Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The wake behind a cylinder rolling on a wall at varying rotation rates

Identifieur interne : 000840 ( Istex/Corpus ); précédent : 000839; suivant : 000841

The wake behind a cylinder rolling on a wall at varying rotation rates

Auteurs : B. E. Stewart ; M. C. Thompson ; T. Leweke ; K. Hourigan

Source :

RBID : ISTEX:2B17009490273F609EA78D95997555EAC499E73B

Abstract

A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow. Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding. An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.

Url:
DOI: 10.1017/S0022112009993053

Links to Exploration step

ISTEX:2B17009490273F609EA78D95997555EAC499E73B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>The wake behind a cylinder rolling on a wall at varying rotation rates</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: stewart.bronwyn01@gmail.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<mods:affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2B17009490273F609EA78D95997555EAC499E73B</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1017/S0022112009993053</idno>
<idno type="url">https://api.istex.fr/document/2B17009490273F609EA78D95997555EAC499E73B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000840</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000840</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">The wake behind a cylinder rolling on a wall at varying rotation rates</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: stewart.bronwyn01@gmail.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<mods:affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Fluid Mechanics</title>
<title level="j" type="abbrev">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<idno type="eISSN">1469-7645</idno>
<imprint>
<publisher>Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<date type="published" when="2010-04-10">2010-04-10</date>
<biblScope unit="volume">648</biblScope>
<biblScope unit="page" from="225">225</biblScope>
<biblScope unit="page" to="256">256</biblScope>
</imprint>
<idno type="ISSN">0022-1120</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow. Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding. An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.</div>
</front>
</TEI>
<istex>
<corpusName>cambridge</corpusName>
<author>
<json:item>
<name>B. E. STEWART</name>
<affiliations>
<json:string>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</json:string>
<json:string>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</json:string>
<json:string>E-mail: stewart.bronwyn01@gmail.com</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. C. THOMPSON</name>
<affiliations>
<json:string>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. LEWEKE</name>
<affiliations>
<json:string>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>K. HOURIGAN</name>
<affiliations>
<json:string>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</json:string>
<json:string>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>99305</json:string>
</articleId>
<arkIstex>ark:/67375/6GQ-RDPPLFFL-1</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow. Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding. An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>14391</pdfWordCount>
<pdfCharCount>77284</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>32</pdfPageCount>
<pdfPageSize>493.228 x 700.157 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>383</abstractWordCount>
<abstractCharCount>2493</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>The wake behind a cylinder rolling on a wall at varying rotation rates</title>
<pii>
<json:string>S0022112009993053</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Fluid Mechanics</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0022-1120</json:string>
</issn>
<eissn>
<json:string>1469-7645</json:string>
</eissn>
<publisherId>
<json:string>FLM</json:string>
</publisherId>
<volume>648</volume>
<pages>
<first>225</first>
<last>256</last>
<total>32</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/6GQ-RDPPLFFL-1</json:string>
</ark>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1017/S0022112009993053</json:string>
</doi>
<id>2B17009490273F609EA78D95997555EAC499E73B</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/2B17009490273F609EA78D95997555EAC499E73B/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/2B17009490273F609EA78D95997555EAC499E73B/fulltext/zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/2B17009490273F609EA78D95997555EAC499E73B/fulltext/txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/2B17009490273F609EA78D95997555EAC499E73B/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">The wake behind a cylinder rolling on a wall at varying rotation rates</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<availability>
<licence>
<p>Copyright © Cambridge University Press 2010</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-G3RCRD03-V">cambridge</p>
</availability>
<date>2010</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">The wake behind a cylinder rolling on a wall at varying rotation rates</title>
<author xml:id="author-0000" corresp="yes">
<persName>
<forename type="first">B. E.</forename>
<surname>STEWART</surname>
</persName>
<email>stewart.bronwyn01@gmail.com</email>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">M. C.</forename>
<surname>THOMPSON</surname>
</persName>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">T.</forename>
<surname>LEWEKE</surname>
</persName>
<affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">K.</forename>
<surname>HOURIGAN</surname>
