Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif

Identifieur interne : 000217 ( Istex/Corpus ); précédent : 000216; suivant : 000218

Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif

Auteurs : P. Štípská ; R. Powell

Source :

RBID : ISTEX:0B57F44E0BE90F3D499513AF2EF8D72B989DB704

English descriptors

Abstract

A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.

Url:
DOI: 10.1111/j.1525-1314.2005.00607.x

Links to Exploration step

ISTEX:0B57F44E0BE90F3D499513AF2EF8D72B989DB704

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif</title>
<author>
<name sortKey="Stipska, P" sort="Stipska, P" uniqKey="Stipska P" first="P." last="Štípská">P. Štípská</name>
<affiliation>
<mods:affiliation>Institute of Petrology and Structural Geology, Charles University, Albertov 6, 12843, Prague, Czech Republic (stipska@illite.u‐strasbg.fr)</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Czech Geological Survey, Klárov 3, 118 21, Prague, Czech Republic</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centre de Géochimie de Surface, UMR CNRS 7517, 1 Rue Blessig, Strasbourg, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Powell, R" sort="Powell, R" uniqKey="Powell R" first="R." last="Powell">R. Powell</name>
<affiliation>
<mods:affiliation>School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0B57F44E0BE90F3D499513AF2EF8D72B989DB704</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1111/j.1525-1314.2005.00607.x</idno>
<idno type="url">https://api.istex.fr/document/0B57F44E0BE90F3D499513AF2EF8D72B989DB704/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000217</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000217</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Constraining the
<hi rend="italic">P</hi>
<hi rend="italic">T</hi>
path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif</title>
<author>
<name sortKey="Stipska, P" sort="Stipska, P" uniqKey="Stipska P" first="P." last="Štípská">P. Štípská</name>
<affiliation>
<mods:affiliation>Institute of Petrology and Structural Geology, Charles University, Albertov 6, 12843, Prague, Czech Republic (stipska@illite.u‐strasbg.fr)</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Czech Geological Survey, Klárov 3, 118 21, Prague, Czech Republic</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centre de Géochimie de Surface, UMR CNRS 7517, 1 Rue Blessig, Strasbourg, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Powell, R" sort="Powell, R" uniqKey="Powell R" first="R." last="Powell">R. Powell</name>
<affiliation>
<mods:affiliation>School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Metamorphic Geology</title>
<title level="j" type="alt">JOURNAL OF METAMORPHIC GEOLOGY</title>
<idno type="ISSN">0263-4929</idno>
<idno type="eISSN">1525-1314</idno>
<imprint>
<biblScope unit="vol">23</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="725">725</biblScope>
<biblScope unit="page" to="743">743</biblScope>
<biblScope unit="page-count">19</biblScope>
<publisher>Blackwell Science Inc</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2005-10">2005-10</date>
</imprint>
<idno type="ISSN">0263-4929</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0263-4929</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abbreviation</term>
<term>Amphibole</term>
<term>Amphibole model</term>
<term>Amphibolite</term>
<term>Assemblage</term>
<term>Blackwell publishing</term>
<term>Bohemian</term>
<term>Bohemian massif</term>
<term>Charge balance</term>
<term>Clinopyroxene</term>
<term>Clinopyroxene analyses</term>
<term>Clinopyroxene symplectites</term>
<term>Czech</term>
<term>Czech republic</term>
<term>Decompression</term>
<term>Diopsidic</term>
<term>Diopsidic clinopyroxene</term>
<term>Diopsidic symplectites</term>
<term>Eclev</term>
<term>Eclogite</term>
<term>Eclogite body</term>
<term>Eclogite facies conditions</term>
<term>Eclogites</term>
<term>Eld</term>
<term>Elvevold gilotti</term>
<term>Error propagation</term>
<term>European journal</term>
<term>Exhumation</term>
<term>Facies</term>
<term>Felsic granulites</term>
<term>Ferric</term>
<term>Ferric iron</term>
<term>Franke</term>
<term>Garnet</term>
<term>Garnet cores</term>
<term>Garnet growth zoning</term>
