Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy

Identifieur interne : 002F25 ( Istex/Corpus ); précédent : 002F24; suivant : 002F26

Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy

Auteurs : Mary-Alix Kaczmarek ; Andréa Tommasi

Source :

RBID : ISTEX:FA8335D2714D1B408DB7F97FD91DDDE328C63A0A

English descriptors

Abstract

Analysis of the microstructures in the km‐scale mantle shear zone that separates the northern and the central parts of the Lanzo peridotite massif provides evidence of an evolution in time and space of deformation processes accommodating shearing in the shallow mantle within an extensional setting. This shear zone displays an asymmetric distribution of deformation facies. From south to north, gradual reorientation of the foliation of coarse porphyroclastic plagioclase‐bearing peridotites is followed by development of protomylonites, mylonites, and mm‐scale ultramylonite bands. A sharp grain size gradient marks the northern boundary. Early deformation under near‐solidus conditions in the south is recorded by preservation of weakly deformed interstitial plagioclase and almost random clinopyroxene and plagioclase crystal orientations. Feedback between deformation and melt transport probably led to melt focusing and strain weakening in the shear zone. Overprint of melt‐rock reaction microstructures by solid‐state deformation and decrease in recrystallized grain size in the protomylonites and mylonites indicate continued deformation under decreasing temperature. Less enriched peridotite compositions and absence of ultramafic dykes or widespread melt‐impregnation microstructures north of the shear zone and clinopyroxene and amphibole enrichment in the mylonites and ultramylonites suggest that the shear zone acted as both a thermal barrier and a high‐permeability channel for late crystallizing fluids. These observations, together with chemical data indicating faster cooling of central Lanzo relative to the northern body, corroborate that this shear zone is a mantle detachment fault. All deformation facies have crystal preferred orientations consistent with deformation by dislocation creep with dominant activation of the (010)[100] and (100)[001] systems in olivine and orthopyroxene, respectively. Dynamic recrystallization produces dispersion of olivine CPO but not a change of dominant deformation mechanism. Evidence for activation of grain boundary sliding is limited to mm‐scale ultramylonite bands, where solid‐state reactions produced very fine grained polymineralic aggregates. Except for these latest stages of deformation, strain localization does not result from the microstructural evolution; the grain size decrease is a consequence of the need to deform a rock volume whose strength continuously increases because of decreasing temperature conditions. Strain localization in the intermediate levels thus essentially results from the more localizing behavior of both the deep, partially molten, and shallow parts of this extensional shear zone distribution.

Url:
DOI: 10.1029/2011GC003627

Links to Exploration step

ISTEX:FA8335D2714D1B408DB7F97FD91DDDE328C63A0A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</title>
<author>
<name sortKey="Kaczmarek, Mary Lix" sort="Kaczmarek, Mary Lix" uniqKey="Kaczmarek M" first="Mary-Alix" last="Kaczmarek">Mary-Alix Kaczmarek</name>
<affiliation>
<mods:affiliation>E-mail: m.kaczmarek@curtin.edu.au</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Géosciences Montpellier, Université Montpellier 2 and CNRS, Place E. Bataillon,, F‐34095, Montpellier CEDEX 5, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: m.kaczmarek@curtin.edu.au</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tommasi, Andrea" sort="Tommasi, Andrea" uniqKey="Tommasi A" first="Andréa" last="Tommasi">Andréa Tommasi</name>
<affiliation>
<mods:affiliation>Géosciences Montpellier, Université Montpellier 2 and CNRS, Place E. Bataillon,, F‐34095, Montpellier CEDEX 5, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FA8335D2714D1B408DB7F97FD91DDDE328C63A0A</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1029/2011GC003627</idno>
<idno type="url">https://api.istex.fr/document/FA8335D2714D1B408DB7F97FD91DDDE328C63A0A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002F25</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002F25</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</title>
<author>
<name sortKey="Kaczmarek, Mary Lix" sort="Kaczmarek, Mary Lix" uniqKey="Kaczmarek M" first="Mary-Alix" last="Kaczmarek">Mary-Alix Kaczmarek</name>
<affiliation>
<mods:affiliation>E-mail: m.kaczmarek@curtin.edu.au</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Géosciences Montpellier, Université Montpellier 2 and CNRS, Place E. Bataillon,, F‐34095, Montpellier CEDEX 5, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: m.kaczmarek@curtin.edu.au</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tommasi, Andrea" sort="Tommasi, Andrea" uniqKey="Tommasi A" first="Andréa" last="Tommasi">Andréa Tommasi</name>
<affiliation>
<mods:affiliation>Géosciences Montpellier, Université Montpellier 2 and CNRS, Place E. Bataillon,, F‐34095, Montpellier CEDEX 5, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Geochemistry, Geophysics, Geosystems</title>
<title level="j" type="alt">GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS</title>
<idno type="ISSN">1525-2027</idno>
<idno type="eISSN">1525-2027</idno>
<imprint>
<biblScope unit="vol">12</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page-count">24</biblScope>
<date type="published" when="2011-08">2011-08</date>
</imprint>
<idno type="ISSN">1525-2027</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1525-2027</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amphibole</term>
<term>Anisotropy</term>
<term>Aspect ratios</term>
<term>Asymmetric distribution</term>
<term>Average euler angles</term>
<term>Average grain size</term>
<term>Average recrystallized grain size</term>
<term>Band trend</term>
<term>Boudier</term>
<term>Central domain</term>
<term>Clear correlation</term>
<term>Clinopyroxene</term>
<term>Clinopyroxenes</term>
<term>Coarse porphyroclastic peridotites</term>
<term>Correlated misorientations</term>
<term>Cpos</term>
<term>Crystal reference frame</term>
<term>Deformation</term>
<term>Deformation facies</term>
<term>Deformation microstructures</term>
<term>Diffusional processes</term>