</persName>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<affiliation>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
</author>
<idno type="istex">2B17009490273F609EA78D95997555EAC499E73B</idno>
<idno type="ark">ark:/67375/6GQ-RDPPLFFL-1</idno>
<idno type="DOI">10.1017/S0022112009993053</idno>
<idno type="PII">S0022112009993053</idno>
<idno type="article-id">99305</idno>
</analytic>
<monogr>
<title level="j">Journal of Fluid Mechanics</title>
<title level="j" type="abbrev">J. Fluid Mech.</title>
<idno type="pISSN">0022-1120</idno>
<idno type="eISSN">1469-7645</idno>
<idno type="publisher-id">FLM</idno>
<imprint>
<publisher>Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<date type="published" when="2010-04-10"></date>
<biblScope unit="volume">648</biblScope>
<biblScope unit="page" from="225">225</biblScope>
<biblScope unit="page" to="256">256</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract style="normal">
<p>A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow. Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding. An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2010-04-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus cambridge not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="US-ASCII"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.2 20060430//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article dtd-version="2.2" article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">FLM</journal-id>
<journal-title>Journal of Fluid Mechanics</journal-title>
<abbrev-journal-title>J. Fluid Mech.</abbrev-journal-title>
<issn pub-type="ppub">0022-1120</issn>
<issn pub-type="epub">1469-7645</issn>
<publisher>
<publisher-name>Cambridge University Press</publisher-name>
<publisher-loc>Cambridge, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1017/S0022112009993053</article-id>
<article-id pub-id-type="pii">S0022112009993053</article-id>
<article-id pub-id-type="publisher-id">99305</article-id>
<title-group>
<article-title>The wake behind a cylinder rolling on a wall at varying rotation rates</article-title>
<alt-title alt-title-type="right-running">The rolling cylinder wake</alt-title>
<alt-title alt-title-type="left-running">B. E. Stewart, M. C. Thompson, T. Leweke and K. Hourigan</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>STEWART</surname>
<given-names>B. E.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor001"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>THOMPSON</surname>
<given-names>M. C.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>LEWEKE</surname>
<given-names>T.</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>HOURIGAN</surname>
<given-names>K.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>
<sup>1</sup>
</label>
<addr-line>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR)</addr-line>
,
<addr-line>Department of Mechanical and Aerospace Engineering</addr-line>
,
<institution>Monash University</institution>
,
<addr-line>Melbourne</addr-line>
,
<addr-line>Victoria 3800</addr-line>
,
<country>Australia</country>
</aff>
<aff id="aff002">
<label>
<sup>2</sup>
</label>
<addr-line>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE)</addr-line>
,
<institution>CNRS/Universités Aix-Marseille</institution>
,
<addr-line>49 rue Frédéric Joliot-Curie</addr-line>
,
<addr-line>BP 146</addr-line>
,
<addr-line>F-13384 Marseille cedex 13</addr-line>
,
<country>France</country>
</aff>
<aff id="aff003">
<label>
<sup>3</sup>
</label>
<addr-line>Division of Biological Engineering</addr-line>
,
<institution>Monash University</institution>
,
<addr-line>Melbourne</addr-line>
,
<addr-line>Victoria 3800</addr-line>
,
<country>Australia</country>
</aff>
<author-notes>
<corresp id="cor001">
<label></label>
Email address for correspondence:
<email xlink:href="stewart.bronwyn01@gmail.com">stewart.bronwyn01@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>10</day>
<month>04</month>
<year>2010</year>
</pub-date>
<volume>648</volume>
<fpage seq="12">225</fpage>
<lpage>256</lpage>
<history>
<date date-type="received">
<day>22</day>
<month>02</month>
<year>2009</year>
</date>
<date date-type="rev-recd">
<day>26</day>
<month>10</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>10</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © Cambridge University Press 2010</copyright-statement>
<copyright-year>2010</copyright-year>
<copyright-holder>Cambridge University Press</copyright-holder>
</permissions>
<abstract abstract-type="normal">
<p>A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow.</p>
<p>Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number
<italic>Re</italic>
<sub>
<italic>c</italic>
</sub>
of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of
<italic>Re</italic>
<sub>
<italic>c</italic>
</sub>
and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding.</p>
<p>An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.</p>
</abstract>
<counts>
<page-count count="32"></page-count>
</counts>
<custom-meta-wrap>
<custom-meta>
<meta-name>pdf</meta-name>
<meta-value>S0022112009993053a.pdf</meta-value>
</custom-meta>
<custom-meta>
<meta-name>dispart</meta-name>
<meta-value>Papers</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<back>
<ref-list>
<title>REFERENCES</title>
<ref>
<citation citation-type="journal" id="ref1">
<name>
<surname>Armaly</surname>
<given-names>B. F.</given-names>
</name>
,
<name>
<surname>Durst</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Pereira</surname>
<given-names>J. C. F.</given-names>
</name>
&
<name>
<surname>Schönung</surname>
<given-names>B.</given-names>
</name>
<year>1983</year>
<article-title>Experimental and theoretical investigation of backward-facing step flow</article-title>
.