<term>Garnet zoning</term>
<term>Gfohl</term>
<term>Gfohl unit</term>
<term>Granulite</term>
<term>Granulites</term>
<term>Grossular</term>
<term>Grossular content</term>
<term>High pressure</term>
<term>High temperature</term>
<term>Holland powell</term>
<term>Hornblende</term>
<term>Hydrous</term>
<term>Hydrous minerals</term>
<term>Inclusion</term>
<term>Isopleth</term>
<term>Kbar</term>
<term>Kelyphites</term>
<term>Krogh</term>
<term>Krogh ravna</term>
<term>Lithos</term>
<term>Lower pressure</term>
<term>Massif</term>
<term>Matrix</term>
<term>Medaris</term>
<term>Metamorphic</term>
<term>Metamorphic conditions</term>
<term>Metamorphic geology</term>
<term>Metamorphic peak</term>
<term>Metamorphism</term>
<term>Modal proportion</term>
<term>Modelling</term>
<term>Moldanubian</term>
<term>Moldanubian zone</term>
<term>Moller</term>
<term>Monotonous units</term>
<term>Morb</term>
<term>Morb eclogite</term>
<term>Omphacite</term>
<term>Omphacitic</term>
<term>Omphacitic clinopyroxene</term>
<term>Orthopyroxene</term>
<term>Peak assemblage</term>
<term>Petrology</term>
<term>Plagioclase</term>
<term>Prograde</term>
<term>Prograde history</term>
<term>Prograde path</term>
<term>Protolith</term>
<term>Pseudosection</term>
<term>Pseudosections</term>
<term>Pska</term>
<term>Quartz</term>
<term>Ravna</term>
<term>Retrograde evolution</term>
<term>Retrograde history</term>
<term>Retrograde path</term>
<term>Rock composition</term>
<term>Rotzler</term>
<term>Saturation line</term>
<term>Schulmann</term>
<term>Sio2</term>
<term>Sio2 undersaturation</term>
<term>Spinel</term>
<term>Standard deviation</term>
<term>Such garnet</term>
<term>Symplectites</term>
<term>Ternary feldspar</term>
<term>Undersaturation</term>
<term>Variscan</term>
<term>Vrana</term>
<term>Zoisite</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abbreviation</term>
<term>Amphibole</term>
<term>Amphibole model</term>
<term>Amphibolite</term>
<term>Assemblage</term>
<term>Blackwell publishing</term>
<term>Bohemian</term>
<term>Bohemian massif</term>
<term>Charge balance</term>
<term>Clinopyroxene</term>
<term>Clinopyroxene analyses</term>
<term>Clinopyroxene symplectites</term>
<term>Czech</term>
<term>Czech republic</term>
<term>Decompression</term>
<term>Diopsidic</term>
<term>Diopsidic clinopyroxene</term>
<term>Diopsidic symplectites</term>
<term>Eclev</term>
<term>Eclogite</term>
<term>Eclogite body</term>
<term>Eclogite facies conditions</term>
<term>Eclogites</term>
<term>Eld</term>
<term>Elvevold gilotti</term>
<term>Error propagation</term>
<term>European journal</term>
<term>Exhumation</term>
<term>Facies</term>
<term>Felsic granulites</term>
<term>Ferric</term>
<term>Ferric iron</term>
<term>Franke</term>
<term>Garnet</term>
<term>Garnet cores</term>
<term>Garnet growth zoning</term>
<term>Garnet zoning</term>
<term>Gfohl</term>
<term>Gfohl unit</term>
<term>Granulite</term>
<term>Granulites</term>
<term>Grossular</term>
<term>Grossular content</term>
<term>High pressure</term>
<term>High temperature</term>
<term>Holland powell</term>
<term>Hornblende</term>
<term>Hydrous</term>
<term>Hydrous minerals</term>
<term>Inclusion</term>
<term>Isopleth</term>
<term>Kbar</term>
<term>Kelyphites</term>
<term>Krogh</term>
<term>Krogh ravna</term>
<term>Lithos</term>
<term>Lower pressure</term>
<term>Massif</term>
<term>Matrix</term>
<term>Medaris</term>
<term>Metamorphic</term>
<term>Metamorphic conditions</term>
<term>Metamorphic geology</term>
<term>Metamorphic peak</term>
<term>Metamorphism</term>
<term>Modal proportion</term>
<term>Modelling</term>
<term>Moldanubian</term>
<term>Moldanubian zone</term>
<term>Moller</term>
<term>Monotonous units</term>
<term>Morb</term>
<term>Morb eclogite</term>
<term>Omphacite</term>
<term>Omphacitic</term>
<term>Omphacitic clinopyroxene</term>
<term>Orthopyroxene</term>
<term>Peak assemblage</term>
<term>Petrology</term>
<term>Plagioclase</term>
<term>Prograde</term>
<term>Prograde history</term>
<term>Prograde path</term>
<term>Protolith</term>
<term>Pseudosection</term>
<term>Pseudosections</term>
<term>Pska</term>
<term>Quartz</term>
<term>Ravna</term>
<term>Retrograde evolution</term>
<term>Retrograde history</term>
<term>Retrograde path</term>
<term>Rock composition</term>