<term>Dislocation</term>
<term>Dominant activation</term>
<term>Dominant deformation mechanism</term>
<term>Ductile</term>
<term>Dynamic recrystallization</term>
<term>Early deformation</term>
<term>Earth planet</term>
<term>Exhumation</term>
<term>Exsolutions</term>
<term>Extensional</term>
<term>Extensional shear zone</term>
<term>Facies</term>
<term>Foliation</term>
<term>Foliation plane</term>
<term>Footwall</term>
<term>Geochemistry</term>
<term>Geochemistry geophysics geosystems</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geophysics</term>
<term>Geosystems</term>
<term>Grain boundary</term>
<term>Grain size decrease</term>
<term>Grain size reduction</term>
<term>Grain sizes</term>
<term>Grained bands</term>
<term>Hirth</term>
<term>Hornblende</term>
<term>Individual measurements</term>
<term>Interpenetrating grain boundaries</term>
<term>Irregular shapes</term>
<term>Kaczmarek</term>
<term>Kohlstedt</term>
<term>Lanzo</term>
<term>Lanzo massif</term>
<term>Lanzo peridotite</term>
<term>Lanzo peridotite massif</term>
<term>Latest stages</term>
<term>Lineation</term>
<term>Lithosphere</term>
<term>Lithospheric</term>
<term>Lithospheric mantle</term>
<term>Localization</term>
<term>Mainprice</term>
<term>Mantle figure</term>
<term>Mantle shear zone</term>
<term>Massif</term>
<term>Matrix</term>
<term>Maximum concentration</term>
<term>Microstructure</term>
<term>Microstructures</term>
<term>Misorientation</term>
<term>Misorientations</term>
<term>Montpellier</term>
<term>More localizing behavior</term>
<term>Mylonite</term>
<term>Mylonites</term>
<term>Mylonitic</term>
<term>Mylonitic peridotites</term>
<term>Northeastern limit</term>
<term>Northern body</term>
<term>Northern domain</term>
<term>Northern lanzo shear zone</term>
<term>Northern limit</term>
<term>Northern shear zone</term>
<term>Oceanic</term>
<term>Olivine</term>
<term>Olivine cpos</term>
<term>Olivine crystals</term>
<term>Olivine porphyroclasts</term>
<term>Orthopyroxene</term>
<term>Orthopyroxene porphyroclasts</term>
<term>Peridotite</term>
<term>Petrol</term>
<term>Piccardo</term>
<term>Plagioclase</term>
<term>Pole figures</term>
<term>Porphyroclastic</term>
<term>Porphyroclastic peridotites</term>
<term>Porphyroclasts</term>
<term>Preferred orientation</term>
<term>Progressive strain localization</term>
<term>Protomylonite</term>
<term>Protomylonites</term>
<term>Pyroxene</term>
<term>Pyroxene porphyroclasts</term>
<term>Pyroxenes porphyroclasts</term>
<term>Recrystallization</term>
<term>Recrystallized</term>
<term>Recrystallized grain size</term>
<term>Recrystallized grain sizes</term>
<term>Recrystallized grains</term>
<term>Recrystallized minerals</term>
<term>Rotation axes</term>
<term>Shear zone</term>
<term>Shear zones</term>
<term>Southern part</term>
<term>Spinel</term>
<term>Strain localization</term>
<term>Strong undulose extinction</term>
<term>Subgrain</term>
<term>Subgrain boundaries</term>
<term>Subparallel</term>
<term>Subsolidus conditions</term>
<term>Temperature conditions</term>
<term>Thin section</term>
<term>Tommasi</term>
<term>Ultramylonite</term>
<term>Ultramylonite band</term>
<term>Ultramylonite bands</term>
<term>Ultramylonitic</term>
<term>Ultramylonitic bands</term>
<term>Undulose</term>
<term>Upper mantle</term>
<term>Vauchez</term>
<term>Weak concentration</term>
<term>Zone</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Amphibole</term>
<term>Anisotropy</term>
<term>Aspect ratios</term>
<term>Asymmetric distribution</term>
<term>Average euler angles</term>
<term>Average grain size</term>
<term>Average recrystallized grain size</term>
<term>Band trend</term>
<term>Boudier</term>
<term>Central domain</term>
<term>Clear correlation</term>
<term>Clinopyroxene</term>
<term>Clinopyroxenes</term>
<term>Coarse porphyroclastic peridotites</term>
<term>Correlated misorientations</term>
<term>Cpos</term>
<term>Crystal reference frame</term>
<term>Deformation</term>
<term>Deformation facies</term>
<term>Deformation microstructures</term>
<term>Diffusional processes</term>
<term>Dislocation</term>
<term>Dominant activation</term>
<term>Dominant deformation mechanism</term>
<term>Ductile</term>
<term>Dynamic recrystallization</term>
<term>Early deformation</term>
<term>Earth planet</term>
<term>Exhumation</term>
<term>Exsolutions</term>
<term>Extensional</term>
<term>Extensional shear zone</term>
<term>Facies</term>
<term>Foliation</term>
<term>Foliation plane</term>
<term>Footwall</term>
<term>Geochemistry</term>
<term>Geochemistry geophysics geosystems</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geophysics</term>
<term>Geosystems</term>
<term>Grain boundary</term>
<term>Grain size decrease</term>
<term>Grain size reduction</term>
<term>Grain sizes</term>
<term>Grained bands</term>
<term>Hirth</term>
<term>Hornblende</term>
<term>Individual measurements</term>
<term>Interpenetrating grain boundaries</term>
<term>Irregular shapes</term>
<term>Kaczmarek</term>
<term>Kohlstedt</term>
<term>Lanzo</term>
<term>Lanzo massif</term>
<term>Lanzo peridotite</term>
<term>Lanzo peridotite massif</term>
<term>Latest stages</term>
<term>Lineation</term>
<term>Lithosphere</term>
<term>Lithospheric</term>
<term>Lithospheric mantle</term>
<term>Localization</term>
<term>Mainprice</term>
<term>Mantle figure</term>
<term>Mantle shear zone</term>
<term>Massif</term>
<term>Matrix</term>
<term>Maximum concentration</term>
<term>Microstructure</term>
<term>Microstructures</term>
<term>Misorientation</term>
<term>Misorientations</term>
<term>Montpellier</term>
<term>More localizing behavior</term>
<term>Mylonite</term>
<term>Mylonites</term>
<term>Mylonitic</term>
<term>Mylonitic peridotites</term>
<term>Northeastern limit</term>
<term>Northern body</term>
<term>Northern domain</term>
<term>Northern lanzo shear zone</term>
<term>Northern limit</term>
<term>Northern shear zone</term>
<term>Oceanic</term>
<term>Olivine</term>
<term>Olivine cpos</term>
<term>Olivine crystals</term>
<term>Olivine porphyroclasts</term>
<term>Orthopyroxene</term>
<term>Orthopyroxene porphyroclasts</term>
<term>Peridotite</term>
<term>Petrol</term>
<term>Piccardo</term>
<term>Plagioclase</term>
<term>Pole figures</term>
<term>Porphyroclastic</term>
<term>Porphyroclastic peridotites</term>
<term>Porphyroclasts</term>
<term>Preferred orientation</term>
<term>Progressive strain localization</term>
<term>Protomylonite</term>