<source>J. Fluid Mech.</source>
<volume>127</volume>
,
<fpage>473</fpage>
<lpage>496</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref2">
<name>
<surname>Arnal</surname>
<given-names>M. P.</given-names>
</name>
,
<name>
<surname>Goering</surname>
<given-names>D. J.</given-names>
</name>
&
<name>
<surname>Humphrey</surname>
<given-names>J. A. C.</given-names>
</name>
<year>1991</year>
<article-title>Vortex shedding from a bluff body adjacent to a plane sliding wall</article-title>
.
<source>Trans. ASME: J. Fluids Engng</source>
<volume>113</volume>
,
<fpage>384</fpage>
<lpage>398</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref3">
<name>
<surname>Barkley</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Gomes</surname>
<given-names>M. G. M.</given-names>
</name>
&
<name>
<surname>Henderson</surname>
<given-names>R. D.</given-names>
</name>
<year>2002</year>
<article-title>Three-dimensional instability in flow over a backward-facing step</article-title>
.
<source>J. Fluid Mech.</source>
<volume>473</volume>
,
<fpage>167</fpage>
<lpage>190</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref4">
<name>
<surname>Barkley</surname>
<given-names>D.</given-names>
</name>
&
<name>
<surname>Henderson</surname>
<given-names>R. D.</given-names>
</name>
<year>1996</year>
<article-title>Three-dimensional Floquet stability analysis of the wake of a circular cylinder</article-title>
.
<source>J. Fluid Mech.</source>
<volume>322</volume>
,
<fpage>215</fpage>
<lpage>241</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref5">
<name>
<surname>Barkley</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Tuckerman</surname>
<given-names>L. S.</given-names>
</name>
&
<name>
<surname>Golubitsky</surname>
<given-names>M.</given-names>
</name>
<year>2000</year>
<article-title>Bifurcation theory for three-dimensional flow in the wake of a circular cylinder</article-title>
.
<source>Phys. Rev. E</source>
<volume>61</volume>
<issue>(5)</issue>
,
<fpage>5247</fpage>
<lpage>5252</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref6">
<name>
<surname>Barnes</surname>
<given-names>F. H.</given-names>
</name>
<year>2000</year>
<article-title>Vortex shedding in the wake of a rotating circular cylinder at low Reynolds numbers</article-title>
.
<source>J. Phys. D</source>
<volume>33</volume>
,
<fpage>L141</fpage>
<lpage>L144</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref7">
<name>
<surname>Bayly</surname>
<given-names>B. J.</given-names>
</name>
<year>1988</year>
<article-title>Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows</article-title>
.
<source>Phys. Fluids</source>
<volume>31</volume>
<issue>(1)</issue>
,
<fpage>56</fpage>
<lpage>64</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref8">
<name>
<surname>Bearman</surname>
<given-names>P. W.</given-names>
</name>
&
<name>
<surname>Zdravkovich</surname>
<given-names>M. M.</given-names>
</name>
<year>1978</year>
<article-title>Flow around a circular cylinder near a plane boundary</article-title>
.
<source>J. Fluid Mech.</source>
<volume>89</volume>
,
<fpage>33</fpage>
<lpage>47</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref9">
<name>
<surname>Beaudoin</surname>
<given-names>J.-F.</given-names>
</name>
,
<name>
<surname>Cadot</surname>
<given-names>O.</given-names>
</name>
,
<name>
<surname>Aider</surname>
<given-names>J.-L.</given-names>
</name>
&
<name>
<surname>Wesfreid</surname>
<given-names>J. E.</given-names>
</name>
<year>2004</year>
<article-title>Three-dimensional stationary flow over a backward-facing step</article-title>
.