<term>Rotzler</term>
<term>Saturation line</term>
<term>Schulmann</term>
<term>Sio2</term>
<term>Sio2 undersaturation</term>
<term>Spinel</term>
<term>Standard deviation</term>
<term>Such garnet</term>
<term>Symplectites</term>
<term>Ternary feldspar</term>
<term>Undersaturation</term>
<term>Variscan</term>
<term>Vrana</term>
<term>Zoisite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>clinopyroxene</json:string>
<json:string>garnet</json:string>
<json:string>eclogite</json:string>
<json:string>prograde</json:string>
<json:string>eclogites</json:string>
<json:string>amphibole</json:string>
<json:string>plagioclase</json:string>
<json:string>pseudosection</json:string>
<json:string>kbar</json:string>
<json:string>facies</json:string>
<json:string>metamorphic geology</json:string>
<json:string>metamorphic</json:string>
<json:string>blackwell publishing</json:string>
<json:string>granulite</json:string>
<json:string>eld</json:string>
<json:string>medaris</json:string>
<json:string>grossular</json:string>
<json:string>massif</json:string>
<json:string>zoisite</json:string>
<json:string>ferric</json:string>
<json:string>symplectites</json:string>
<json:string>hornblende</json:string>
<json:string>krogh</json:string>
<json:string>bohemian massif</json:string>
<json:string>undersaturation</json:string>
<json:string>pseudosections</json:string>
<json:string>petrology</json:string>
<json:string>orthopyroxene</json:string>
<json:string>morb</json:string>
<json:string>prograde path</json:string>
<json:string>decompression</json:string>
<json:string>vrana</json:string>
<json:string>czech</json:string>
<json:string>sio2</json:string>
<json:string>garnet zoning</json:string>
<json:string>spinel</json:string>
<json:string>diopsidic</json:string>
<json:string>ferric iron</json:string>
<json:string>gfohl</json:string>
<json:string>amphibolite</json:string>
<json:string>omphacite</json:string>
<json:string>schulmann</json:string>
<json:string>morb eclogite</json:string>
<json:string>exhumation</json:string>
<json:string>isopleth</json:string>
<json:string>moldanubian</json:string>
<json:string>eclev</json:string>
<json:string>modelling</json:string>
<json:string>ravna</json:string>
<json:string>variscan</json:string>
<json:string>high pressure</json:string>
<json:string>kelyphites</json:string>
<json:string>omphacitic</json:string>
<json:string>granulites</json:string>
<json:string>bohemian</json:string>
<json:string>omphacitic clinopyroxene</json:string>
<json:string>hydrous minerals</json:string>
<json:string>krogh ravna</json:string>
<json:string>moldanubian zone</json:string>
<json:string>metamorphism</json:string>
<json:string>franke</json:string>
<json:string>lithos</json:string>
<json:string>pska</json:string>
<json:string>rotzler</json:string>
<json:string>protolith</json:string>
<json:string>saturation line</json:string>
<json:string>czech republic</json:string>
<json:string>quartz</json:string>
<json:string>matrix</json:string>
<json:string>assemblage</json:string>
<json:string>gfohl unit</json:string>
<json:string>holland powell</json:string>
<json:string>sio2 undersaturation</json:string>
<json:string>hydrous</json:string>
<json:string>inclusion</json:string>
<json:string>error propagation</json:string>
<json:string>diopsidic clinopyroxene</json:string>
<json:string>monotonous units</json:string>
<json:string>diopsidic symplectites</json:string>
<json:string>clinopyroxene analyses</json:string>
<json:string>metamorphic conditions</json:string>
<json:string>felsic granulites</json:string>
<json:string>retrograde path</json:string>
<json:string>high temperature</json:string>
<json:string>eclogite body</json:string>
<json:string>moller</json:string>
<json:string>abbreviation</json:string>
<json:string>clinopyroxene symplectites</json:string>
<json:string>retrograde evolution</json:string>
<json:string>peak assemblage</json:string>
<json:string>amphibole model</json:string>
<json:string>prograde history</json:string>
<json:string>retrograde history</json:string>
<json:string>rock composition</json:string>
<json:string>lower pressure</json:string>
<json:string>charge balance</json:string>
<json:string>grossular content</json:string>
<json:string>such garnet</json:string>