<term>Protomylonites</term>
<term>Pyroxene</term>
<term>Pyroxene porphyroclasts</term>
<term>Pyroxenes porphyroclasts</term>
<term>Recrystallization</term>
<term>Recrystallized</term>
<term>Recrystallized grain size</term>
<term>Recrystallized grain sizes</term>
<term>Recrystallized grains</term>
<term>Recrystallized minerals</term>
<term>Rotation axes</term>
<term>Shear zone</term>
<term>Shear zones</term>
<term>Southern part</term>
<term>Spinel</term>
<term>Strain localization</term>
<term>Strong undulose extinction</term>
<term>Subgrain</term>
<term>Subgrain boundaries</term>
<term>Subparallel</term>
<term>Subsolidus conditions</term>
<term>Temperature conditions</term>
<term>Thin section</term>
<term>Tommasi</term>
<term>Ultramylonite</term>
<term>Ultramylonite band</term>
<term>Ultramylonite bands</term>
<term>Ultramylonitic</term>
<term>Ultramylonitic bands</term>
<term>Undulose</term>
<term>Upper mantle</term>
<term>Vauchez</term>
<term>Weak concentration</term>
<term>Zone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Analysis of the microstructures in the km‐scale mantle shear zone that separates the northern and the central parts of the Lanzo peridotite massif provides evidence of an evolution in time and space of deformation processes accommodating shearing in the shallow mantle within an extensional setting. This shear zone displays an asymmetric distribution of deformation facies. From south to north, gradual reorientation of the foliation of coarse porphyroclastic plagioclase‐bearing peridotites is followed by development of protomylonites, mylonites, and mm‐scale ultramylonite bands. A sharp grain size gradient marks the northern boundary. Early deformation under near‐solidus conditions in the south is recorded by preservation of weakly deformed interstitial plagioclase and almost random clinopyroxene and plagioclase crystal orientations. Feedback between deformation and melt transport probably led to melt focusing and strain weakening in the shear zone. Overprint of melt‐rock reaction microstructures by solid‐state deformation and decrease in recrystallized grain size in the protomylonites and mylonites indicate continued deformation under decreasing temperature. Less enriched peridotite compositions and absence of ultramafic dykes or widespread melt‐impregnation microstructures north of the shear zone and clinopyroxene and amphibole enrichment in the mylonites and ultramylonites suggest that the shear zone acted as both a thermal barrier and a high‐permeability channel for late crystallizing fluids. These observations, together with chemical data indicating faster cooling of central Lanzo relative to the northern body, corroborate that this shear zone is a mantle detachment fault. All deformation facies have crystal preferred orientations consistent with deformation by dislocation creep with dominant activation of the (010)[100] and (100)[001] systems in olivine and orthopyroxene, respectively. Dynamic recrystallization produces dispersion of olivine CPO but not a change of dominant deformation mechanism. Evidence for activation of grain boundary sliding is limited to mm‐scale ultramylonite bands, where solid‐state reactions produced very fine grained polymineralic aggregates. Except for these latest stages of deformation, strain localization does not result from the microstructural evolution; the grain size decrease is a consequence of the need to deform a rock volume whose strength continuously increases because of decreasing temperature conditions. Strain localization in the intermediate levels thus essentially results from the more localizing behavior of both the deep, partially molten, and shallow parts of this extensional shear zone distribution.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>olivine</json:string>
<json:string>peridotite</json:string>
<json:string>orthopyroxene</json:string>
<json:string>tommasi</json:string>
<json:string>lanzo</json:string>
<json:string>foliation</json:string>
<json:string>kaczmarek</json:string>
<json:string>plagioclase</json:string>
<json:string>mylonites</json:string>
<json:string>lineation</json:string>
<json:string>shear zone</json:string>
<json:string>porphyroclasts</json:string>
<json:string>porphyroclastic</json:string>
<json:string>extensional</json:string>
<json:string>massif</json:string>
<json:string>ultramylonite</json:string>
<json:string>clinopyroxene</json:string>
<json:string>extensional shear zone</json:string>
<json:string>recrystallized</json:string>
<json:string>ultramylonite bands</json:string>
<json:string>geosystems</json:string>
<json:string>geophysics</json:string>
<json:string>geochemistry geophysics geosystems</json:string>
<json:string>microstructures</json:string>
<json:string>spinel</json:string>
<json:string>mylonite</json:string>
<json:string>strain localization</json:string>
<json:string>vauchez</json:string>
<json:string>pyroxene</json:string>
<json:string>facies</json:string>
<json:string>geol</json:string>
<json:string>mylonitic</json:string>
<json:string>northern lanzo shear zone</json:string>
<json:string>misorientations</json:string>
<json:string>geophys</json:string>
<json:string>lithospheric</json:string>
<json:string>amphibole</json:string>
<json:string>petrol</json:string>
<json:string>microstructure</json:string>
<json:string>ultramylonitic</json:string>
<json:string>montpellier</json:string>
<json:string>deformation</json:string>
<json:string>lanzo massif</json:string>
<json:string>kohlstedt</json:string>
<json:string>subgrain</json:string>
<json:string>protomylonites</json:string>
<json:string>ultramylonitic bands</json:string>
<json:string>temperature conditions</json:string>
<json:string>mantle figure</json:string>
<json:string>matrix</json:string>
<json:string>oceanic</json:string>
<json:string>misorientation</json:string>
<json:string>hornblende</json:string>
<json:string>deformation facies</json:string>
<json:string>undulose</json:string>
<json:string>porphyroclastic peridotites</json:string>
<json:string>coarse porphyroclastic peridotites</json:string>
<json:string>exhumation</json:string>
<json:string>boudier</json:string>
<json:string>ductile</json:string>
<json:string>recrystallization</json:string>
<json:string>dislocation</json:string>
<json:string>lithosphere</json:string>
<json:string>piccardo</json:string>
<json:string>grain size reduction</json:string>
<json:string>clinopyroxenes</json:string>
