Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The wake behind a cylinder rolling on a wall at varying rotation rates

Identifieur interne : 007057 ( Main/Curation ); précédent : 007056; suivant : 007058

The wake behind a cylinder rolling on a wall at varying rotation rates

Auteurs : B. E. Stewart [Australie, France] ; M. C. Thompson [Australie] ; T. Leweke [France] ; K. Hourigan [Australie]

Source :

RBID : ISTEX:2B17009490273F609EA78D95997555EAC499E73B

Descripteurs français

English descriptors

Abstract

A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow. Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding. An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.

Url:
DOI: 10.1017/S0022112009993053

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:2B17009490273F609EA78D95997555EAC499E73B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>The wake behind a cylinder rolling on a wall at varying rotation rates</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2B17009490273F609EA78D95997555EAC499E73B</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1017/S0022112009993053</idno>
<idno type="url">https://api.istex.fr/document/2B17009490273F609EA78D95997555EAC499E73B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000840</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000840</idno>
<idno type="wicri:Area/Istex/Curation">000840</idno>
<idno type="wicri:Area/Istex/Checkpoint">000955</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000955</idno>
<idno type="wicri:doubleKey">0022-1120:2010:Stewart B:the:wake:behind</idno>
<idno type="wicri:Area/Main/Merge">007590</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:10-0248008</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002688</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003898</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001F25</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001F25</idno>
<idno type="wicri:doubleKey">0022-1120:2010:Stewart B:the:wake:behind</idno>
<idno type="wicri:Area/Main/Merge">007993</idno>
<idno type="wicri:Area/Main/Curation">007057</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">The wake behind a cylinder rolling on a wall at varying rotation rates</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800</wicri:regionArea>
<wicri:noRegion>Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800</wicri:regionArea>
<wicri:noRegion>Victoria 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13</wicri:regionArea>
<wicri:noRegion>13384 Marseille cedex 13</wicri:noRegion>
<wicri:noRegion>F-13384 Marseille cedex 13</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800</wicri:regionArea>
<wicri:noRegion>Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800</wicri:regionArea>
<wicri:noRegion>Victoria 3800</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Fluid Mechanics</title>
<title level="j" type="abbrev">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<idno type="eISSN">1469-7645</idno>
<imprint>
<publisher>Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<date type="published" when="2010-04-10">2010-04-10</date>
<biblScope unit="volume">648</biblScope>
<biblScope unit="page" from="225">225</biblScope>
<biblScope unit="page" to="256">256</biblScope>
</imprint>
<idno type="ISSN">0022-1120</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Digital simulation</term>
<term>Flow visualization</term>
<term>Lift coefficient</term>
<term>Mesh generation</term>
<term>Modelling</term>
<term>Rolling sliding contact</term>
<term>Rotating cylinder</term>
<term>Translation</term>
<term>Unsteady flow</term>
<term>Vortex flow</term>
<term>Vortex shedding</term>
<term>Vorticity</term>
<term>Wakes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>4732F</term>
<term>Coefficient portance</term>
<term>Contact roulant glissant</term>
<term>Cylindre tournant</term>
<term>Détachement tourbillonnaire</term>
<term>Ecoulement instationnaire</term>
<term>Ecoulement tourbillonnaire</term>
<term>Génération maille</term>
<term>Modélisation</term>
<term>Sillage</term>
<term>Simulation numérique</term>
<term>Translation</term>
<term>Visualisation écoulement</term>
<term>Vorticité</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow. Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding. An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.</div>
</front>
</TEI>
<double idat="0022-1120:2010:Stewart B:the:wake:behind">
<INIST>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The wake behind a cylinder rolling on a wall at varying rotation rates</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>13384 Marseille</wicri:noRegion>
<placeName>
<settlement type="city">Marseille</settlement>
<region type="région" nuts="2">Provence-Alpes-Côte d'Azur</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>13384 Marseille</wicri:noRegion>
<placeName>
<settlement type="city">Marseille</settlement>
<region type="région" nuts="2">Provence-Alpes-Côte d'Azur</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0248008</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0248008 INIST</idno>
<idno type="RBID">Pascal:10-0248008</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002688</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003898</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001F25</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001F25</idno>
<idno type="wicri:doubleKey">0022-1120:2010:Stewart B:the:wake:behind</idno>
<idno type="wicri:Area/Main/Merge">007993</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The wake behind a cylinder rolling on a wall at varying rotation rates</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>13384 Marseille</wicri:noRegion>
<placeName>
<settlement type="city">Marseille</settlement>
<region type="région" nuts="2">Provence-Alpes-Côte d'Azur</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>13384 Marseille</wicri:noRegion>
<placeName>
<settlement type="city">Marseille</settlement>
<region type="région" nuts="2">Provence-Alpes-Côte d'Azur</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Digital simulation</term>
<term>Flow visualization</term>
<term>Lift coefficient</term>
<term>Mesh generation</term>
<term>Modelling</term>
<term>Rolling sliding contact</term>
<term>Rotating cylinder</term>
<term>Translation</term>
<term>Unsteady flow</term>
<term>Vortex flow</term>
<term>Vortex shedding</term>
<term>Vorticity</term>
<term>Wakes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ecoulement instationnaire</term>
<term>Ecoulement tourbillonnaire</term>
<term>Détachement tourbillonnaire</term>
<term>Sillage</term>
<term>Cylindre tournant</term>
<term>Génération maille</term>
<term>Modélisation</term>
<term>Simulation numérique</term>
<term>Visualisation écoulement</term>
<term>Contact roulant glissant</term>
<term>Translation</term>
<term>Vorticité</term>
<term>Coefficient portance</term>
<term>4732F</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20-500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow. Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Re
<sub>c</sub>
of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Re
<sub>c</sub>
and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (∼5 %) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding. An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.</div>
</front>
</TEI>
</INIST>
<ISTEX>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>The wake behind a cylinder rolling on a wall at varying rotation rates</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2B17009490273F609EA78D95997555EAC499E73B</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1017/S0022112009993053</idno>
<idno type="url">https://api.istex.fr/document/2B17009490273F609EA78D95997555EAC499E73B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000840</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000840</idno>
<idno type="wicri:Area/Istex/Curation">000840</idno>
<idno type="wicri:Area/Istex/Checkpoint">000955</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000955</idno>
<idno type="wicri:doubleKey">0022-1120:2010:Stewart B:the:wake:behind</idno>
<idno type="wicri:Area/Main/Merge">007590</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">The wake behind a cylinder rolling on a wall at varying rotation rates</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800</wicri:regionArea>
<wicri:noRegion>Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800</wicri:regionArea>
<wicri:noRegion>Victoria 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13</wicri:regionArea>
<wicri:noRegion>13384 Marseille cedex 13</wicri:noRegion>
<wicri:noRegion>F-13384 Marseille cedex 13</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800</wicri:regionArea>
<wicri:noRegion>Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800</wicri:regionArea>
<wicri:noRegion>Victoria 3800</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Fluid Mechanics</title>
<title level="j" type="abbrev">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<idno type="eISSN">1469-7645</idno>
<imprint>
<publisher>Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<date type="published" when="2010-04-10">2010-04-10</date>
<biblScope unit="volume">648</biblScope>
<biblScope unit="page" from="225">225</biblScope>
<biblScope unit="page" to="256">256</biblScope>
</imprint>
<idno type="ISSN">0022-1120</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow. Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding. An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.</div>
</front>
</TEI>
</ISTEX>
</double>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007057 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 007057 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:2B17009490273F609EA78D95997555EAC499E73B
   |texte=   The wake behind a cylinder rolling on a wall at varying rotation rates
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024