<json:string>modal proportion</json:string>
<json:string>garnet cores</json:string>
<json:string>garnet growth zoning</json:string>
<json:string>standard deviation</json:string>
<json:string>elvevold gilotti</json:string>
<json:string>ternary feldspar</json:string>
<json:string>eclogite facies conditions</json:string>
<json:string>metamorphic peak</json:string>
<json:string>european journal</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>P. ŠTÍPSKÁ</name>
<affiliations>
<json:string>Institute of Petrology and Structural Geology, Charles University, Albertov 6, 12843, Prague, Czech Republic (stipska@illite.u‐strasbg.fr)</json:string>
<json:string>Czech Geological Survey, Klárov 3, 118 21, Prague, Czech Republic</json:string>
<json:string>Centre de Géochimie de Surface, UMR CNRS 7517, 1 Rue Blessig, Strasbourg, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. POWELL</name>
<affiliations>
<json:string>School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Bohemian Massif</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>garnet‐clinopyroxene thermometry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>MORB eclogite</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>prograde garnet zoning</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pseudosection</value>
</json:item>
</subject>
<articleId>
<json:string>JMG607</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-R37PMQ4S-P</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>288</abstractWordCount>
<abstractCharCount>2093</abstractCharCount>
<keywordCount>5</keywordCount>
<score>10</score>
<pdfWordCount>9153</pdfWordCount>
<pdfCharCount>59972</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>19</pdfPageCount>
<pdfPageSize>595 x 782 pts</pdfPageSize>
</qualityIndicators>
<title>Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Metamorphic Geology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1525-1314</json:string>
</doi>
<issn>
<json:string>0263-4929</json:string>
</issn>
<eissn>
<json:string>1525-1314</json:string>
</eissn>
<publisherId>
<json:string>JMG</json:string>
</publisherId>
<volume>23</volume>
<issue>8</issue>
<pages>
<first>725</first>
<last>743</last>
<total>19</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2005</json:string>
<json:string>2003</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Grant Agency</json:string>
<json:string>Charles University</json:string>
<json:string>Ministry of Education</json:string>
<json:string>Czech National Grant Agency</json:string>
<json:string>Blackwell Publishing Ltd</json:string>
<json:string>University of Melbourne</json:string>
<json:string>Czech Academy of Sciences</json:string>
<json:string>Australia ABSTRACT A</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Al Fe</json:string>
<json:string>The</json:string>
<json:string>R. White</json:string>
<json:string>V. Bohmova</json:string>
<json:string>P. Pitra</json:string>
</persName>
<placeName>
<json:string>Py</json:string>
<json:string>Melbourne</json:string>
<json:string>Prague</json:string>
<json:string>Strasbourg</json:string>
<json:string>Czech Republic</json:string>
<json:string>France</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>O’Brien & ´ Vrana, 1995</json:string>
<json:string>Medaris et al., 1998</json:string>
<json:string>Matte et al., 1990</json:string>
<json:string>Dale et al. (2005)</json:string>
<json:string>O’Brien ´ & Vrana, 1995</json:string>
<json:string>Krogh Ravna & Terry, 2004</json:string>
<json:string>Proyer et al., 2004</json:string>
<json:string>Powell et al., 1998</json:string>
<json:string>O’Brien & Vrana, 1995</json:string>
<json:string>Hacker et al., 2003</json:string>
<json:string>Dachs & Proyer, 2001</json:string>
<json:string>Cooke & O’Brien, 2001</json:string>
<json:string>Shervais et al., 2003</json:string>
<json:string>Elvevold & Gilotti, 2000</json:string>
<json:string>Proyer et al. (2004)</json:string>
<json:string>Krogh, 1982</json:string>
<json:string>Dudek & ´ Fediukova, 1974</json:string>
<json:string>Guiraud et al., 1996, 2001</json:string>
<json:string>Sobolev et al., 1999</json:string>
<json:string>Wolf & Wyllie, 1994</json:string>
<json:string>Pearce, 1976</json:string>
<json:string>Medaris et al. (1998)</json:string>