<json:string>exsolutions</json:string>
<json:string>footwall</json:string>
<json:string>dynamic recrystallization</json:string>
<json:string>cpos</json:string>
<json:string>protomylonite</json:string>
<json:string>mainprice</json:string>
<json:string>irregular shapes</json:string>
<json:string>subparallel</json:string>
<json:string>hirth</json:string>
<json:string>localization</json:string>
<json:string>dominant activation</json:string>
<json:string>rotation axes</json:string>
<json:string>subgrain boundaries</json:string>
<json:string>band trend</json:string>
<json:string>upper mantle</json:string>
<json:string>geochemistry</json:string>
<json:string>zone</json:string>
<json:string>latest stages</json:string>
<json:string>grain sizes</json:string>
<json:string>northern domain</json:string>
<json:string>orthopyroxene porphyroclasts</json:string>
<json:string>mantle shear zone</json:string>
<json:string>central domain</json:string>
<json:string>average grain size</json:string>
<json:string>earth planet</json:string>
<json:string>preferred orientation</json:string>
<json:string>shear zones</json:string>
<json:string>strong undulose extinction</json:string>
<json:string>olivine porphyroclasts</json:string>
<json:string>interpenetrating grain boundaries</json:string>
<json:string>mylonitic peridotites</json:string>
<json:string>thin section</json:string>
<json:string>lithospheric mantle</json:string>
<json:string>pole figures</json:string>
<json:string>subsolidus conditions</json:string>
<json:string>crystal reference frame</json:string>
<json:string>aspect ratios</json:string>
<json:string>grain boundary</json:string>
<json:string>recrystallized grain sizes</json:string>
<json:string>correlated misorientations</json:string>
<json:string>progressive strain localization</json:string>
<json:string>anisotropy</json:string>
<json:string>more localizing behavior</json:string>
<json:string>recrystallized grains</json:string>
<json:string>average euler angles</json:string>
<json:string>individual measurements</json:string>
<json:string>foliation plane</json:string>
<json:string>deformation microstructures</json:string>
<json:string>grained bands</json:string>
<json:string>clear correlation</json:string>
<json:string>average recrystallized grain size</json:string>
<json:string>maximum concentration</json:string>
<json:string>grain size decrease</json:string>
<json:string>recrystallized minerals</json:string>
<json:string>olivine cpos</json:string>
<json:string>olivine crystals</json:string>
<json:string>weak concentration</json:string>
<json:string>northern limit</json:string>
<json:string>dominant deformation mechanism</json:string>
<json:string>northern body</json:string>
<json:string>pyroxene porphyroclasts</json:string>
<json:string>pyroxenes porphyroclasts</json:string>
<json:string>southern part</json:string>
<json:string>diffusional processes</json:string>
<json:string>northeastern limit</json:string>
<json:string>recrystallized grain size</json:string>
<json:string>early deformation</json:string>
<json:string>lanzo peridotite</json:string>
<json:string>ultramylonite band</json:string>
<json:string>asymmetric distribution</json:string>
<json:string>lanzo peridotite massif</json:string>
<json:string>northern shear zone</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Mary‐Alix Kaczmarek</name>
<affiliations>
<json:string>E-mail: m.kaczmarek@curtin.edu.au</json:string>
<json:string>Géosciences Montpellier, Université Montpellier 2 and CNRS, Place E. Bataillon,, F‐34095, Montpellier CEDEX 5, France</json:string>
<json:string>Now at Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia.</json:string>
<json:string>E-mail: m.kaczmarek@curtin.edu.au</json:string>
</affiliations>
</json:item>
<json:item>
<name>Andréa Tommasi</name>
<affiliations>
<json:string>Géosciences Montpellier, Université Montpellier 2 and CNRS, Place E. Bataillon,, F‐34095, Montpellier CEDEX 5, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dislocation creep</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>extension</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>grain boundary sliding</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>lithospheric thinning</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>melt</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ultramylonite bands</value>
</json:item>
</subject>
<articleId>
<json:string>2011GC003627</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-G6LHVT66-G</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Analysis of the microstructures in the km‐scale mantle shear zone that separates the northern and the central parts of the Lanzo peridotite massif provides evidence of an evolution in time and space of deformation processes accommodating shearing in the shallow mantle within an extensional setting. This shear zone displays an asymmetric distribution of deformation facies. From south to north, gradual reorientation of the foliation of coarse porphyroclastic plagioclase‐bearing peridotites is followed by development of protomylonites, mylonites, and mm‐scale ultramylonite bands. A sharp grain size gradient marks the northern boundary. Early deformation under near‐solidus conditions in the south is recorded by preservation of weakly deformed interstitial plagioclase and almost random clinopyroxene and plagioclase crystal orientations. Feedback between deformation and melt transport probably led to melt focusing and strain weakening in the shear zone. Overprint of melt‐rock reaction microstructures by solid‐state deformation and decrease in recrystallized grain size in the protomylonites and mylonites indicate continued deformation under decreasing temperature. Less enriched peridotite compositions and absence of ultramafic dykes or widespread melt‐impregnation microstructures north of the shear zone and clinopyroxene and amphibole enrichment in the mylonites and ultramylonites suggest that the shear zone acted as both a thermal barrier and a high‐permeability channel for late crystallizing fluids. These observations, together with chemical data indicating faster cooling of central Lanzo relative to the northern body, corroborate that this shear zone is a mantle detachment fault. All deformation facies have crystal preferred orientations consistent with deformation by dislocation creep with dominant activation of the (010)[100] and (100)[001] systems in olivine and orthopyroxene, respectively. Dynamic recrystallization produces dispersion of olivine CPO but not a change of dominant deformation mechanism. Evidence for activation of grain boundary sliding is limited to mm‐scale ultramylonite bands, where solid‐state reactions produced very fine grained polymineralic aggregates. Except for these latest stages of deformation, strain localization does not result from the microstructural evolution; the grain size decrease is a consequence of the need to deform a rock volume whose strength continuously increases because of decreasing temperature conditions. Strain localization in the intermediate levels thus essentially results from the more localizing behavior of both the deep, partially molten, and shallow parts of this extensional shear zone distribution.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>10625</pdfWordCount>
