lineation</term>
<term>Lithosphere</term>
<term>Lithospheric</term>
<term>Lithospheric mantle</term>
<term>Localization</term>
<term>Mainprice</term>
<term>Mantle figure</term>
<term>Mantle shear zone</term>
<term>Massif</term>
<term>Matrix</term>
<term>Maximum concentration</term>
<term>Microstructure</term>
<term>Microstructures</term>
<term>Misorientation</term>
<term>Misorientations</term>
<term>Montpellier</term>
<term>More localizing behavior</term>
<term>Mylonite</term>
<term>Mylonites</term>
<term>Mylonitic</term>
<term>Mylonitic peridotites</term>
<term>Northeastern limit</term>
<term>Northern body</term>
<term>Northern domain</term>
<term>Northern lanzo shear zone</term>
<term>Northern limit</term>
<term>Northern shear zone</term>
<term>Oceanic</term>
<term>Olivine</term>
<term>Olivine cpos</term>
<term>Olivine crystals</term>
<term>Olivine porphyroclasts</term>
<term>Orthopyroxene</term>
<term>Orthopyroxene porphyroclasts</term>
<term>Peridotite</term>
<term>Petrol</term>
<term>Piccardo</term>
<term>Plagioclase</term>
<term>Pole figures</term>
<term>Porphyroclastic</term>
<term>Porphyroclastic peridotites</term>
<term>Porphyroclasts</term>
<term>Preferred orientation</term>
<term>Progressive strain localization</term>
<term>Protomylonite</term>
<term>Protomylonites</term>
<term>Pyroxene</term>
<term>Pyroxene porphyroclasts</term>
<term>Pyroxenes porphyroclasts</term>
<term>Recrystallization</term>
<term>Recrystallized</term>
<term>Recrystallized grain size</term>
<term>Recrystallized grain sizes</term>
<term>Recrystallized grains</term>
<term>Recrystallized minerals</term>
<term>Rotation axes</term>
<term>Shear zone</term>
<term>Shear zones</term>
<term>Southern part</term>
<term>Spinel</term>
<term>Strain localization</term>
<term>Strong undulose extinction</term>
<term>Subgrain</term>
<term>Subgrain boundaries</term>
<term>Subparallel</term>
<term>Subsolidus conditions</term>
<term>Temperature conditions</term>
<term>Thin section</term>
<term>Tommasi</term>
<term>Ultramylonite</term>
<term>Ultramylonite band</term>
<term>Ultramylonite bands</term>
<term>Ultramylonitic</term>
<term>Ultramylonitic bands</term>
<term>Undulose</term>
<term>Upper mantle</term>
<term>Vauchez</term>
<term>Weak concentration</term>
<term>Zone</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Amphibole</term>
<term>Anisotropy</term>
<term>Aspect ratios</term>
<term>Asymmetric distribution</term>
<term>Average euler angles</term>
<term>Average grain size</term>
<term>Average recrystallized grain size</term>
<term>Band trend</term>
<term>Boudier</term>
<term>Central domain</term>
<term>Clear correlation</term>
<term>Clinopyroxene</term>
<term>Clinopyroxenes</term>
<term>Coarse porphyroclastic peridotites</term>
<term>Correlated misorientations</term>
<term>Cpos</term>
<term>Crystal reference frame</term>
<term>Deformation</term>
<term>Deformation facies</term>
<term>Deformation microstructures</term>
<term>Diffusional processes</term>
<term>Dislocation</term>
<term>Dominant activation</term>
<term>Dominant deformation mechanism</term>
<term>Ductile</term>
<term>Dynamic recrystallization</term>
<term>Early deformation</term>
<term>Earth planet</term>
<term>Exhumation</term>
<term>Exsolutions</term>
<term>Extensional</term>
<term>Extensional shear zone</term>
<term>Facies</term>
<term>Foliation</term>
<term>Foliation plane</term>
<term>Footwall</term>
<term>Geochemistry</term>
<term>Geochemistry geophysics geosystems</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geophysics</term>
<term>Geosystems</term>
<term>Grain boundary</term>
<term>Grain size decrease</term>
<term>Grain size reduction</term>
<term>Grain sizes</term>
<term>Grained bands</term>
<term>Hirth</term>
<term>Hornblende</term>
<term>Individual measurements</term>
<term>Interpenetrating grain boundaries</term>
<term>Irregular shapes</term>
<term>Kaczmarek</term>
<term>Kohlstedt</term>
<term>Lanzo</term>
<term>Lanzo massif</term>
<term>Lanzo peridotite</term>
<term>Lanzo peridotite massif</term>
<term>Latest stages</term>
<term>Lineation</term>
<term>Lithosphere</term>
<term>Lithospheric</term>
<term>Lithospheric mantle</term>
<term>Localization</term>
<term>Mainprice</term>
<term>Mantle figure</term>
<term>Mantle shear zone</term>
<term>Massif</term>
<term>Matrix</term>
<term>Maximum concentration</term>
<term>Microstructure</term>
<term>Microstructures</term>
<term>Misorientation</term>
<term>Misorientations</term>
<term>Montpellier</term>
<term>More localizing behavior</term>
<term>Mylonite</term>
<term>Mylonites</term>
<term>Mylonitic</term>
<term>Mylonitic peridotites</term>
<term>Northeastern limit</term>
<term>Northern body</term>
<term>Northern domain</term>
<term>Northern lanzo shear zone</term>
<term>Northern limit</term>
<term>Northern shear zone</term>
<term>Oceanic</term>
<term>Olivine</term>
<term>Olivine cpos</term>
<term>Olivine crystals</term>
<term>Olivine porphyroclasts</term>
<term>Orthopyroxene</term>
<term>Orthopyroxene porphyroclasts</term>
<term>Peridotite</term>
<term>Petrol</term>
<term>Piccardo</term>
<term>Plagioclase</term>
<term>Pole figures</term>
