Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Time to reach near‐steady state in large aquifers

Identifieur interne : 002962 ( Istex/Corpus ); précédent : 002961; suivant : 002963

Time to reach near‐steady state in large aquifers

Auteurs : P. Rousseau-Gueutin ; A. J. Love ; G. Vasseur ; N. I. Robinson ; C. T. Simmons ; G. De Marsily

Source :

RBID : ISTEX:DE9A22FA815FA669354FF9E2D3943D3A503AAD50

English descriptors

Abstract

A new analytical solution of the flow equation has been developed to estimate the time to reach a near‐equilibrium state in mixed aquifers, i.e., having unconfined and confined portions, following a large hydraulic perturbation. Near‐equilibrium is defined as the time for an initial aquifer perturbation to dissipate by an average 95% across the aquifer. The new solution has been obtained by solving the flow system of a simplified conceptual model of a mixed aquifer using Laplace transforms. The conceptual model is based on two assumptions: (1) the groundwater flow can be reduced to a horizontal 1‐D problem and (2) the transmissivity, a function of the saturated thickness, is assumed constant on the unconfined portion. This new solution depends on the storativity of the unconfined portion, the lengths of the unconfined and confined portions and the transmissivity, assumed to be constant and equal in both portions of the mixed aquifer. This solution was then tested and validated against a numerical flow model, where the variations of the saturated thickness and therefore variations of the transmissivity were either ignored, or properly modeled. The agreement between the results from the new solution and those from the numerical model is good, validating the use of this new solution to estimate the time to reach near‐equilibrium in mixed aquifers. This solution for mixed aquifers, as well as the solutions for a fully confined or fully unconfined aquifer, has been used to estimate the time to reach near‐equilibrium in 13 large aquifers in the world. For those different aquifers, the time to reach near‐equilibrium ranges between 0.7 kyr to 2.4 × 107 kyr. These results suggest that the present hydraulic heads in these aquifers are typically a mixture of responses induced from current and past hydrologic conditions and thus climate conditions. For some aquifers, the modern hydraulic heads may in fact depend upon hydrologic conditions resulting from several past climate cycles.

Url:
DOI: 10.1002/wrcr.20534

Links to Exploration step

ISTEX:DE9A22FA815FA669354FF9E2D3943D3A503AAD50

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Time to reach near‐steady state in large aquifers</title>
<author>
<name sortKey="Rousseau Ueutin, P" sort="Rousseau Ueutin, P" uniqKey="Rousseau Ueutin P" first="P." last="Rousseau-Gueutin">P. Rousseau-Gueutin</name>
<affiliation>
<mods:affiliation>School of the Environment, Flinders University, Adelaide, South Australia, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>École des Hautes Études en Santé Publique, Avenue du Professeur Léon Bernard, Rennes, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: pauline_gueutin@yahoo.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Love, A J" sort="Love, A J" uniqKey="Love A" first="A. J." last="Love">A. J. Love</name>
<affiliation>
<mods:affiliation>School of the Environment, Flinders University, Adelaide, South Australia, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National Centre for Groundwater Research and Training, Flinders University, South Australia, Adelaide, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vasseur, G" sort="Vasseur, G" uniqKey="Vasseur G" first="G." last="Vasseur">G. Vasseur</name>
<affiliation>
<mods:affiliation>Université Pierre et Marie Curie, Paris 6, UMR‐7619 SISYPHE, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CNRS, UMR‐7619 SISYPHE, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robinson, N I" sort="Robinson, N I" uniqKey="Robinson N" first="N. I." last="Robinson">N. I. Robinson</name>
<affiliation>
<mods:affiliation>School of the Environment, Flinders University, South Australia, Adelaide, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Simmons, C T" sort="Simmons, C T" uniqKey="Simmons C" first="C. T." last="Simmons">C. T. Simmons</name>
<affiliation>
<mods:affiliation>School of the Environment, Flinders University, Adelaide, South Australia, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National Centre for Groundwater Research and Training, Flinders University, South Australia, Adelaide, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Marsily, G" sort="De Marsily, G" uniqKey="De Marsily G" first="G." last="De Marsily">G. De Marsily</name>
<affiliation>
<mods:affiliation>Université Pierre et Marie Curie, Paris 6, UMR‐7619 SISYPHE, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CNRS, UMR‐7619 SISYPHE, Paris, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DE9A22FA815FA669354FF9E2D3943D3A503AAD50</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/wrcr.20534</idno>
<idno type="url">https://api.istex.fr/document/DE9A22FA815FA669354FF9E2D3943D3A503AAD50/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002962</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002962</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Time to reach near‐steady state in large aquifers</title>
<author>
<name sortKey="Rousseau Ueutin, P" sort="Rousseau Ueutin, P" uniqKey="Rousseau Ueutin P" first="P." last="Rousseau-Gueutin">P. Rousseau-Gueutin</name>
<affiliation>
<mods:affiliation>School of the Environment, Flinders University, Adelaide, South Australia, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>École des Hautes Études en Santé Publique, Avenue du Professeur Léon Bernard, Rennes, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: pauline_gueutin@yahoo.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Love, A J" sort="Love, A J" uniqKey="Love A" first="A. J." last="Love">A. J. Love</name>
<affiliation>
<mods:affiliation>School of the Environment, Flinders University, Adelaide, South Australia, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National Centre for Groundwater Research and Training, Flinders University, South Australia, Adelaide, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vasseur, G" sort="Vasseur, G" uniqKey="Vasseur G" first="G." last="Vasseur">G. Vasseur</name>
<affiliation>
<mods:affiliation>Université Pierre et Marie Curie, Paris 6, UMR‐7619 SISYPHE, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CNRS, UMR‐7619 SISYPHE, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robinson, N I" sort="Robinson, N I" uniqKey="Robinson N" first="N. I." last="Robinson">N. I. Robinson</name>