<pdfCharCount>73146</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>24</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>364</abstractWordCount>
<abstractCharCount>2695</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Geochemistry, Geophysics, Geosystems</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1525-2027</json:string>
</doi>
<issn>
<json:string>1525-2027</json:string>
</issn>
<eissn>
<json:string>1525-2027</json:string>
</eissn>
<publisherId>
<json:string>GGGE</json:string>
</publisherId>
<volume>12</volume>
<issue>8</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>24</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Oceanic Detachment Faults</value>
</json:item>
<json:item>
<value>MINERALOGY AND PETROLOGY</value>
</json:item>
<json:item>
<value>Petrography, microstructures, and textures</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
<json:string>1100</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Italy, Geochem</json:string>
<json:string>Department of Applied Geology, Curtin University of Technology, GPO Box U</json:string>
<json:string>France Now</json:string>
<json:string>American Geophysical Union</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Experiments</json:string>
<json:string>J. Platt</json:string>
<json:string>P. Skemer</json:string>
<json:string>C. Nevado</json:string>
<json:string>T. Becker</json:string>
<json:string>M. Krabbendam</json:string>
<json:string>Piccardo</json:string>
<json:string>D. Delmas</json:string>
<json:string>B. W. D. Yardley</json:string>
<json:string>D. Mainprice</json:string>
<json:string>F. Barou</json:string>
<json:string>Andréa Tommasi</json:string>
<json:string>Müntener</json:string>
<json:string>E. Bataillon</json:string>
<json:string>A. Tommasi</json:string>
<json:string>A. Vauchez</json:string>
<json:string>Crystal Probe</json:string>
</persName>
<placeName>
<json:string>Montpellier</json:string>
<json:string>Australia</json:string>
<json:string>Perth</json:string>
<json:string>Japan</json:string>
<json:string>France</json:string>
<json:string>Italy</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>White et al., 1980</json:string>
<json:string>Compagnoni and Sandrone, 1979</json:string>
<json:string>Tommasi et al. [2000]</json:string>
<json:string>Neves et al., 2008</json:string>
<json:string>Braun et al., 1999</json:string>
<json:string>Pelletier and Müntener, 2006</json:string>
<json:string>[2008]</json:string>
<json:string>Vauchez et al., 2005</json:string>
<json:string>[29]</json:string>
<json:string>Dunbar and Sawyer, 1989</json:string>
<json:string>[ 52 ]</json:string>
<json:string>Piccardo et al., 2007a</json:string>
<json:string>[2003]</json:string>
<json:string>Précigout et al., 2007</json:string>
<json:string>Bodinier et al., 1991</json:string>
<json:string>Soustelle et al., 2010</json:string>
<json:string>Stünitz and Tullis, 2001</json:string>
<json:string>Michibayashi and Mainprice, 2004</json:string>
<json:string>[8]</json:string>
<json:string>[28]</json:string>
<json:string>Tommasi et al., 2009</json:string>
<json:string>[2007]</json:string>
<json:string>Soustelle et al., 2009</json:string>
<json:string>[1]</json:string>
<json:string>Müntener and Piccardo, 2003</json:string>
<json:string>Lieb and Yuen, 2003</json:string>
<json:string>Lagabrielle et al., 1990</json:string>
<json:string>Wheeler et al., 2001</json:string>
<json:string>[010]</json:string>
<json:string>Herwegh et al., 2005</json:string>
<json:string>Kaczmarek and Müntener, 2010</json:string>
<json:string>Kaczmarek et al., 2008</json:string>
<json:string>[49]</json:string>
<json:string>Boudier and Nicolas, 1972</json:string>
<json:string>Rosenberg and Handy, 2000</json:string>
<json:string>Tommasi et al., 1995</json:string>
<json:string>[31]</json:string>
<json:string>Vauchez et al., 1995</json:string>
<json:string>Newman et al., 1999</json:string>
<json:string>Vauchez and Tommasi, 2003</json:string>
<json:string>[5]</json:string>
<json:string>Austin and Evans, 2007</json:string>
<json:string>Kienast and Pognante, 1988</json:string>
<json:string>[1990]</json:string>
<json:string>Tommasi et al., 1994</json:string>
<json:string>Newman et al. [1999]</json:string>
<json:string>Furusho and Kanagawa, 1999</json:string>
<json:string>Niida and Green, 1999</json:string>
<json:string>[001]</json:string>
<json:string>Tommasi et al., 1999</json:string>
<json:string>[47]</json:string>
<json:string>Skemer et al., 2010</json:string>
<json:string>Le Roux et al., 2008</json:string>
<json:string>Dijkstra et al., 2002</json:string>
<json:string>Reynolds and Lister, 1990</json:string>
<json:string>[100]</json:string>
<json:string>Mackwell et al., 1985</json:string>
<json:string>[1976]</json:string>
<json:string>Holtzman and Kohlstedt, 2007</json:string>
<json:string>Vissers et al., 1995</json:string>
<json:string>[2]</json:string>
<json:string>Durham and Goetze, 1977</json:string>
<json:string>Tommasi and Vauchez, 2001</json:string>
<json:string>Holtzman et al., 2003</json:string>
<json:string>Newman and Drury, 2010</json:string>
<json:string>Bai et al., 1991</json:string>
<json:string>Tommasi et al., 2000</json:string>
<json:string>Piccardo et al., 2007b</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-G6LHVT66-G</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geochemistry & geophysics</json:string>
</wos>
<scienceMetrix></scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geophysics</json:string>
</scopus>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1029/2011GC003627</json:string>