<source>Eur. J. Mech</source>
B
<volume>23</volume>
,
<fpage>147</fpage>
<lpage>155</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref10">
<name>
<surname>Chen</surname>
<given-names>Y.-M.</given-names>
</name>
,
<name>
<surname>Ou</surname>
<given-names>Y.-R.</given-names>
</name>
&
<name>
<surname>Pearlstein</surname>
<given-names>A. J.</given-names>
</name>
<year>1993</year>
<article-title>Development of the wake behind a circular cylinder impulsively started into a rotatory and rectilinear motion</article-title>
.
<source>J. Fluid Mech.</source>
<volume>253</volume>
,
<fpage>449</fpage>
<lpage>484</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref11">
<name>
<surname>Cheng</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Luo</surname>
<given-names>L.-S.</given-names>
</name>
<year>2007</year>
<article-title>Characteristics of two-dimensional flow around a rotating circular cylinder near a plane wall</article-title>
.
<source>Phys. Fluids</source>
<volume>19</volume>
, 063601-
<fpage>1</fpage>
–063601-
<lpage>17</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref12">
<name>
<surname>Chorin</surname>
<given-names>A. J.</given-names>
</name>
<year>1968</year>
<article-title>Numerical solution of the Navier–Stokes equations</article-title>
.
<source>Math. Comput.</source>
<volume>22</volume>
,
<fpage>745</fpage>
<lpage>762</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref13">
<name>
<surname>Dennis</surname>
<given-names>S. C. R.</given-names>
</name>
&
<name>
<surname>Chang</surname>
<given-names>G.-Z.</given-names>
</name>
<year>1970</year>
<article-title>Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100</article-title>
.
<source>J. Fluid Mech.</source>
<volume>42</volume>
,
<fpage>471</fpage>
<lpage>489</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref14">
<name>
<surname>Díaz</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Gavaldà</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Kawakk</surname>
<given-names>J. G.</given-names>
</name>
,
<name>
<surname>Keffer</surname>
<given-names>J. F.</given-names>
</name>
&
<name>
<surname>Giralt</surname>
<given-names>F.</given-names>
</name>
<year>1983</year>
<article-title>Vortex shedding from a spinning cylinder</article-title>
.
<source>Phys. Fluids</source>
<volume>26</volume>
<issue>(12)</issue>
,
<fpage>3454</fpage>
<lpage>3460</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref15">
<name>
<surname>Dipankar</surname>
<given-names>A.</given-names>
</name>
&
<name>
<surname>Sengupta</surname>
<given-names>T. K.</given-names>
</name>
<year>2005</year>
<article-title>Flow past a circular cylinder in the vicinity of a plane wall</article-title>
.
<source>J. Fluids Struct.</source>
<volume>20</volume>
<issue>(3)</issue>
,
<fpage>403</fpage>
<lpage>423</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" id="ref16">
<name>
<surname>Drazin</surname>
<given-names>P. G.</given-names>
</name>
&
<name>
<surname>Reid</surname>
<given-names>W. H.</given-names>
</name>
<year>1981</year>
<source>Hydrodynamic Stability</source>
.
<publisher-name>Cambridge University Press</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref17">
<name>
<surname>Fornberg</surname>
<given-names>B.</given-names>
</name>
<year>1985</year>
<article-title>Steady viscous flow past a circular cylinder up to Reynolds number 600</article-title>
.
<source>J. Comput. Phys.</source>
<volume>61</volume>
,
<fpage>297</fpage>
<lpage>320</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref18">
<name>
<surname>Ghia</surname>
<given-names>K. N.</given-names>
</name>
,
<name>
<surname>Osswald</surname>
<given-names>G. A.</given-names>
</name>
&
<name>
<surname>Ghia</surname>
<given-names>U.</given-names>
</name>
<year>1989</year>
<article-title>Analysis of incompressible massively separated viscous flows using unsteady Navier–Stokes equations</article-title>
.
<source>Intl J. Numer. Methods Fluids</source>
<volume>9</volume>
,
<fpage>1025</fpage>
<lpage>1050</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref19">
<name>
<surname>Griffith</surname>
<given-names>M. D.</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
,
<name>
<surname>Leweke</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
&
<name>
<surname>Anderson</surname>
<given-names>W. P.</given-names>
</name>
<year>2007</year>
<article-title>Wake behaviour and instability of flow through a partially blocked channel</article-title>
.