<affiliation>
<mods:affiliation>School of the Environment, Flinders University, South Australia, Adelaide, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Simmons, C T" sort="Simmons, C T" uniqKey="Simmons C" first="C. T." last="Simmons">C. T. Simmons</name>
<affiliation>
<mods:affiliation>School of the Environment, Flinders University, Adelaide, South Australia, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National Centre for Groundwater Research and Training, Flinders University, South Australia, Adelaide, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Marsily, G" sort="De Marsily, G" uniqKey="De Marsily G" first="G." last="De Marsily">G. De Marsily</name>
<affiliation>
<mods:affiliation>Université Pierre et Marie Curie, Paris 6, UMR‐7619 SISYPHE, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CNRS, UMR‐7619 SISYPHE, Paris, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Water Resources Research</title>
<title level="j" type="alt">WATER RESOURCES RESEARCH</title>
<idno type="ISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<imprint>
<biblScope unit="vol">49</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="6893">6893</biblScope>
<biblScope unit="page" to="6908">6908</biblScope>
<biblScope unit="page-count">16</biblScope>
<date type="published" when="2013-10">2013-10</date>
</imprint>
<idno type="ISSN">0043-1397</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0043-1397</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytical solution</term>
<term>Aquifer</term>
<term>Aquitaine basin</term>
<term>Artesian</term>
<term>Boundary conditions</term>
<term>Conceptual model</term>
<term>Cosh</term>
<term>Diffusivity</term>
<term>Discharge area</term>
<term>Domenico</term>
<term>Geol</term>
<term>Great artesian basin</term>
<term>Groundwater</term>
<term>Harbaugh</term>
<term>Hungarian aquifer</term>
<term>Hydraulic</term>
<term>Hydraulic head</term>
<term>Hydraulic heads</term>
<term>Hydraulic perturbation</term>
<term>Hydrodynamic</term>
<term>Initial conditions</term>
<term>Jost</term>
<term>Laplace</term>
<term>Large aquifers</term>
<term>Marsily</term>
<term>Mcdonald</term>
<term>Neuzil</term>
<term>Numerical model</term>
<term>Paris basin</term>
<term>Perturbation</term>
<term>Recharge</term>
<term>Sinh</term>
<term>Solution formula</term>
<term>Steady state</term>
<term>Storativity</term>
<term>Transient</term>
<term>Transient behavior</term>
<term>Transient behaviors</term>
<term>Transmissivity</term>
<term>Water resour</term>
<term>Western siberia basin</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Analytical solution</term>
<term>Aquifer</term>
<term>Aquitaine basin</term>
<term>Artesian</term>
<term>Boundary conditions</term>
<term>Conceptual model</term>
<term>Cosh</term>
<term>Diffusivity</term>
<term>Discharge area</term>
<term>Domenico</term>
<term>Geol</term>
<term>Great artesian basin</term>
<term>Groundwater</term>
<term>Harbaugh</term>
<term>Hungarian aquifer</term>
<term>Hydraulic</term>
<term>Hydraulic head</term>
<term>Hydraulic heads</term>
<term>Hydraulic perturbation</term>
<term>Hydrodynamic</term>
<term>Initial conditions</term>
<term>Jost</term>
<term>Laplace</term>
<term>Large aquifers</term>
<term>Marsily</term>
<term>Mcdonald</term>
<term>Neuzil</term>
<term>Numerical model</term>
<term>Paris basin</term>
<term>Perturbation</term>
<term>Recharge</term>
<term>Sinh</term>
<term>Solution formula</term>
<term>Steady state</term>
<term>Storativity</term>
<term>Transient</term>
<term>Transient behavior</term>
<term>Transient behaviors</term>
<term>Transmissivity</term>
<term>Water resour</term>
<term>Western siberia basin</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A new analytical solution of the flow equation has been developed to estimate the time to reach a near‐equilibrium state in mixed aquifers, i.e., having unconfined and confined portions, following a large hydraulic perturbation. Near‐equilibrium is defined as the time for an initial aquifer perturbation to dissipate by an average 95% across the aquifer. The new solution has been obtained by solving the flow system of a simplified conceptual model of a mixed aquifer using Laplace transforms. The conceptual model is based on two assumptions: (1) the groundwater flow can be reduced to a horizontal 1‐D problem and (2) the transmissivity, a function of the saturated thickness, is assumed constant on the unconfined portion. This new solution depends on the storativity of the unconfined portion, the lengths of the unconfined and confined portions and the transmissivity, assumed to be constant and equal in both portions of the mixed aquifer. This solution was then tested and validated against a numerical flow model, where the variations of the saturated thickness and therefore variations of the transmissivity were either ignored, or properly modeled. The agreement between the results from the new solution and those from the numerical model is good, validating the use of this new solution to estimate the time to reach near‐equilibrium in mixed aquifers. This solution for mixed aquifers, as well as the solutions for a fully confined or fully unconfined aquifer, has been used to estimate the time to reach near‐equilibrium in 13 large aquifers in the world. For those different aquifers, the time to reach near‐equilibrium ranges between 0.7 kyr to 2.4 × 107 kyr. These results suggest that the present hydraulic heads in these aquifers are typically a mixture of responses induced from current and past hydrologic conditions and thus climate conditions. For some aquifers, the modern hydraulic heads may in fact depend upon hydrologic conditions resulting from several past climate cycles.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>aquifer</json:string>
<json:string>groundwater</json:string>
<json:string>transmissivity</json:string>
<json:string>recharge</json:string>
<json:string>hydraulic</json:string>
<json:string>boundary conditions</json:string>
<json:string>large aquifers</json:string>
<json:string>artesian</json:string>
<json:string>hydrodynamic</json:string>
<json:string>sinh</json:string>
<json:string>diffusivity</json:string>
<json:string>marsily</json:string>
<json:string>numerical model</json:string>
<json:string>steady state</json:string>
<json:string>harbaugh</json:string>
<json:string>storativity</json:string>
<json:string>perturbation</json:string>
<json:string>domenico</json:string>
<json:string>conceptual model</json:string>
<json:string>cosh</json:string>
<json:string>geol</json:string>
<json:string>neuzil</json:string>
<json:string>transient behavior</json:string>
<json:string>paris basin</json:string>