</doi>
<id>FA8335D2714D1B408DB7F97FD91DDDE328C63A0A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/FA8335D2714D1B408DB7F97FD91DDDE328C63A0A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/FA8335D2714D1B408DB7F97FD91DDDE328C63A0A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/FA8335D2714D1B408DB7F97FD91DDDE328C63A0A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>Copyright 2011 by the American Geophysical Union.</licence>
</availability>
<date type="published" when="2011-08"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</title>
<title level="a" type="short">EXTENSIONAL SHEAR ZONE IN THE MANTLE</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Mary‐Alix</forename>
<surname>Kaczmarek</surname>
</persName>
<email>m.kaczmarek@curtin.edu.au</email>
<affiliation>
<orgName>Géosciences Montpellier</orgName>
<orgName>Université Montpellier 2 and CNRS</orgName>
<address>
<street>Place E. Bataillon,</street>
<settlement type="city">Montpellier CEDEX 5</settlement>
<postCode>F‐34095</postCode>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>Now at Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Andréa</forename>
<surname>Tommasi</surname>
</persName>
<affiliation>
<orgName>Géosciences Montpellier</orgName>
<orgName>Université Montpellier 2 and CNRS</orgName>
<address>
<street>Place E. Bataillon,</street>
<settlement type="city">Montpellier CEDEX 5</settlement>
<postCode>F‐34095</postCode>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<idno type="istex">FA8335D2714D1B408DB7F97FD91DDDE328C63A0A</idno>
<idno type="ark">ark:/67375/WNG-G6LHVT66-G</idno>
<idno type="DOI">10.1029/2011GC003627</idno>
<idno type="editorialOffice">2011GC003627</idno>
<idno type="society">Q0AG06</idno>
<idno type="unit">GGGE2000</idno>
<idno type="toTypesetVersion">file:GGGE.GGGE2000.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Geochemistry, Geophysics, Geosystems</title>
<title level="j" type="alt">GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS</title>
<idno type="pISSN">1525-2027</idno>
<idno type="eISSN">1525-2027</idno>
<idno type="book-DOI">10.1002/(ISSN)1525-2027</idno>
<idno type="book-part-DOI">10.1002/ggge.v12.8</idno>
<idno type="product">GGGE</idno>
<idno type="coden">GGGGFR</idno>
<imprint>
<biblScope unit="vol">12</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page-count">24</biblScope>
<date type="published" when="2011-08"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="ggge2000-para-0001">Analysis of the microstructures in the km‐scale mantle shear zone that separates the northern and the central parts of the Lanzo peridotite massif provides evidence of an evolution in time and space of deformation processes accommodating shearing in the shallow mantle within an extensional setting. This shear zone displays an asymmetric distribution of deformation facies. From south to north, gradual reorientation of the foliation of coarse porphyroclastic plagioclase‐bearing peridotites is followed by development of protomylonites, mylonites, and mm‐scale ultramylonite bands. A sharp grain size gradient marks the northern boundary. Early deformation under near‐solidus conditions in the south is recorded by preservation of weakly deformed interstitial plagioclase and almost random clinopyroxene and plagioclase crystal orientations. Feedback between deformation and melt transport probably led to melt focusing and strain weakening in the shear zone. Overprint of melt‐rock reaction microstructures by solid‐state deformation and decrease in recrystallized grain size in the protomylonites and mylonites indicate continued deformation under decreasing temperature. Less enriched peridotite compositions and absence of ultramafic dykes or widespread melt‐impregnation microstructures north of the shear zone and clinopyroxene and amphibole enrichment in the mylonites and ultramylonites suggest that the shear zone acted as both a thermal barrier and a high‐permeability channel for late crystallizing fluids. These observations, together with chemical data indicating faster cooling of central Lanzo relative to the northern body, corroborate that this shear zone is a mantle detachment fault. All deformation facies have crystal preferred orientations consistent with deformation by dislocation creep with dominant activation of the (010)[100] and (100)[001] systems in olivine and orthopyroxene, respectively. Dynamic recrystallization produces dispersion of olivine CPO but not a change of dominant deformation mechanism. Evidence for activation of grain boundary sliding is limited to mm‐scale ultramylonite bands, where solid‐state reactions produced very fine grained polymineralic aggregates. Except for these latest stages of deformation, strain localization does not result from the microstructural evolution; the grain size decrease is a consequence of the need to deform a rock volume whose strength continuously increases because of decreasing temperature conditions. Strain localization in the intermediate levels thus essentially results from the more localizing behavior of both the deep, partially molten, and shallow parts of this extensional shear zone distribution.</p>
</abstract>
<abstract style="short">
<head>Key Points</head>
<p xml:id="ggge2000-para-0002">
<list style="bulleted">
<item>Extensional shear zone</item>
<item>Focusing of the deformation</item>
<item>Evolution in time and space</item>
</list>
</p>
</abstract>
<textClass>
<keywords>
<term xml:id="ggge2000-kwd-0001">dislocation creep</term>
<term xml:id="ggge2000-kwd-0002">extension</term>
<term xml:id="ggge2000-kwd-0003">grain boundary sliding</term>
<term xml:id="ggge2000-kwd-0004">lithospheric thinning</term>
<term xml:id="ggge2000-kwd-0005">melt</term>
<term xml:id="ggge2000-kwd-0006">ultramylonite bands</term>
</keywords>
<classCode scheme="http://psi.agu.org/specialSection/OCDFAULT1">Oceanic Detachment Faults</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</classCode>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/FA8335D2714D1B408DB7F97FD91DDDE328C63A0A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="ggge2000">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1525-2027</doi>
<issn type="print">1525-2027</issn>
<issn type="electronic">1525-2027</issn>
<idGroup>
<id type="product" value="GGGE"></id>
