Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif

Identifieur interne : 00A316 ( Main/Curation ); précédent : 00A315; suivant : 00A317

Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif

Auteurs : P. Štípská [France, République tchèque] ; R. Powell [Australie]

Source :

RBID : ISTEX:0B57F44E0BE90F3D499513AF2EF8D72B989DB704

Descripteurs français

English descriptors

Abstract

A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.

Url:
DOI: 10.1111/j.1525-1314.2005.00607.x

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:0B57F44E0BE90F3D499513AF2EF8D72B989DB704

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif</title>
<author>
<name sortKey="Stipska, P" sort="Stipska, P" uniqKey="Stipska P" first="P." last="Štípská">P. Štípská</name>
</author>
<author>
<name sortKey="Powell, R" sort="Powell, R" uniqKey="Powell R" first="R." last="Powell">R. Powell</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0B57F44E0BE90F3D499513AF2EF8D72B989DB704</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1111/j.1525-1314.2005.00607.x</idno>
<idno type="url">https://api.istex.fr/document/0B57F44E0BE90F3D499513AF2EF8D72B989DB704/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000217</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000217</idno>
<idno type="wicri:Area/Istex/Curation">000217</idno>
<idno type="wicri:Area/Istex/Checkpoint">001874</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001874</idno>
<idno type="wicri:doubleKey">0263-4929:2005:Stipska P:constraining:the:p</idno>
<idno type="wicri:Area/Main/Merge">00AE82</idno>
<idno type="wicri:Area/Main/Curation">00A316</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Constraining the
<hi rend="italic">P</hi>
<hi rend="italic">T</hi>
path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif</title>
<author>
<name sortKey="Stipska, P" sort="Stipska, P" uniqKey="Stipska P" first="P." last="Štípská">P. Štípská</name>
<affiliation wicri:level="3">
<country wicri:rule="url">France</country>
<wicri:regionArea>Institute of Petrology and Structural Geology, Charles University, Albertov 6, 12843, Prague</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Prague</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Czech Geological Survey, Klárov 3, 118 21, Prague</wicri:regionArea>
<placeName>
<settlement type="city">Prague</settlement>
<region type="région" nuts="2">Bohême centrale</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre de Géochimie de Surface, UMR CNRS 7517, 1 Rue Blessig, Strasbourg</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Alsace (région administrative)</region>
<settlement type="city">Strasbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Powell, R" sort="Powell, R" uniqKey="Powell R" first="R." last="Powell">R. Powell</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Metamorphic Geology</title>
<title level="j" type="alt">JOURNAL OF METAMORPHIC GEOLOGY</title>
<idno type="ISSN">0263-4929</idno>
<idno type="eISSN">1525-1314</idno>
<imprint>
<biblScope unit="vol">23</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="725">725</biblScope>
<biblScope unit="page" to="743">743</biblScope>
<biblScope unit="page-count">19</biblScope>
<publisher>Blackwell Science Inc</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2005-10">2005-10</date>
</imprint>
<idno type="ISSN">0263-4929</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0263-4929</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abbreviation</term>
<term>Amphibole</term>
<term>Amphibole model</term>
<term>Amphibolite</term>
<term>Assemblage</term>
<term>Blackwell publishing</term>
<term>Bohemian</term>
<term>Bohemian massif</term>
<term>Charge balance</term>
<term>Clinopyroxene</term>
<term>Clinopyroxene analyses</term>
<term>Clinopyroxene symplectites</term>
<term>Czech</term>
<term>Czech republic</term>
<term>Decompression</term>
<term>Diopsidic</term>
<term>Diopsidic clinopyroxene</term>
<term>Diopsidic symplectites</term>
<term>Eclev</term>
<term>Eclogite</term>
<term>Eclogite body</term>
<term>Eclogite facies conditions</term>
<term>Eclogites</term>
<term>Eld</term>
<term>Elvevold gilotti</term>
<term>Error propagation</term>
<term>European journal</term>
<term>Exhumation</term>
<term>Facies</term>
<term>Felsic granulites</term>
<term>Ferric</term>
<term>Ferric iron</term>
<term>Franke</term>
<term>Garnet</term>
<term>Garnet cores</term>
<term>Garnet growth zoning</term>
<term>Garnet zoning</term>
<term>Gfohl</term>
<term>Gfohl unit</term>
<term>Granulite</term>
<term>Granulites</term>
<term>Grossular</term>
<term>Grossular content</term>
<term>High pressure</term>
<term>High temperature</term>
<term>Holland powell</term>