<json:string>hydraulic heads</json:string>
<json:string>mcdonald</json:string>
<json:string>jost</json:string>
<json:string>great artesian basin</json:string>
<json:string>laplace</json:string>
<json:string>water resour</json:string>
<json:string>hungarian aquifer</json:string>
<json:string>hydraulic perturbation</json:string>
<json:string>hydraulic head</json:string>
<json:string>analytical solution</json:string>
<json:string>solution formula</json:string>
<json:string>aquitaine basin</json:string>
<json:string>western siberia basin</json:string>
<json:string>initial conditions</json:string>
<json:string>transient behaviors</json:string>
<json:string>discharge area</json:string>
<json:string>transient</json:string>
<json:string>exponential</json:string>
<json:string>time constants</json:string>
<json:string>artesian basin</json:string>
<json:string>numerical approach</json:string>
<json:string>diffusion equations</json:string>
<json:string>ogallala aquifer</json:string>
<json:string>hydrodynamic state</json:string>
<json:string>hydraulic diffusivity</json:string>
<json:string>ground water</json:string>
<json:string>transient state</json:string>
<json:string>initial disturbance</json:string>
<json:string>aquifer length</json:string>
<json:string>water comm</json:string>
<json:string>flinders university</json:string>
<json:string>series development</json:string>
<json:string>guarani aquifer</json:string>
<json:string>analytical approach</json:string>
<json:string>different transmissivities</json:string>
<json:string>differential equations</json:string>
<json:string>right side</json:string>
<json:string>groundwater system</json:string>
<json:string>large aquifers figure</json:string>
<json:string>diffusion equation</json:string>
<json:string>lake eyre</json:string>
<json:string>initial state</json:string>
<json:string>basin</json:string>
<json:string>simulation</json:string>
<json:string>initial perturbation</json:string>
<json:string>porous media</json:string>
<json:string>dupuit assumption</json:string>
<json:string>aquifer lengths</json:string>
<json:string>initial condition</json:string>
<json:string>transmissivity values</json:string>
<json:string>numerical approaches</json:string>
<json:string>linear diffusion equation</json:string>
<json:string>storage capacity</json:string>
<json:string>smallest root</json:string>
<json:string>small values</json:string>
<json:string>time variation</json:string>
<json:string>major differences</json:string>
<json:string>analytical expressions</json:string>
<json:string>boundary condition</json:string>
<json:string>western part</json:string>
<json:string>large aquifers table</json:string>
<json:string>high water level</json:string>
<json:string>pleistoceneholocene transition</json:string>
<json:string>transient simulations</json:string>
<json:string>time steps</json:string>
<json:string>aquifer solution</json:string>
<json:string>different values</json:string>
<json:string>hydraulic conductivity</json:string>
<json:string>western portion</json:string>
<json:string>recharge events</json:string>
<json:string>last climate transition</json:string>
<json:string>large wavelength</json:string>
<json:string>natural discharge</json:string>
<json:string>present study</json:string>
<json:string>main aquifer</json:string>
<json:string>vertical component</json:string>
<json:string>western margin</json:string>
<json:string>current boundary conditions</json:string>
<json:string>recharge mechanism</json:string>
<json:string>exponential decay</json:string>
<json:string>inverse laplace</json:string>
<json:string>hydrogeological characteristics</json:string>
<json:string>exponential relaxation</json:string>
<json:string>sudden change</json:string>
<json:string>actual variables</json:string>
<json:string>numerical models</json:string>
<json:string>series equations</json:string>
<json:string>convenient approximation</json:string>
<json:string>full solution</json:string>
<json:string>exponential term</json:string>
<json:string>corresponding time</json:string>
<json:string>formula equation</json:string>
<json:string>target value</json:string>
<json:string>percentage residuals</json:string>
<json:string>groundwater recharge</json:string>
<json:string>groundwater systems</json:string>
<json:string>hydraulic parameters</json:string>
<json:string>regional groundwater</json:string>
<json:string>aquifer systems management</json:string>
<json:string>impending water shortage</json:string>
<json:string>horizontal distance</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>P. Rousseau‐Gueutin</name>
<affiliations>
<json:string>School of the Environment, Flinders University, Adelaide, South Australia, Australia</json:string>
<json:string>École des Hautes Études en Santé Publique, Avenue du Professeur Léon Bernard, Rennes, France</json:string>
<json:string>E-mail: pauline_gueutin@yahoo.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. J. Love</name>
<affiliations>
<json:string>School of the Environment, Flinders University, Adelaide, South Australia, Australia</json:string>
<json:string>National Centre for Groundwater Research and Training, Flinders University, South Australia, Adelaide, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. Vasseur</name>
<affiliations>
<json:string>Université Pierre et Marie Curie, Paris 6, UMR‐7619 SISYPHE, Paris, France</json:string>
<json:string>CNRS, UMR‐7619 SISYPHE, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>N. I. Robinson</name>
<affiliations>
<json:string>School of the Environment, Flinders University, South Australia, Adelaide, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. T. Simmons</name>
<affiliations>
<json:string>School of the Environment, Flinders University, Adelaide, South Australia, Australia</json:string>
<json:string>National Centre for Groundwater Research and Training, Flinders University, South Australia, Adelaide, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. de Marsily</name>
<affiliations>
<json:string>Université Pierre et Marie Curie, Paris 6, UMR‐7619 SISYPHE, Paris, France</json:string>
<json:string>CNRS, UMR‐7619 SISYPHE, Paris, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>time constant</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>transient state</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mixed aquifers</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>analytical solution</value>
</json:item>
</subject>
<articleId>