<id type="coden" value="GGGGFR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS">Geochemistry, Geophysics, Geosystems</title>
<title type="short">Geochem. Geophys. Geosyst.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="80">
<doi>10.1002/ggge.v12.8</doi>
<titleGroup>
<title type="main" xml:lang="en" sort="GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS">Geochemistry, Geophysics, Geosystems</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="12">12</numbering>
<numbering type="journalIssue">8</numbering>
</numberingGroup>
<coverDate startDate="2011-08">August 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="100" type="article" status="forIssue">
<doi>10.1029/2011GC003627</doi>
<idGroup>
<id type="editorialOffice" value="2011GC003627"></id>
<id type="society" value="Q0AG06"></id>
<id type="unit" value="GGGE2000"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="24"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2011 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-03-15"></event>
<event type="manuscriptRevised" date="2011-05-24"></event>
<event type="manuscriptAccepted" date="2011-05-25"></event>
<event type="firstOnline" date="2011-08-10"></event>
<event type="publishedOnlineFinalForm" date="2011-08-10"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.0; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2012-12-22"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-26"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-17"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/specialSection/OCDFAULT1">Oceanic Detachment Faults</subject>
<subject href="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3625">Petrography, microstructures, and textures</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="ggge2000-cit-0000" type="self">
<author>
<familyName>Kaczmarek</familyName>
,
<givenNames>M.‐A.</givenNames>
</author>
, and
<author>
<givenNames>A.</givenNames>
<familyName>Tommasi</familyName>
</author>
(
<pubYear year="2011">2011</pubYear>
),
<articleTitle>Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</articleTitle>
,
<journalTitle>Geochem. Geophys. Geosyst.</journalTitle>
,
<vol>12</vol>
, Q0AG06, doi:
<accessionId ref="info:doi/10.1029/2011GC003627">10.1029/2011GC003627</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:GGGE.GGGE2000.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="11800"></count>
<count type="figureTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="main">Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</title>
<title type="short">EXTENSIONAL SHEAR ZONE IN THE MANTLE</title>
<title type="shortAuthors">Kaczmarek and Tommasi</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="ggge2000-cr-0001" affiliationRef="#ggge2000-aff-0001 #ggge2000-aff-0002">
<personName>
<givenNames>Mary‐Alix</givenNames>
<familyName>Kaczmarek</familyName>
</personName>
<contactDetails>
<email normalForm="m.kaczmarek@curtin.edu.au">m.kaczmarek@curtin.edu.au</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="ggge2000-cr-0002" affiliationRef="#ggge2000-aff-0001">
<personName>
<givenNames>Andréa</givenNames>
<familyName>Tommasi</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FR" type="organization" xml:id="ggge2000-aff-0001">
<orgDiv>Géosciences Montpellier</orgDiv>
<orgName>Université Montpellier 2 and CNRS</orgName>
<address>
<street>Place E. Bataillon,</street>
<postCode>F‐34095</postCode>
<city>Montpellier CEDEX 5</city>
<country>France</country>
</address>
</affiliation>
<affiliation type="organization" xml:id="ggge2000-aff-0002">
<unparsedAffiliation>Now at Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia.</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="ggge2000-kwd-0001">dislocation creep</keyword>
<keyword xml:id="ggge2000-kwd-0002">extension</keyword>
<keyword xml:id="ggge2000-kwd-0003">grain boundary sliding</keyword>
<keyword xml:id="ggge2000-kwd-0004">lithospheric thinning</keyword>
<keyword xml:id="ggge2000-kwd-0005">melt</keyword>
<keyword xml:id="ggge2000-kwd-0006">ultramylonite bands</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="ggge2000-para-0001">Analysis of the microstructures in the km‐scale mantle shear zone that separates the northern and the central parts of the Lanzo peridotite massif provides evidence of an evolution in time and space of deformation processes accommodating shearing in the shallow mantle within an extensional setting. This shear zone displays an asymmetric distribution of deformation facies. From south to north, gradual reorientation of the foliation of coarse porphyroclastic plagioclase‐bearing peridotites is followed by development of protomylonites, mylonites, and mm‐scale ultramylonite bands. A sharp grain size gradient marks the northern boundary. Early deformation under near‐solidus conditions in the south is recorded by preservation of weakly deformed interstitial plagioclase and almost random clinopyroxene and plagioclase crystal orientations. Feedback between deformation and melt transport probably led to melt focusing and strain weakening in the shear zone. Overprint of melt‐rock reaction microstructures by solid‐state deformation and decrease in recrystallized grain size in the protomylonites and mylonites indicate continued deformation under decreasing temperature. Less enriched peridotite compositions and absence of ultramafic dykes or widespread melt‐impregnation microstructures north of the shear zone and clinopyroxene and amphibole enrichment in the mylonites and ultramylonites suggest that the shear zone acted as both a thermal barrier and a high‐permeability channel for late crystallizing fluids. These observations, together with chemical data indicating faster cooling of central Lanzo relative to the northern body, corroborate that this shear zone is a mantle detachment fault. All deformation facies have crystal preferred orientations consistent with deformation by dislocation creep with dominant activation of the (010)[100] and (100)[001] systems in olivine and orthopyroxene, respectively. Dynamic recrystallization produces dispersion of olivine CPO but not a change of dominant deformation mechanism. Evidence for activation of grain boundary sliding is limited to mm‐scale ultramylonite bands, where solid‐state reactions produced very fine grained polymineralic aggregates. Except for these latest stages of deformation, strain localization does not result from the microstructural evolution; the grain size decrease is a consequence of the need to deform a rock volume whose strength continuously increases because of decreasing temperature conditions. Strain localization in the intermediate levels thus essentially results from the more localizing behavior of both the deep, partially molten, and shallow parts of this extensional shear zone distribution.</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p xml:id="ggge2000-para-0002">