<json:string>Moller, 1999</json:string>
<json:string>Stı´ pska & Powell, 2005</json:string>
<json:string>Kroner et al., 2000</json:string>
<json:string>Will & Schma¨ dicke, 2001</json:string>
<json:string>Yang, 2004</json:string>
<json:string>MORB: Pearce, 1976</json:string>
<json:string>Dale et al., 2005</json:string>
<json:string>Wei et al., 2003</json:string>
<json:string>Schmid et al., 2003</json:string>
<json:string>White et al. (2001)</json:string>
<json:string>Carson et al., 1999</json:string>
<json:string>Moller, 1998</json:string>
<json:string>´ O’Brien & Vrana, 1995</json:string>
<json:string>Holland & Powell, 2003</json:string>
<json:string>Medaris et al., 1995</json:string>
<json:string>Schulmann et al., 2002, 2005</json:string>
<json:string>Will & ¨ Schmadicke, 2001</json:string>
<json:string>Willner et al., 2004</json:string>
<json:string>Guiraud et al., 2001</json:string>
<json:string>Will et al., 1998</json:string>
<json:string>Page et al., 2003</json:string>
<json:string>Medaris et al., 1995, 1998</json:string>
<json:string>Will & Schmadicke, 2001</json:string>
<json:string>Franceschelli et al., 1998</json:string>
<json:string>¨ O’Brien & Rotzler, 2003</json:string>
<json:string>Cooke, 2000</json:string>
<json:string>Krogh et al., 1994</json:string>
<json:string>Carson & Powell, 1997</json:string>
<json:string>Schulmann et al., 2005</json:string>
<json:string>Rapp, 1995</json:string>
<json:string>Messiga & Bettini, 1990</json:string>
<json:string>O’Brien & Rotzler, 2003</json:string>
<json:string>Racek et al., 2006</json:string>
<json:string>Dirks & Sithole, 1999</json:string>
<json:string>Thompson et al., 2001</json:string>
<json:string>Krogh Ravna, 2000</json:string>
<json:string>O’Brien, 1997a</json:string>
<json:string>Franke, 1989, 2000</json:string>
<json:string>Tollmann, 1982</json:string>
<json:string>Pattison, 2003</json:string>
<json:string>O’Brien, 1997a,b</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-R37PMQ4S-P</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - geochemistry & geophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - terre, ocean, espace</json:string>
<json:string>4 - sciences de la terre</json:string>
</inist>
</categories>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1111/j.1525-1314.2005.00607.x</json:string>
</doi>
<id>0B57F44E0BE90F3D499513AF2EF8D72B989DB704</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0B57F44E0BE90F3D499513AF2EF8D72B989DB704/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0B57F44E0BE90F3D499513AF2EF8D72B989DB704/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0B57F44E0BE90F3D499513AF2EF8D72B989DB704/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Constraining the
<hi rend="italic">P</hi>
<hi rend="italic">T</hi>
path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science Inc</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2005-10"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Constraining the
<hi rend="italic">P</hi>
<hi rend="italic">T</hi>
path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif</title>
<title level="a" type="short">P–T PATH OF MORB ECLOGITE</title>
<author xml:id="author-0000">
<persName>
<forename type="first">P.</forename>
<surname>ŠTÍPSKÁ</surname>
</persName>
<affiliation> Institute of Petrology and Structural Geology, Charles University, Albertov 6, 12843, Prague, Czech Republic ()
<address>
<country key="CZ"></country>
</address>
</affiliation>
<affiliation>Czech Geological Survey, Klárov 3, 118 21, Prague, Czech Republic
<address>
<country key="CZ"></country>
</address>
</affiliation>
<affiliation>Centre de Géochimie de Surface, UMR CNRS 7517, 1 Rue Blessig, Strasbourg, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">R.</forename>
<surname>POWELL</surname>
</persName>
<affiliation>School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<idno type="istex">0B57F44E0BE90F3D499513AF2EF8D72B989DB704</idno>
<idno type="ark">ark:/67375/WNG-R37PMQ4S-P</idno>
<idno type="DOI">10.1111/j.1525-1314.2005.00607.x</idno>
<idno type="unit">JMG607</idno>
<idno type="toTypesetVersion">file:JMG.JMG607.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Metamorphic Geology</title>
<title level="j" type="alt">JOURNAL OF METAMORPHIC GEOLOGY</title>