<source>J. Fluid Mech.</source>
<volume>582</volume>
,
<fpage>319</fpage>
<lpage>340</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref20">
<name>
<surname>Henderson</surname>
<given-names>R. D.</given-names>
</name>
<year>1997</year>
<article-title>Nonlinear dynamics and pattern formation in turbulent wake transition</article-title>
.
<source>J. Fluid Mech.</source>
<volume>352</volume>
,
<fpage>65</fpage>
<lpage>112</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref21">
<name>
<surname>Huang</surname>
<given-names>W.-X.</given-names>
</name>
&
<name>
<surname>Sung</surname>
<given-names>H. J.</given-names>
</name>
<year>2007</year>
<article-title>Vortex shedding from a circular cylinder near a moving wall</article-title>
.
<source>J. Fluids Struct.</source>
<volume>23</volume>
,
<fpage>1064</fpage>
<lpage>1076</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref22">
<name>
<surname>Ingham</surname>
<given-names>D. B.</given-names>
</name>
<year>1983</year>
<article-title>Steady flow past a rotating cylinder</article-title>
.
<source>Comp. Fluids</source>
<volume>11</volume>
<issue>(4)</issue>
,
<fpage>351</fpage>
<lpage>366</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref23">
<name>
<surname>Jackson</surname>
<given-names>C. P.</given-names>
</name>
<year>1987</year>
<article-title>A finite-element study of the onset of vortex shedding in the flow past variously shaped bodies</article-title>
.
<source>J. Fluid Mech.</source>
<volume>182</volume>
,
<fpage>23</fpage>
<lpage>45</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref24">
<name>
<surname>Jaminet</surname>
<given-names>J. F.</given-names>
</name>
&
<name>
<surname>Van Atta</surname>
<given-names>C. W.</given-names>
</name>
<year>1969</year>
<article-title>Experiments on vortex shedding from rotating circular cylinders</article-title>
.
<source>AIAA J.</source>
<volume>7</volume>
,
<fpage>1817</fpage>
<lpage>1819</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref25">
<name>
<surname>Kang</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Choi</surname>
<given-names>H.</given-names>
</name>
&
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<year>1999</year>
<article-title>Laminar flow past a rotating circular cylinder</article-title>
.
<source>Phys. Fluids</source>
<volume>11</volume>
<issue>(11)</issue>
,
<fpage>3312</fpage>
<lpage>3321</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref26">
<name>
<surname>Kano</surname>
<given-names>I.</given-names>
</name>
&
<name>
<surname>Yagita</surname>
<given-names>M.</given-names>
</name>
<year>2002</year>
<article-title>Flow around a rotating circular cylinder near a moving plane wall</article-title>
.
<source>Japanese Soc. Mech. Eng. Intl J</source>
B
<volume>45</volume>
<issue>(2)</issue>
,
<fpage>259</fpage>
<lpage>268</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref27">
<name>
<surname>Karniadakis</surname>
<given-names>G. E.</given-names>
</name>
,
<name>
<surname>Israeli</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Orszag</surname>
<given-names>S. A.</given-names>
</name>
<year>1991</year>
<article-title>High-order splitting methods for the incompressible Navier–Stokes equations</article-title>
.
<source>J. Comput. Phys.</source>
<volume>97</volume>
,
<fpage>414</fpage>
<lpage>443</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref28">
<name>
<surname>Kawaguti</surname>
<given-names>M.</given-names>
</name>
<year>1966</year>
<article-title>Numerical study of a viscous fluid flow past a circular cylinder</article-title>
.
<source>J. Phys. Soc. Jpn</source>
<volume>21</volume>
<issue>(10)</issue>
,
<fpage>2055</fpage>
<lpage>2062</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref29">
<name>
<surname>Kerswell</surname>
<given-names>R. R.</given-names>
</name>
<year>2002</year>
<article-title>Elliptical instability</article-title>
.