<list style="bulleted">
<listItem>Extensional shear zone</listItem>
<listItem>Focusing of the deformation</listItem>
<listItem>Evolution in time and space</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>EXTENSIONAL SHEAR ZONE IN THE MANTLE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mary‐Alix</namePart>
<namePart type="family">Kaczmarek</namePart>
<affiliation>E-mail: m.kaczmarek@curtin.edu.au</affiliation>
<affiliation>Géosciences Montpellier, Université Montpellier 2 and CNRS, Place E. Bataillon,, F‐34095, Montpellier CEDEX 5, France</affiliation>
<affiliation>Now at Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia.</affiliation>
<affiliation>E-mail: m.kaczmarek@curtin.edu.au</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andréa</namePart>
<namePart type="family">Tommasi</namePart>
<affiliation>Géosciences Montpellier, Université Montpellier 2 and CNRS, Place E. Bataillon,, F‐34095, Montpellier CEDEX 5, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2011-08</dateIssued>
<dateCaptured encoding="w3cdtf">2011-03-15</dateCaptured>
<dateValid encoding="w3cdtf">2011-05-25</dateValid>
<edition>Kaczmarek, M.‐A., and A. Tommasi (2011), Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy, Geochem. Geophys. Geosyst., 12, Q0AG06, doi:10.1029/2011GC003627.</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">13</extent>
<extent unit="words">11800</extent>
</physicalDescription>
<abstract>Analysis of the microstructures in the km‐scale mantle shear zone that separates the northern and the central parts of the Lanzo peridotite massif provides evidence of an evolution in time and space of deformation processes accommodating shearing in the shallow mantle within an extensional setting. This shear zone displays an asymmetric distribution of deformation facies. From south to north, gradual reorientation of the foliation of coarse porphyroclastic plagioclase‐bearing peridotites is followed by development of protomylonites, mylonites, and mm‐scale ultramylonite bands. A sharp grain size gradient marks the northern boundary. Early deformation under near‐solidus conditions in the south is recorded by preservation of weakly deformed interstitial plagioclase and almost random clinopyroxene and plagioclase crystal orientations. Feedback between deformation and melt transport probably led to melt focusing and strain weakening in the shear zone. Overprint of melt‐rock reaction microstructures by solid‐state deformation and decrease in recrystallized grain size in the protomylonites and mylonites indicate continued deformation under decreasing temperature. Less enriched peridotite compositions and absence of ultramafic dykes or widespread melt‐impregnation microstructures north of the shear zone and clinopyroxene and amphibole enrichment in the mylonites and ultramylonites suggest that the shear zone acted as both a thermal barrier and a high‐permeability channel for late crystallizing fluids. These observations, together with chemical data indicating faster cooling of central Lanzo relative to the northern body, corroborate that this shear zone is a mantle detachment fault. All deformation facies have crystal preferred orientations consistent with deformation by dislocation creep with dominant activation of the (010)[100] and (100)[001] systems in olivine and orthopyroxene, respectively. Dynamic recrystallization produces dispersion of olivine CPO but not a change of dominant deformation mechanism. Evidence for activation of grain boundary sliding is limited to mm‐scale ultramylonite bands, where solid‐state reactions produced very fine grained polymineralic aggregates. Except for these latest stages of deformation, strain localization does not result from the microstructural evolution; the grain size decrease is a consequence of the need to deform a rock volume whose strength continuously increases because of decreasing temperature conditions. Strain localization in the intermediate levels thus essentially results from the more localizing behavior of both the deep, partially molten, and shallow parts of this extensional shear zone distribution.</abstract>
<abstract type="short">Extensional shear zone Focusing of the deformation Evolution in time and space</abstract>
<subject>
<genre>keywords</genre>
<topic>dislocation creep</topic>
<topic>extension</topic>
<topic>grain boundary sliding</topic>
<topic>lithospheric thinning</topic>
<topic>melt</topic>
<topic>ultramylonite bands</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Geochemistry, Geophysics, Geosystems</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Geochem. Geophys. Geosyst.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/specialSection/OCDFAULT1">Oceanic Detachment Faults</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3625">Petrography, microstructures, and textures</topic>
</subject>
<identifier type="ISSN">1525-2027</identifier>
<identifier type="eISSN">1525-2027</identifier>
<identifier type="DOI">10.1002/(ISSN)1525-2027</identifier>
<identifier type="CODEN">GGGGFR</identifier>
<identifier type="PublisherID">GGGE</identifier>
<part>
<date>2011</date>
<detail type="title">
<title>Geochemistry, Geophysics, Geosystems</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>24</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">FA8335D2714D1B408DB7F97FD91DDDE328C63A0A</identifier>
<identifier type="ark">ark:/67375/WNG-G6LHVT66-G</identifier>
<identifier type="DOI">10.1029/2011GC003627</identifier>
<identifier type="ArticleID">2011GC003627</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2011 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/FA8335D2714D1B408DB7F97FD91DDDE328C63A0A/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002F25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:FA8335D2714D1B408DB7F97FD91DDDE328C63A0A
   |texte=   Anatomy of an extensional shear zone in the mantle, Lanzo massif, Italy
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024