<idno type="pISSN">0263-4929</idno>
<idno type="eISSN">1525-1314</idno>
<idno type="book-DOI">10.1111/(ISSN)1525-1314</idno>
<idno type="book-part-DOI">10.1111/jmg.2005.23.issue-8</idno>
<idno type="product">JMG</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">23</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="725">725</biblScope>
<biblScope unit="page" to="743">743</biblScope>
<biblScope unit="page-count">19</biblScope>
<publisher>Blackwell Science Inc</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2005-10"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H
<hi rend="subscript">2</hi>
O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at
<hi rend="italic">c.</hi>
750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe
<hi rend="superscript">3+</hi>
content in clinopyroxene. Assuming no Fe
<hi rend="superscript">3+</hi>
in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe
<hi rend="superscript">3+</hi>
‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to
<hi rend="italic">c.</hi>
12 kbar occurred essentially isothermally from the metamorphic peak under H
<hi rend="subscript">2</hi>
O‐undersaturated conditions (
<hi rend="italic">c.</hi>
1.3 mol.% H
<hi rend="subscript">2</hi>
O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to
<hi rend="italic">c.</hi>
8 kbar ends as an amphibolite if it is H
<hi rend="subscript">2</hi>
O saturated, but if it is H
<hi rend="subscript">2</hi>
O‐undersaturated it contains assemblages with orthopyroxene. Increasing H
<hi rend="subscript">2</hi>
O undersaturation causes an earlier transition to SiO
<hi rend="subscript">2</hi>
undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">Bohemian Massif</term>
<term xml:id="k2">garnet‐clinopyroxene thermometry</term>
<term xml:id="k3">MORB eclogite</term>
<term xml:id="k4">prograde garnet zoning</term>
<term xml:id="k5">pseudosection</term>
</keywords>
<keywords rend="tocHeading1">
<term>Original Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0B57F44E0BE90F3D499513AF2EF8D72B989DB704/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science Inc</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1525-1314</doi>
<issn type="print">0263-4929</issn>
<issn type="electronic">1525-1314</issn>
<idGroup>
<id type="product" value="JMG"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF METAMORPHIC GEOLOGY">Journal of Metamorphic Geology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10008">
<doi origin="wiley">10.1111/jmg.2005.23.issue-8</doi>
<numberingGroup>
<numbering type="journalVolume" number="23">23</numbering>
<numbering type="journalIssue" number="8">8</numbering>
</numberingGroup>
<coverDate startDate="2005-10">October 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="7" status="forIssue">
<doi origin="wiley">10.1111/j.1525-1314.2005.00607.x</doi>
<idGroup>
<id type="unit" value="JMG607"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="19"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2005-09-27"></event>
<event type="publishedOnlineFinalForm" date="2005-09-27"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.4 mode:FullText source:FullText result:FullText" date="2010-03-29"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="725">725</numbering>
<numbering type="pageLast" number="743">743</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JMG.JMG607.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 23 March 2005; revision accepted 9 August 2005.</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="16"></count>
<count type="tableTotal" number="2"></count>
</countGroup>
<titleGroup>
<title type="main">Constraining the
<i>P</i>
<i>T</i>
path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif</title>
<title type="shortAuthors">P. ŠTÍPSKÁ & R. POWELL</title>
<title type="short">
<i>P</i>
<i>T</i>
PATH OF MORB ECLOGITE</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2 #a3">
<personName>
<givenNames>P.</givenNames>
<familyName>ŠTÍPSKÁ</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a4">
<personName>
<givenNames>R.</givenNames>
<familyName>POWELL</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="CZ">
<unparsedAffiliation> Institute of Petrology and Structural Geology, Charles University, Albertov 6, 12843, Prague, Czech Republic (