<source>Annu. Rev. Fluid Mech.</source>
<volume>34</volume>
,
<fpage>83</fpage>
<lpage>113</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref30">
<name>
<surname>Landman</surname>
<given-names>M. J.</given-names>
</name>
&
<name>
<surname>Saffman</surname>
<given-names>P. G.</given-names>
</name>
<year>1987</year>
<article-title>The three-dimensional instability of strained vortices in a viscous fluid</article-title>
.
<source>Phys. Fluids</source>
<volume>30</volume>
,
<fpage>2339</fpage>
<lpage>2342</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref31">
<name>
<surname>Le Dizes</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Laporte</surname>
<given-names>F.</given-names>
</name>
<year>2002</year>
<article-title>Theoretical predictions for the elliptic instability in a two-vortex flow</article-title>
.
<source>J. Fluid Mech.</source>
<volume>471</volume>
,
<fpage>169</fpage>
<lpage>201</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref32">
<name>
<surname>Le Dizes</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Verga</surname>
<given-names>A.</given-names>
</name>
<year>2002</year>
<article-title>Viscous interaction of two co-rotating vortices before merging</article-title>
.
<source>J. Fluid Mech.</source>
<volume>467</volume>
,
<fpage>389</fpage>
<lpage>410</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref33">
<name>
<surname>Lei</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Cheng</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Armfield</surname>
<given-names>S. W.</given-names>
</name>
&
<name>
<surname>Kavanagh</surname>
<given-names>K.</given-names>
</name>
<year>2000</year>
<article-title>Vortex shedding suppression for flow over a circular cylinder near a plane boundary</article-title>
.
<source>Ocean Engng</source>
<volume>27</volume>
,
<fpage>1109</fpage>
<lpage>1127</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref34">
<name>
<surname>Lei</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Cheng</surname>
<given-names>L.</given-names>
</name>
&
<name>
<surname>Kavanagh</surname>
<given-names>K.</given-names>
</name>
<year>1999</year>
<article-title>Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder</article-title>
.
<source>J. Wind Engng Indus. Aerodyn.</source>
<volume>80</volume>
,
<fpage>263</fpage>
<lpage>286</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref35">
<name>
<surname>Leontini</surname>
<given-names>J. S.</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
&
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
<year>2007</year>
<article-title>Three-dimensional transition in the wake of a transversely oscillating cylinder</article-title>
.
<source>J. Fluid Mech.</source>
<volume>577</volume>
,
<fpage>79</fpage>
<lpage>104</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref36">
<name>
<surname>Leweke</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Williamson</surname>
<given-names>C. H. K.</given-names>
</name>
<year>1998</year>
<article-title>Three-dimensional instabilities in wake transition</article-title>
.
<source>Eur. J. Mech.</source>
B
<volume>17</volume>
<issue>(4)</issue>
,
<fpage>571</fpage>
<lpage>586</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref37">
<name>
<surname>Lim</surname>
<given-names>T. T.</given-names>
</name>
,
<name>
<surname>Sengupta</surname>
<given-names>T. K.</given-names>
</name>
&
<name>
<surname>Chattopadhyay</surname>
<given-names>M.</given-names>
</name>
<year>2004</year>
<article-title>A visual study of vortex-induced subcritical instability on a flat plate boundary layer</article-title>
.
<source>Exp. Fluids</source>
<volume>37</volume>
,
<fpage>47</fpage>
<lpage>55</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref38">
<name>
<surname>Mittal</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Kumar</surname>
<given-names>B.</given-names>
</name>
<year>2003</year>
<article-title>Flow past a rotating cylinder</article-title>
.
<source>J. Fluid Mech.</source>
<volume>476</volume>
,
<fpage>303</fpage>
<lpage>334</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref39">
<name>
<surname>Nishino</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Roberts</surname>
<given-names>G. T.</given-names>
</name>
&
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<year>2007</year>
<article-title>Vortex shedding from a circular cylinder near a moving ground</article-title>
.
<source>Phys. Fluids</source>
<volume>19</volume>
, 025103-
<fpage>1</fpage>
–025103-
<lpage>12</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref40">
<name>
<surname>Provansal</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Mathis</surname>
<given-names>C.</given-names>
</name>
&
<name>
<surname>Boyer</surname>
<given-names>L.</given-names>
</name>
<year>1987</year>
<article-title>Benard–von Kármán instability: transient and forced regimes</article-title>
.