<json:string>WRCR20534</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-K8Z6PRZZ-4</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A new analytical solution of the flow equation has been developed to estimate the time to reach a near‐equilibrium state in mixed aquifers, i.e., having unconfined and confined portions, following a large hydraulic perturbation. Near‐equilibrium is defined as the time for an initial aquifer perturbation to dissipate by an average 95% across the aquifer. The new solution has been obtained by solving the flow system of a simplified conceptual model of a mixed aquifer using Laplace transforms. The conceptual model is based on two assumptions: (1) the groundwater flow can be reduced to a horizontal 1‐D problem and (2) the transmissivity, a function of the saturated thickness, is assumed constant on the unconfined portion. This new solution depends on the storativity of the unconfined portion, the lengths of the unconfined and confined portions and the transmissivity, assumed to be constant and equal in both portions of the mixed aquifer. This solution was then tested and validated against a numerical flow model, where the variations of the saturated thickness and therefore variations of the transmissivity were either ignored, or properly modeled. The agreement between the results from the new solution and those from the numerical model is good, validating the use of this new solution to estimate the time to reach near‐equilibrium in mixed aquifers. This solution for mixed aquifers, as well as the solutions for a fully confined or fully unconfined aquifer, has been used to estimate the time to reach near‐equilibrium in 13 large aquifers in the world. For those different aquifers, the time to reach near‐equilibrium ranges between 0.7 kyr to 2.4 × 107 kyr. These results suggest that the present hydraulic heads in these aquifers are typically a mixture of responses induced from current and past hydrologic conditions and thus climate conditions. For some aquifers, the modern hydraulic heads may in fact depend upon hydrologic conditions resulting from several past climate cycles.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>315</abstractWordCount>
<abstractCharCount>2004</abstractCharCount>
<keywordCount>4</keywordCount>
<score>10</score>
<pdfWordCount>12076</pdfWordCount>
<pdfCharCount>66341</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>16</pdfPageCount>
<pdfPageSize>612 x 828 pts</pdfPageSize>
</qualityIndicators>
<title>Time to reach near‐steady state in large aquifers</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Water Resources Research</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1944-7973</json:string>
</doi>
<issn>
<json:string>0043-1397</json:string>
</issn>
<eissn>
<json:string>1944-7973</json:string>
</eissn>
<publisherId>
<json:string>WRCR</json:string>
</publisherId>
<volume>49</volume>
<issue>10</issue>
<pages>
<first>6893</first>
<last>6908</last>
<total>16</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Hydrology</value>
</json:item>
<json:item>
<value>Groundwater hydrology</value>
</json:item>
<json:item>
<value>Groundwater hydraulics</value>
</json:item>
<json:item>
<value>Hydrologic scaling</value>
</json:item>
<json:item>
<value>Modeling</value>
</json:item>
<json:item>
<value>Informatics</value>
</json:item>
<json:item>
<value>Modeling</value>
</json:item>
<json:item>
<value>Natural Hazards</value>
</json:item>
<json:item>
<value>Physical modeling</value>
</json:item>
<json:item>
<value>Regular Article</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2013-09-28</json:string>
</date>
<geogName>
<json:string>Lake Eyre</json:string>
<json:string>Ogallala Aquifer</json:string>
</geogName>
<orgName>
<json:string>North China Plain</json:string>
<json:string>National Centre for Groundwater Research and Training</json:string>
<json:string>North China Plain, Hungarian Aquifer</json:string>
<json:string>North China Plain, OA</json:string>
<json:string>Flinders University</json:string>
<json:string>South Australia, Australia</json:string>
<json:string>American Geophysical Union</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>P. Rousseau-Gueutin</json:string>
<json:string>C. T. Simmons</json:string>
<json:string>Su Lu</json:string>
<json:string>Lon Bernard</json:string>
<json:string>Schwartz</json:string>
<json:string>Domenico</json:string>
<json:string>G. Vasseur</json:string>
<json:string>I. Robinson</json:string>
<json:string>Harbaugh</json:string>
<json:string>Time Constant</json:string>
<json:string>Marie Curie</json:string>
<json:string>S. A. Leake</json:string>
<json:string>G. de Marsily</json:string>
<json:string>T. Simmons</json:string>
<json:string>The</json:string>
<json:string>Reilly</json:string>
<json:string>Paris Basin</json:string>
<json:string>Min Max</json:string>
<json:string>A. J. Love</json:string>
<json:string>Transient State</json:string>
<json:string>Max Min</json:string>
<json:string>N. I. Robinson</json:string>
</persName>
<placeName>
<json:string>Libya</json:string>
<json:string>Paris</json:string>
<json:string>Australia</json:string>
<json:string>Chad</json:string>
<json:string>Sy</json:string>
<json:string>Brazil</json:string>
<json:string>Argentina</json:string>
<json:string>Paraguay</json:string>
<json:string>Sudan</json:string>
<json:string>Egypt</json:string>
<json:string>France</json:string>
<json:string>Russia</json:string>
<json:string>Uruguay</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[72]</json:string>
<json:string>Love et al., 2013a, 2013b</json:string>
<json:string>Houston and Hart, 2004</json:string>
<json:string>Alley et al., 2002</json:string>
<json:string>Carslaw and Jaeger, 1959, p. 97</json:string>
<json:string>[23]</json:string>
<json:string>Kershaw and Nanson, 1993</json:string>
<json:string>[102]</json:string>
<json:string>Silva et al. [1989]</json:string>
<json:string>[2008]</json:string>
<json:string>Domenico and Schwartz, 1998</json:string>
<json:string>[93]</json:string>
<json:string>Urbano et al., 2004</json:string>
<json:string>Harbaugh and McDonald, 1996</json:string>
<json:string>Love et al.</json:string>
<json:string>[1992]</json:string>
<json:string>Dieng et al., 1990</json:string>
<json:string>Love et al., 2013b</json:string>
<json:string>[33]</json:string>
<json:string>[17]</json:string>
<json:string>Chiang and Kinzelbach, 1998</json:string>
<json:string>[81]</json:string>
<json:string>[32]</json:string>
<json:string>Love et al., 2013a</json:string>
<json:string>Sy and Besbes, 2008</json:string>
<json:string>Chen et al. [2004]</json:string>
<json:string>[49]</json:string>
<json:string>Goncalves et al., 2004</json:string>
<json:string>[3]</json:string>
<json:string>[91]</json:string>
<json:string>Naish et al., 1998</json:string>
<json:string>Love et al., 1994</json:string>
<json:string>[97]</json:string>
<json:string>York et al., 2002</json:string>