<term>Porphyroclastic</term>
<term>Porphyroclastic peridotites</term>
<term>Porphyroclasts</term>
<term>Preferred orientation</term>
<term>Progressive strain localization</term>
<term>Protomylonite</term>
<term>Protomylonites</term>
<term>Pyroxene</term>
<term>Pyroxene porphyroclasts</term>
<term>Pyroxenes porphyroclasts</term>
<term>Recrystallization</term>
<term>Recrystallized</term>
<term>Recrystallized grain size</term>
<term>Recrystallized grain sizes</term>
<term>Recrystallized grains</term>
<term>Recrystallized minerals</term>
<term>Rotation axes</term>
<term>Shear zone</term>
<term>Shear zones</term>
<term>Southern part</term>
<term>Spinel</term>
<term>Strain localization</term>
<term>Strong undulose extinction</term>
<term>Subgrain</term>
<term>Subgrain boundaries</term>
<term>Subparallel</term>
<term>Subsolidus conditions</term>
<term>Temperature conditions</term>
<term>Thin section</term>
<term>Tommasi</term>
<term>Ultramylonite</term>
<term>Ultramylonite band</term>
<term>Ultramylonite bands</term>
<term>Ultramylonitic</term>
<term>Ultramylonitic bands</term>
<term>Undulose</term>
<term>Upper mantle</term>
<term>Vauchez</term>
<term>Weak concentration</term>
<term>Zone</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Géochimie</term>
<term>Géophysique</term>
<term>Essence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Analysis of the microstructures in the km‐scale mantle shear zone that separates the northern and the central parts of the Lanzo peridotite massif provides evidence of an evolution in time and space of deformation processes accommodating shearing in the shallow mantle within an extensional setting. This shear zone displays an asymmetric distribution of deformation facies. From south to north, gradual reorientation of the foliation of coarse porphyroclastic plagioclase‐bearing peridotites is followed by development of protomylonites, mylonites, and mm‐scale ultramylonite bands. A sharp grain size gradient marks the northern boundary. Early deformation under near‐solidus conditions in the south is recorded by preservation of weakly deformed interstitial plagioclase and almost random clinopyroxene and plagioclase crystal orientations. Feedback between deformation and melt transport probably led to melt focusing and strain weakening in the shear zone. Overprint of melt‐rock reaction microstructures by solid‐state deformation and decrease in recrystallized grain size in the protomylonites and mylonites indicate continued deformation under decreasing temperature. Less enriched peridotite compositions and absence of ultramafic dykes or widespread melt‐impregnation microstructures north of the shear zone and clinopyroxene and amphibole enrichment in the mylonites and ultramylonites suggest that the shear zone acted as both a thermal barrier and a high‐permeability channel for late crystallizing fluids. These observations, together with chemical data indicating faster cooling of central Lanzo relative to the northern body, corroborate that this shear zone is a mantle detachment fault. All deformation facies have crystal preferred orientations consistent with deformation by dislocation creep with dominant activation of the (010)[100] and (100)[001] systems in olivine and orthopyroxene, respectively. Dynamic recrystallization produces dispersion of olivine CPO but not a change of dominant deformation mechanism. Evidence for activation of grain boundary sliding is limited to mm‐scale ultramylonite bands, where solid‐state reactions produced very fine grained polymineralic aggregates. Except for these latest stages of deformation, strain localization does not result from the microstructural evolution; the grain size decrease is a consequence of the need to deform a rock volume whose strength continuously increases because of decreasing temperature conditions. Strain localization in the intermediate levels thus essentially results from the more localizing behavior of both the deep, partially molten, and shallow parts of this extensional shear zone distribution.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Kaczmarek, Mary Lix" sort="Kaczmarek, Mary Lix" uniqKey="Kaczmarek M" first="Mary-Alix" last="Kaczmarek">Mary-Alix Kaczmarek</name>
</noRegion>
<name sortKey="Kaczmarek, Mary Lix" sort="Kaczmarek, Mary Lix" uniqKey="Kaczmarek M" first="Mary-Alix" last="Kaczmarek">Mary-Alix Kaczmarek</name>
<name sortKey="Kaczmarek, Mary Lix" sort="Kaczmarek, Mary Lix" uniqKey="Kaczmarek M" first="Mary-Alix" last="Kaczmarek">Mary-Alix Kaczmarek</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Kaczmarek, Mary Lix" sort="Kaczmarek, Mary Lix" uniqKey="Kaczmarek M" first="Mary-Alix" last="Kaczmarek">Mary-Alix Kaczmarek</name>
</noRegion>
<name sortKey="Tommasi, Andrea" sort="Tommasi, Andrea" uniqKey="Tommasi A" first="Andréa" last="Tommasi">Andréa Tommasi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006493 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 006493 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:FA8335D2714D1B408DB7F97FD91DDDE328C63A0A
   |texte=   Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024