<source>J. Fluid Mech.</source>
<volume>182</volume>
,
<fpage>1</fpage>
<lpage>22</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="other" id="ref41">
<name>
<surname>Roshko</surname>
<given-names>A.</given-names>
</name>
<year>1954</year>
On the development of turbulent wakes from vortex streets.
<italic>Tech Rep.</italic>
1191. National Advisory Committee for Aeronautics.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref42">
<name>
<surname>Ryan</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
&
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
<year>2005</year>
<article-title>Three-dimensional transition in the wake of bluff elongated cylinders</article-title>
.
<source>J. Fluid Mech.</source>
<volume>538</volume>
,
<fpage>1</fpage>
<lpage>29</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref43">
<name>
<surname>Seddon</surname>
<given-names>J. R. T.</given-names>
</name>
&
<name>
<surname>Mullin</surname>
<given-names>T.</given-names>
</name>
<year>2006</year>
<article-title>Reverse rotation of a cylinder near a wall</article-title>
.
<source>Phys. Fluids</source>
<volume>18</volume>
, 041703-
<fpage>1</fpage>
–041703-
<lpage>4</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref44">
<name>
<surname>Sengupta</surname>
<given-names>T. K.</given-names>
</name>
,
<name>
<surname>De</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Sarkar</surname>
<given-names>S.</given-names>
</name>
<year>2003</year>
<article-title>Vortex-induced instability of an incompressible wall-bounded shear layer</article-title>
.
<source>J. Fluid Mech.</source>
<volume>493</volume>
,
<fpage>277</fpage>
<lpage>286</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref45">
<name>
<surname>Sheard</surname>
<given-names>G. J.</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
&
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
<year>2003</year>
<article-title>From spheres to circular cylinders: the stability and flow structures of bluff ring wakes</article-title>
.
<source>J. Fluid Mech.</source>
<volume>492</volume>
,
<fpage>147</fpage>
<lpage>180</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref46">
<name>
<surname>Stewart</surname>
<given-names>B. E.</given-names>
</name>
,
<name>
<surname>Leweke</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
&
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
<year>2008</year>
<article-title>Wake formation behind a rolling sphere</article-title>
.
<source>Phys. Fluids</source>
<volume>20</volume>
, 071704-
<fpage>1</fpage>
–071704-
<lpage>4</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="other" id="ref47">
<name>
<surname>Stewart</surname>
<given-names>B. E.</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
,
<name>
<surname>Leweke</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
<year>2009</year>
Numerical and experimental studies of the rolling sphere wake.
<italic>J. Fluid Mech.</italic>
Forthcoming.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref48">
<name>
<surname>Tamaki</surname>
<given-names>H.</given-names>
</name>
&
<name>
<surname>Keller</surname>
<given-names>H. B.</given-names>
</name>
<year>1969</year>
<article-title>Steady two-dimensional viscous flowof an incompressible fluid past a circular cylinder</article-title>
.
<source>Phys. Fluids Suppl. II</source>
<volume>12</volume>
<issue>(12)</issue>
, II-
<fpage>51</fpage>
–II-
<lpage>56</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref49">
<name>
<surname>Taneda</surname>
<given-names>S.</given-names>
</name>
<year>1956</year>
<article-title>Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers</article-title>
.
<source>J. Phys. Soc. Jpn</source>
<volume>11</volume>
<issue>(3)</issue>
,
<fpage>302</fpage>
<lpage>307</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref50">
<name>
<surname>Taneda</surname>
<given-names>S.</given-names>
</name>
<year>1965</year>
<article-title>Experimental investigation of vortex streets</article-title>
.
<source>J. Phys. Soc. Jpn</source>
<volume>20</volume>
<issue>(9)</issue>
,
<fpage>1714</fpage>
<lpage>1721</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref51">
<name>
<surname>Tang</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Ingham</surname>
<given-names>D. B.</given-names>
</name>
<year>1991</year>
<article-title>On steady flow past a rotating circular cylinder at Reynolds numbers 60 and 100</article-title>
.
<source>Comp. Fluids</source>
<volume>19</volume>
<issue>(2)</issue>
,
<fpage>217</fpage>
<lpage>230</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref52">
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
,
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Cheung</surname>
<given-names>A.</given-names>
</name>
&
<name>
<surname>Leweke</surname>
<given-names>T.</given-names>
</name>
<year>2006</year>
<article-title>Hydrodynamics of a particle impact on a wall</article-title>
.