<json:string>Beyerle et al., 1998</json:string>
<json:string>Jost et al., 2007</json:string>
<json:string>[90]</json:string>
<json:string>[1988]</json:string>
<json:string>McDonald and Harbaugh, 1988</json:string>
<json:string>Imbrie et al., 1992</json:string>
<json:string>[7]</json:string>
<json:string>Palciauskas and Domenico, 1989</json:string>
<json:string>Cramer et al. [1999]</json:string>
<json:string>[2005]</json:string>
<json:string>Carslaw and Jaeger, 1959, p. 325</json:string>
<json:string>Keppel et al., 2013</json:string>
<json:string>Tiedemann et al., 1994</json:string>
<json:string>Coudrain et al., 2001</json:string>
<json:string>Lloyd and Farag, 1978</json:string>
<json:string>[108]</json:string>
<json:string>Carslaw and Jaeger, 1959</json:string>
<json:string>Reilly and Harbaugh, 2004</json:string>
<json:string>[1987]</json:string>
<json:string>[2]</json:string>
<json:string>Schwartz et al. [2009]</json:string>
<json:string>Marty et al. [1993]</json:string>
<json:string>[2004]</json:string>
<json:string>Heathcote and Michie, 2004</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-K8Z6PRZZ-4</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - water resources</json:string>
<json:string>2 - limnology</json:string>
<json:string>2 - environmental sciences</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - engineering</json:string>
<json:string>3 - environmental engineering</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Water Science and Technology</json:string>
</scopus>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1002/wrcr.20534</json:string>
</doi>
<id>DE9A22FA815FA669354FF9E2D3943D3A503AAD50</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/DE9A22FA815FA669354FF9E2D3943D3A503AAD50/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/DE9A22FA815FA669354FF9E2D3943D3A503AAD50/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/DE9A22FA815FA669354FF9E2D3943D3A503AAD50/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Time to reach near‐steady state in large aquifers</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>©2013. American Geophysical Union. All Rights Reserved.</licence>
</availability>
<date type="published" when="2013-10"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Time to reach near‐steady state in large aquifers</title>
<title level="a" type="short">Time to Reach Near‐Steady State in Large Aquifers</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">P.</forename>
<surname>Rousseau‐Gueutin</surname>
</persName>
<affiliation>
<orgName>School of the Environment</orgName>
<orgName>Flinders University</orgName>
<address>
<settlement type="city">Adelaide</settlement>
<region>South Australia</region>
<country key="AU">Australia</country>
</address>
</affiliation>
<affiliation>
<orgName>École des Hautes Études en Santé Publique</orgName>
<orgName>Avenue du Professeur Léon Bernard</orgName>
<address>
<settlement type="city">Rennes</settlement>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>Corresponding author: P. Rousseau‐Gueutin, School of the Environment, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia. (pauline_gueutin@yahoo.fr)</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">A. J.</forename>
<surname>Love</surname>
</persName>
<affiliation>
<orgName>School of the Environment</orgName>
<orgName>Flinders University</orgName>
<address>
<settlement type="city">Adelaide</settlement>
<region>South Australia</region>
<country key="AU">Australia</country>
</address>
</affiliation>
<affiliation>
<orgName>National Centre for Groundwater Research and Training</orgName>
<orgName>Flinders University</orgName>
<address>
<settlement type="city">Adelaide</settlement>
<region>South Australia</region>
<country key="AU">Australia</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">G.</forename>
<surname>Vasseur</surname>
</persName>
<affiliation>
<orgName>Université Pierre et Marie Curie</orgName>
<address>
<street>Paris 6, UMR‐7619 SISYPHE</street>
<settlement type="city">Paris</settlement>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>
<orgName>CNRS</orgName>
<address>
<street>UMR‐7619 SISYPHE</street>
<settlement type="city">Paris</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">N. I.</forename>
<surname>Robinson</surname>
</persName>
<affiliation>
<orgName>School of the Environment</orgName>
<orgName>Flinders University</orgName>
<address>
<settlement type="city">Adelaide</settlement>
<region>South Australia</region>
<country key="AU">Australia</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">C. T.</forename>
<surname>Simmons</surname>
</persName>
<affiliation>
<orgName>School of the Environment</orgName>
<orgName>Flinders University</orgName>
<address>
<settlement type="city">Adelaide</settlement>
<region>South Australia</region>
<country key="AU">Australia</country>
</address>
</affiliation>
<affiliation>
<orgName>National Centre for Groundwater Research and Training</orgName>
<orgName>Flinders University</orgName>
<address>
<settlement type="city">Adelaide</settlement>
<region>South Australia</region>
<country key="AU">Australia</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">G.</forename>
<surname>Marsily</surname>
</persName>
<affiliation>
<orgName>Université Pierre et Marie Curie</orgName>
<address>
<street>Paris 6, UMR‐7619 SISYPHE</street>
<settlement type="city">Paris</settlement>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>
<orgName>CNRS</orgName>
<address>
<street>UMR‐7619 SISYPHE</street>
<settlement type="city">Paris</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<idno type="istex">DE9A22FA815FA669354FF9E2D3943D3A503AAD50</idno>
<idno type="ark">ark:/67375/WNG-K8Z6PRZZ-4</idno>
<idno type="DOI">10.1002/wrcr.20534</idno>
<idno type="unit">WRCR20534</idno>
<idno type="toTypesetVersion">file:WRCR.WRCR20534.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Water Resources Research</title>
<title level="j" type="alt">WATER RESOURCES RESEARCH</title>
<idno type="pISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<idno type="book-DOI">10.1002/(ISSN)1944-7973</idno>
<idno type="book-part-DOI">10.1002/wrcr.v49.10</idno>
<idno type="product">WRCR</idno>
<imprint>
<biblScope unit="vol">49</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="6893">6893</biblScope>
<biblScope unit="page" to="6908">6908</biblScope>
<biblScope unit="page-count">16</biblScope>