<email normalForm="stipska@illite.u-strasbg.fr">stipska@illite.u‐strasbg.fr</email>
)</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="CZ">
<unparsedAffiliation>Czech Geological Survey, Klárov 3, 118 21, Prague, Czech Republic</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="FR">
<unparsedAffiliation>Centre de Géochimie de Surface, UMR CNRS 7517, 1 Rue Blessig, Strasbourg, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="AU">
<unparsedAffiliation>School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">Bohemian Massif</keyword>
<keyword xml:id="k2">garnet‐clinopyroxene thermometry</keyword>
<keyword xml:id="k3">MORB eclogite</keyword>
<keyword xml:id="k4">prograde garnet zoning</keyword>
<keyword xml:id="k5">pseudosection</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H
<sub>2</sub>
O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at
<i>c.</i>
750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe
<sup>3+</sup>
content in clinopyroxene. Assuming no Fe
<sup>3+</sup>
in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe
<sup>3+</sup>
‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to
<i>c.</i>
12 kbar occurred essentially isothermally from the metamorphic peak under H
<sub>2</sub>
O‐undersaturated conditions (
<i>c.</i>
1.3 mol.% H
<sub>2</sub>
O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to
<i>c.</i>
8 kbar ends as an amphibolite if it is H
<sub>2</sub>
O saturated, but if it is H
<sub>2</sub>
O‐undersaturated it contains assemblages with orthopyroxene. Increasing H
<sub>2</sub>
O undersaturation causes an earlier transition to SiO
<sub>2</sub>
undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>P–T PATH OF MORB ECLOGITE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif</title>
</titleInfo>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">ŠTÍPSKÁ</namePart>
<affiliation>Institute of Petrology and Structural Geology, Charles University, Albertov 6, 12843, Prague, Czech Republic (stipska@illite.u‐strasbg.fr)</affiliation>
<affiliation>Czech Geological Survey, Klárov 3, 118 21, Prague, Czech Republic</affiliation>
<affiliation>Centre de Géochimie de Surface, UMR CNRS 7517, 1 Rue Blessig, Strasbourg, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">POWELL</namePart>
<affiliation>School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Science Inc</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2005-10</dateIssued>
<edition>Received 23 March 2005; revision accepted 9 August 2005.</edition>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">16</extent>
<extent unit="tables">2</extent>
</physicalDescription>
<abstract lang="en">A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>Bohemian Massif</topic>
<topic>garnet‐clinopyroxene thermometry</topic>
<topic>MORB eclogite</topic>
<topic>prograde garnet zoning</topic>
<topic>pseudosection</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Metamorphic Geology</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0263-4929</identifier>
<identifier type="eISSN">1525-1314</identifier>
<identifier type="DOI">10.1111/(ISSN)1525-1314</identifier>
<identifier type="PublisherID">JMG</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>23</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>725</start>
<end>743</end>
<total>19</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0B57F44E0BE90F3D499513AF2EF8D72B989DB704</identifier>
<identifier type="ark">ark:/67375/WNG-R37PMQ4S-P</identifier>
<identifier type="DOI">10.1111/j.1525-1314.2005.00607.x</identifier>
<identifier type="ArticleID">JMG607</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Science Inc</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/0B57F44E0BE90F3D499513AF2EF8D72B989DB704/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000217 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000217 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0B57F44E0BE90F3D499513AF2EF8D72B989DB704
   |texte=   Constraining the P–T path of a MORB‐type eclogite using pseudosections, garnet zoning and garnet‐clinopyroxene thermometry: an example from the Bohemian Massif
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024