<source>Appl. Math. Model.</source>
<volume>30</volume>
,
<fpage>1356</fpage>
<lpage>1369</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref53">
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
,
<name>
<surname>Leweke</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Provansal</surname>
<given-names>M.</given-names>
</name>
<year>2001</year>
<italic>a</italic>
<article-title>Kinematics and dynamics of sphere wake transition</article-title>
.
<source>J. Fluids and Struct.</source>
<volume>15</volume>
,
<fpage>575</fpage>
<lpage>585</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref54">
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
,
<name>
<surname>Leweke</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Williamson</surname>
<given-names>C. H.</given-names>
</name>
<year>2001</year>
<italic>b</italic>
<article-title>The physical mechanism of transition in bluff body wakes</article-title>
.
<source>J. Fluids Struct.</source>
<volume>15</volume>
,
<fpage>607</fpage>
<lpage>616</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref55">
<name>
<surname>Van Atta</surname>
<given-names>C. W.</given-names>
</name>
<year>1997</year>
<article-title>Comments on ‘Hopf bifurcation in wakes behind a rotating and translating circular cylinder’</article-title>
.
<source>Phys. Fluids</source>
<volume>9</volume>
<issue>(10)</issue>
,
<fpage>3105</fpage>
<lpage>3106</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref56">
<name>
<surname>Williamson</surname>
<given-names>C.</given-names>
</name>
<year>1996</year>
<article-title>Three-dimensional wake transition</article-title>
.
<source>J. Fluid Mech.</source>
<volume>328</volume>
,
<fpage>345</fpage>
<lpage>407</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref57">
<name>
<surname>Williamson</surname>
<given-names>C. H. K.</given-names>
</name>
<year>1988</year>
<article-title>The existence of two stages in the transition to three-dimensionality of a cylinder wake</article-title>
.
<source>Phys. Fluids</source>
<volume>31</volume>
<issue>(11)</issue>
,
<fpage>3165</fpage>
<lpage>3168</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref58">
<name>
<surname>Zdravkovich</surname>
<given-names>M. M.</given-names>
</name>
<year>1985</year>
<article-title>Forces on a circular cylinder near a plane wall</article-title>
.
<source>Appl. Ocean Res.</source>
<volume>7</volume>
<issue>(4)</issue>
,
<fpage>197</fpage>
<lpage>201</lpage>
.</citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>The wake behind a cylinder rolling on a wall at varying rotation rates</title>
</titleInfo>
<titleInfo type="alternative">
<title>B. E. Stewart, M. C. Thompson, T. Leweke and K. Hourigan</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>The wake behind a cylinder rolling on a wall at varying rotation rates</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">B. E.</namePart>
<namePart type="family">STEWART</namePart>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</affiliation>
<affiliation>E-mail: stewart.bronwyn01@gmail.com</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. C.</namePart>
<namePart type="family">THOMPSON</namePart>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">LEWEKE</namePart>
<affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">HOURIGAN</namePart>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<affiliation>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Cambridge University Press</publisher>
<place>
<placeTerm type="text">Cambridge, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-04-10</dateIssued>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract type="normal">A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow. Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding. An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Fluid Mechanics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Fluid Mech.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0022-1120</identifier>
<identifier type="eISSN">1469-7645</identifier>
<identifier type="PublisherID">FLM</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>648</number>
</detail>
<extent unit="pages">
<start>225</start>
<end>256</end>
<total>32</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">2B17009490273F609EA78D95997555EAC499E73B</identifier>
<identifier type="ark">ark:/67375/6GQ-RDPPLFFL-1</identifier>
<identifier type="DOI">10.1017/S0022112009993053</identifier>
<identifier type="PII">S0022112009993053</identifier>
<identifier type="ArticleID">99305</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © Cambridge University Press 2010</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-G3RCRD03-V">cambridge</recordContentSource>
<recordOrigin>Copyright © Cambridge University Press 2010</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/2B17009490273F609EA78D95997555EAC499E73B/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000840 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000840 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2B17009490273F609EA78D95997555EAC499E73B
   |texte=   The wake behind a cylinder rolling on a wall at varying rotation rates
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024