<date type="published" when="2013-10"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p>A new analytical solution of the flow equation has been developed to estimate the time to reach a near‐equilibrium state in mixed aquifers, i.e., having unconfined and confined portions, following a large hydraulic perturbation. Near‐equilibrium is defined as the time for an initial aquifer perturbation to dissipate by an average 95% across the aquifer. The new solution has been obtained by solving the flow system of a simplified conceptual model of a mixed aquifer using Laplace transforms. The conceptual model is based on two assumptions: (1) the groundwater flow can be reduced to a horizontal 1‐D problem and (2) the transmissivity, a function of the saturated thickness, is assumed constant on the unconfined portion. This new solution depends on the storativity of the unconfined portion, the lengths of the unconfined and confined portions and the transmissivity, assumed to be constant and equal in both portions of the mixed aquifer. This solution was then tested and validated against a numerical flow model, where the variations of the saturated thickness and therefore variations of the transmissivity were either ignored, or properly modeled. The agreement between the results from the new solution and those from the numerical model is good, validating the use of this new solution to estimate the time to reach near‐equilibrium in mixed aquifers. This solution for mixed aquifers, as well as the solutions for a fully confined or fully unconfined aquifer, has been used to estimate the time to reach near‐equilibrium in 13 large aquifers in the world. For those different aquifers, the time to reach near‐equilibrium ranges between 0.7 kyr to 2.4 × 10
<hi rend="superscript">7</hi>
kyr. These results suggest that the present hydraulic heads in these aquifers are typically a mixture of responses induced from current and past hydrologic conditions and thus climate conditions. For some aquifers, the modern hydraulic heads may in fact depend upon hydrologic conditions resulting from several past climate cycles.</p>
</abstract>
<abstract style="short">
<head>Key Points</head>
<p>
<list style="bulleted">
<item>New analytical solution to assess time to reach equilibrium in mixed aquifers</item>
<item>Current hydraulic heads may be a complex mixture of past and present climate</item>
<item>Some large aquifers may have never been in steady state since their formation</item>
</list>
</p>
</abstract>
<textClass>
<keywords>
<term xml:id="wrcr20534-kwd-0001">time constant</term>
<term xml:id="wrcr20534-kwd-0002">transient state</term>
<term xml:id="wrcr20534-kwd-0003">mixed aquifers</term>
<term xml:id="wrcr20534-kwd-0004">analytical solution</term>
</keywords>
<classCode scheme="http://psi.agu.org/taxonomy5/1800">Hydrology</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1900">Informatics</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/4300">Natural Hazards</classCode>
<keywords rend="articleCategory">
<term>Regular Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Regular Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/DE9A22FA815FA669354FF9E2D3943D3A503AAD50/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en" xml:id="wrcr20534">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1002/(ISSN)1944-7973</doi>
<issn type="print">0043-1397</issn>
<issn type="electronic">1944-7973</issn>
<idGroup>
<id type="product" value="WRCR"></id>
</idGroup>
<titleGroup>
<title type="main" sort="WATER RESOURCES RESEARCH">Water Resources Research</title>
<title type="short">Water Resour. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="100">
<doi>10.1002/wrcr.v49.10</doi>
<copyright ownership="thirdParty">©2013. American Geophysical Union. All Rights Reserved.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="49">49</numbering>
<numbering type="journalIssue">10</numbering>
</numberingGroup>
<coverDate startDate="2013-10">October 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="530" type="article" status="forIssue">
<doi>10.1002/wrcr.20534</doi>
<idGroup>
<id type="unit" value="WRCR20534"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Regular Article</title>
<title type="tocHeading1">Regular Articles</title>
</titleGroup>
<copyright ownership="thirdParty">©2013. American Geophysical Union. All Rights Reserved.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2013-05-17"></event>
<event type="manuscriptRevised" date="2013-09-09"></event>
<event type="manuscriptAccepted" date="2013-09-14"></event>
<event type="xmlCreated" agent="Cenveo Publisher Services" date="2013-09-28"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.3.5 mode:FullText" date="2014-10-13"></event>
<event type="publishedOnlineAccepted" date="2013-09-19"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2013-10-23"></event>
<event type="publishedOnlineFinalForm" date="2013-11-27"></event>
<event type="firstOnline" date="2013-10-23"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-02"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">6893</numbering>
<numbering type="pageLast">6908</numbering>
</numberingGroup>
<correspondenceTo>Corresponding author: P. Rousseau‐Gueutin, School of the Environment, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia. (
<email>pauline_gueutin@yahoo.fr</email>
)</correspondenceTo>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1800">Hydrology</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1829">Groundwater hydrology</subject>
<subject href="http://psi.agu.org/taxonomy5/1828">Groundwater hydraulics</subject>
<subject href="http://psi.agu.org/taxonomy5/1839">Hydrologic scaling</subject>
<subject href="http://psi.agu.org/taxonomy5/1847">Modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1900">Informatics</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1952">Modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">Natural Hazards</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4316">Physical modeling</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="wrcr20534-cit-0056" type="self">
<author>
<familyName>Rousseau‐Gueutin</familyName>
,
<givenNames>P.</givenNames>
</author>
,
<author>
<givenNames>A. J.</givenNames>
<familyName>Love</familyName>
</author>
,
<author>
<givenNames>G.</givenNames>
<familyName>Vasseur</familyName>
</author>
,
<author>
<givenNames>N. I.</givenNames>
<familyName>Robinson</familyName>
</author>
,
<author>
<givenNames>C. T.</givenNames>
<familyName>Simmons</familyName>
</author>
, and
<author>
<givenNames>G.</givenNames>
</author>
<author>
<familyNamePrefix>de</familyNamePrefix>
<familyName>Marsily</familyName>
</author>
(
<pubYear year="2013">2013</pubYear>
),
<articleTitle>Time to reach near‐steady state in large aquifers</articleTitle>
,
<journalTitle>Water Resour. Res.</journalTitle>
,
<vol>49</vol>
,
<pageFirst>6893</pageFirst>
<pageLast>6908</pageLast>
, doi:
<accessionId ref="info:doi/10.1002/wrcr.20534">10.1002/wrcr.20534</accessionId>
. </citation>
</selfCitationGroup>
<objectNameGroup>
<objectName elementName="appendix">Appendix</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:WRCR.WRCR20534.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Time to reach near‐steady state in large aquifers</title>
<title type="short">Time to Reach Near‐Steady State in Large Aquifers</title>
<title type="shortAuthors">Rousseau‐Gueutin et al.</title>
</titleGroup>
<creators>
<creator affiliationRef="#wrcr20534-aff-0001 #wrcr20534-aff-0002" corresponding="yes" creatorRole="author" xml:id="wrcr20534-cr-0001">
<personName>
<givenNames>P.</givenNames>
<familyName>Rousseau‐Gueutin</familyName>
</personName>
</creator>
<creator affiliationRef="#wrcr20534-aff-0001 #wrcr20534-aff-0003" creatorRole="author" xml:id="wrcr20534-cr-0002">
<personName>
<givenNames>A. J.</givenNames>
<familyName>Love</familyName>
</personName>
</creator>
<creator affiliationRef="#wrcr20534-aff-0004 #wrcr20534-aff-0005" creatorRole="author" xml:id="wrcr20534-cr-0003">
<personName>
<givenNames>G.</givenNames>
<familyName>Vasseur</familyName>
</personName>
</creator>
<creator affiliationRef="#wrcr20534-aff-0001" creatorRole="author" xml:id="wrcr20534-cr-0004">
<personName>
<givenNames>N. I.</givenNames>
<familyName>Robinson</familyName>
</personName>
</creator>
<creator affiliationRef="#wrcr20534-aff-0001 #wrcr20534-aff-0003" creatorRole="author" xml:id="wrcr20534-cr-0005">
<personName>
<givenNames>C. T.</givenNames>
<familyName>Simmons</familyName>
</personName>
</creator>
<creator affiliationRef="#wrcr20534-aff-0004 #wrcr20534-aff-0005" creatorRole="author" xml:id="wrcr20534-cr-0006">
<personName>
<givenNames>G.</givenNames>
<familyNamePrefix>de</familyNamePrefix>
<familyName>Marsily</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="AU" type="organization" xml:id="wrcr20534-aff-0001">
<orgDiv>School of the Environment</orgDiv>
<orgName>Flinders University</orgName>
<address>
<city>Adelaide</city>
<countryPart>South Australia</countryPart>
<country>Australia</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="wrcr20534-aff-0002">
<orgDiv>École des Hautes Études en Santé Publique</orgDiv>
<orgName>Avenue du Professeur Léon Bernard</orgName>
<address>
<city>Rennes</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="AU" type="organization" xml:id="wrcr20534-aff-0003">
<orgDiv>National Centre for Groundwater Research and Training</orgDiv>
<orgName>Flinders University</orgName>
<address>
<city>Adelaide</city>
<countryPart>South Australia</countryPart>
<country>Australia</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="wrcr20534-aff-0004">
<orgName>Université Pierre et Marie Curie</orgName>
<address>
<street>Paris 6, UMR‐7619 SISYPHE</street>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="wrcr20534-aff-0005">
<orgName>CNRS</orgName>
<address>
<street>UMR‐7619 SISYPHE</street>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="wrcr20534-kwd-0001">time constant</keyword>
<keyword xml:id="wrcr20534-kwd-0002">transient state</keyword>
<keyword xml:id="wrcr20534-kwd-0003">mixed aquifers</keyword>
<keyword xml:id="wrcr20534-kwd-0004">analytical solution</keyword>
</keywordGroup>
<supportingInformation>
<p>Additional supporting information may be found in the online version of this article.</p>
<supportingInfoItem>
<mediaResource alt="application" href="urn-x:wiley:00431397:media:wrcr20534:wrcr20534-sup-0001-suppinfo01"></mediaResource>
<caption>Supporting Information</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="application" href="urn-x:wiley:00431397:media:wrcr20534:wrcr20534-sup-0002-suppinfo02"></mediaResource>
<caption>Supporting Information</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p label="1">A new analytical solution of the flow equation has been developed to estimate the time to reach a near‐equilibrium state in mixed aquifers, i.e., having unconfined and confined portions, following a large hydraulic perturbation. Near‐equilibrium is defined as the time for an initial aquifer perturbation to dissipate by an average 95% across the aquifer. The new solution has been obtained by solving the flow system of a simplified conceptual model of a mixed aquifer using Laplace transforms. The conceptual model is based on two assumptions: (1) the groundwater flow can be reduced to a horizontal 1‐D problem and (2) the transmissivity, a function of the saturated thickness, is assumed constant on the unconfined portion. This new solution depends on the storativity of the unconfined portion, the lengths of the unconfined and confined portions and the transmissivity, assumed to be constant and equal in both portions of the mixed aquifer. This solution was then tested and validated against a numerical flow model, where the variations of the saturated thickness and therefore variations of the transmissivity were either ignored, or properly modeled. The agreement between the results from the new solution and those from the numerical model is good, validating the use of this new solution to estimate the time to reach near‐equilibrium in mixed aquifers. This solution for mixed aquifers, as well as the solutions for a fully confined or fully unconfined aquifer, has been used to estimate the time to reach near‐equilibrium in 13 large aquifers in the world. For those different aquifers, the time to reach near‐equilibrium ranges between 0.7 kyr to 2.4 × 10
<sup>7</sup>
kyr. These results suggest that the present hydraulic heads in these aquifers are typically a mixture of responses induced from current and past hydrologic conditions and thus climate conditions. For some aquifers, the modern hydraulic heads may in fact depend upon hydrologic conditions resulting from several past climate cycles.</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p>
<list style="bulleted">
<listItem>New analytical solution to assess time to reach equilibrium in mixed aquifers</listItem>
<listItem>Current hydraulic heads may be a complex mixture of past and present climate</listItem>
<listItem>Some large aquifers may have never been in steady state since their formation</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Time to reach near‐steady state in large aquifers</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Time to Reach Near‐Steady State in Large Aquifers</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Time to reach near‐steady state in large aquifers</title>
</titleInfo>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Rousseau‐Gueutin</namePart>
<affiliation>School of the Environment, Flinders University, Adelaide, South Australia, Australia</affiliation>