<term>Hornblende</term>
<term>Hydrous</term>
<term>Hydrous minerals</term>
<term>Inclusion</term>
<term>Isopleth</term>
<term>Kbar</term>
<term>Kelyphites</term>
<term>Krogh</term>
<term>Krogh ravna</term>
<term>Lithos</term>
<term>Lower pressure</term>
<term>Massif</term>
<term>Matrix</term>
<term>Medaris</term>
<term>Metamorphic</term>
<term>Metamorphic conditions</term>
<term>Metamorphic geology</term>
<term>Metamorphic peak</term>
<term>Metamorphism</term>
<term>Modal proportion</term>
<term>Modelling</term>
<term>Moldanubian</term>
<term>Moldanubian zone</term>
<term>Moller</term>
<term>Monotonous units</term>
<term>Morb</term>
<term>Morb eclogite</term>
<term>Omphacite</term>
<term>Omphacitic</term>
<term>Omphacitic clinopyroxene</term>
<term>Orthopyroxene</term>
<term>Peak assemblage</term>
<term>Petrology</term>
<term>Plagioclase</term>
<term>Prograde</term>
<term>Prograde history</term>
<term>Prograde path</term>
<term>Protolith</term>
<term>Pseudosection</term>
<term>Pseudosections</term>
<term>Pska</term>
<term>Quartz</term>
<term>Ravna</term>
<term>Retrograde evolution</term>
<term>Retrograde history</term>
<term>Retrograde path</term>
<term>Rock composition</term>
<term>Rotzler</term>
<term>Saturation line</term>
<term>Schulmann</term>
<term>Sio2</term>
<term>Sio2 undersaturation</term>
<term>Spinel</term>
<term>Standard deviation</term>
<term>Such garnet</term>
<term>Symplectites</term>
<term>Ternary feldspar</term>
<term>Undersaturation</term>
<term>Variscan</term>
<term>Vrana</term>
<term>Zoisite</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abbreviation</term>
<term>Amphibole</term>
<term>Amphibole model</term>
<term>Amphibolite</term>
<term>Assemblage</term>
<term>Blackwell publishing</term>
<term>Bohemian</term>
<term>Bohemian massif</term>
<term>Charge balance</term>
<term>Clinopyroxene</term>
<term>Clinopyroxene analyses</term>
<term>Clinopyroxene symplectites</term>
<term>Czech</term>
<term>Czech republic</term>
<term>Decompression</term>
<term>Diopsidic</term>
<term>Diopsidic clinopyroxene</term>
<term>Diopsidic symplectites</term>
<term>Eclev</term>
<term>Eclogite</term>
<term>Eclogite body</term>
<term>Eclogite facies conditions</term>
<term>Eclogites</term>
<term>Eld</term>
<term>Elvevold gilotti</term>
<term>Error propagation</term>
<term>European journal</term>
<term>Exhumation</term>
<term>Facies</term>
<term>Felsic granulites</term>
<term>Ferric</term>
<term>Ferric iron</term>
<term>Franke</term>
<term>Garnet</term>
<term>Garnet cores</term>
<term>Garnet growth zoning</term>
<term>Garnet zoning</term>
<term>Gfohl</term>
<term>Gfohl unit</term>
<term>Granulite</term>
<term>Granulites</term>
<term>Grossular</term>
<term>Grossular content</term>
<term>High pressure</term>
<term>High temperature</term>
<term>Holland powell</term>
<term>Hornblende</term>
<term>Hydrous</term>
<term>Hydrous minerals</term>
<term>Inclusion</term>
<term>Isopleth</term>
<term>Kbar</term>
<term>Kelyphites</term>
<term>Krogh</term>
<term>Krogh ravna</term>
<term>Lithos</term>
<term>Lower pressure</term>
<term>Massif</term>
<term>Matrix</term>
<term>Medaris</term>
<term>Metamorphic</term>
<term>Metamorphic conditions</term>
<term>Metamorphic geology</term>
<term>Metamorphic peak</term>
<term>Metamorphism</term>
<term>Modal proportion</term>
<term>Modelling</term>
<term>Moldanubian</term>
<term>Moldanubian zone</term>
<term>Moller</term>
<term>Monotonous units</term>
<term>Morb</term>
<term>Morb eclogite</term>
<term>Omphacite</term>
<term>Omphacitic</term>
<term>Omphacitic clinopyroxene</term>
<term>Orthopyroxene</term>
<term>Peak assemblage</term>
<term>Petrology</term>
<term>Plagioclase</term>
<term>Prograde</term>
<term>Prograde history</term>
<term>Prograde path</term>
<term>Protolith</term>
<term>Pseudosection</term>
<term>Pseudosections</term>
<term>Pska</term>
<term>Quartz</term>
<term>Ravna</term>
<term>Retrograde evolution</term>
<term>Retrograde history</term>
<term>Retrograde path</term>
<term>Rock composition</term>
<term>Rotzler</term>
<term>Saturation line</term>
<term>Schulmann</term>
<term>Sio2</term>
<term>Sio2 undersaturation</term>
<term>Spinel</term>
<term>Standard deviation</term>
<term>Such garnet</term>
<term>Symplectites</term>
<term>Ternary feldspar</term>
<term>Undersaturation</term>
<term>Variscan</term>
<term>Vrana</term>
<term>Zoisite</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Pétrologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A316 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 00A316 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:0B57F44E0BE90F3D499513AF2EF8D72B989DB704
   |texte=   Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024