<affiliation>École des Hautes Études en Santé Publique, Avenue du Professeur Léon Bernard, Rennes, France</affiliation>
<affiliation>E-mail: pauline_gueutin@yahoo.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A. J.</namePart>
<namePart type="family">Love</namePart>
<affiliation>School of the Environment, Flinders University, Adelaide, South Australia, Australia</affiliation>
<affiliation>National Centre for Groundwater Research and Training, Flinders University, South Australia, Adelaide, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Vasseur</namePart>
<affiliation>Université Pierre et Marie Curie, Paris 6, UMR‐7619 SISYPHE, Paris, France</affiliation>
<affiliation>CNRS, UMR‐7619 SISYPHE, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N. I.</namePart>
<namePart type="family">Robinson</namePart>
<affiliation>School of the Environment, Flinders University, South Australia, Adelaide, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C. T.</namePart>
<namePart type="family">Simmons</namePart>
<affiliation>School of the Environment, Flinders University, Adelaide, South Australia, Australia</affiliation>
<affiliation>National Centre for Groundwater Research and Training, Flinders University, South Australia, Adelaide, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">de Marsily</namePart>
<affiliation>Université Pierre et Marie Curie, Paris 6, UMR‐7619 SISYPHE, Paris, France</affiliation>
<affiliation>CNRS, UMR‐7619 SISYPHE, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2013-10</dateIssued>
<dateCreated encoding="w3cdtf">2013-09-28</dateCreated>
<dateCaptured encoding="w3cdtf">2013-05-17</dateCaptured>
<dateValid encoding="w3cdtf">2013-09-14</dateValid>
<edition>Rousseau‐Gueutin, P., A. J. Love, G. Vasseur, N. I. Robinson, C. T. Simmons, and G. de Marsily (2013), Time to reach near‐steady state in large aquifers, Water Resour. Res., 49, 6893–6908, doi:10.1002/wrcr.20534.</edition>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract>A new analytical solution of the flow equation has been developed to estimate the time to reach a near‐equilibrium state in mixed aquifers, i.e., having unconfined and confined portions, following a large hydraulic perturbation. Near‐equilibrium is defined as the time for an initial aquifer perturbation to dissipate by an average 95% across the aquifer. The new solution has been obtained by solving the flow system of a simplified conceptual model of a mixed aquifer using Laplace transforms. The conceptual model is based on two assumptions: (1) the groundwater flow can be reduced to a horizontal 1‐D problem and (2) the transmissivity, a function of the saturated thickness, is assumed constant on the unconfined portion. This new solution depends on the storativity of the unconfined portion, the lengths of the unconfined and confined portions and the transmissivity, assumed to be constant and equal in both portions of the mixed aquifer. This solution was then tested and validated against a numerical flow model, where the variations of the saturated thickness and therefore variations of the transmissivity were either ignored, or properly modeled. The agreement between the results from the new solution and those from the numerical model is good, validating the use of this new solution to estimate the time to reach near‐equilibrium in mixed aquifers. This solution for mixed aquifers, as well as the solutions for a fully confined or fully unconfined aquifer, has been used to estimate the time to reach near‐equilibrium in 13 large aquifers in the world. For those different aquifers, the time to reach near‐equilibrium ranges between 0.7 kyr to 2.4 × 107 kyr. These results suggest that the present hydraulic heads in these aquifers are typically a mixture of responses induced from current and past hydrologic conditions and thus climate conditions. For some aquifers, the modern hydraulic heads may in fact depend upon hydrologic conditions resulting from several past climate cycles.</abstract>
<abstract type="short">New analytical solution to assess time to reach equilibrium in mixed aquifers Current hydraulic heads may be a complex mixture of past and present climate Some large aquifers may have never been in steady state since their formation</abstract>
<subject>
<genre>keywords</genre>
<topic>time constant</topic>
<topic>transient state</topic>
<topic>mixed aquifers</topic>
<topic>analytical solution</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Water Resources Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Water Resour. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<note type="content"> Additional supporting information may be found in the online version of this article.Supporting Info Item: Supporting Information - Supporting Information - </note>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">Hydrology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1829">Groundwater hydrology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1828">Groundwater hydraulics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1839">Hydrologic scaling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1847">Modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1900">Informatics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1952">Modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">Natural Hazards</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4316">Physical modeling</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Regular Article</topic>
</subject>
<identifier type="ISSN">0043-1397</identifier>
<identifier type="eISSN">1944-7973</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-7973</identifier>
<identifier type="PublisherID">WRCR</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>49</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>6893</start>
<end>6908</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">DE9A22FA815FA669354FF9E2D3943D3A503AAD50</identifier>
<identifier type="ark">ark:/67375/WNG-K8Z6PRZZ-4</identifier>
<identifier type="DOI">10.1002/wrcr.20534</identifier>
<identifier type="ArticleID">WRCR20534</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2013. American Geophysical Union. All Rights Reserved.©2013. American Geophysical Union. All Rights Reserved.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/DE9A22FA815FA669354FF9E2D3943D3A503AAD50/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002962 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002962 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:DE9A22FA815FA669354FF9E2D3943D3A503AAD50
   |texte=   Time to reach near‐steady state in large aquifers
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024