Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect

Identifieur interne : 002634 ( Istex/Corpus ); précédent : 002633; suivant : 002635

Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect

Auteurs : Rich Bielby ; T. Shanks ; U. Sawangwit ; S. M. Croom ; Nicholas P. Ross ; D. A. Wake

Source :

RBID : ISTEX:CD77E96667D35077005339BC37A7F6D218674B2D

English descriptors

Abstract

We investigate the use of simple colour cuts applied to the Sloan Digital Sky Survey (SDSS) optical imaging to perform photometric selections of emission‐line galaxies (ELGs) out to z < 1. Our selection is aimed at discerning three separate redshift ranges: 0.2 ≲z≲ 0.4, 0.4 ≲z≲ 0.6 and 0.6 ≲z≲ 1.0, which we calibrate using data taken by the COMBO‐17 survey in a single field (S11). We thus perform colour cuts using the SDSS g, r and i bands and obtain mean photometric redshifts of and . We further calibrate our high‐redshift selection using spectroscopic observations with the AAOmega spectrograph on the 4‐m Anglo‐Australian Telescope, observing ≈50–200 galaxy candidates in four separate fields. With just 1 h of integration time and seeing of ≈ 1.6 arcsec, we successfully determined redshifts for ≈65 per cent of the targeted candidates. We compare our spectroscopic redshifts to the photometric redshifts from the COMBO‐17 survey and find reasonable agreement between the two. We calculate the angular correlation functions of these samples and find correlation lengths of r0= 2.78 ± 0.08, 3.71 ± 0.11  and 5.50 ± 0.13 h−1 Mpc for the low‐, mid‐ and high‐redshift samples, respectively. Comparing these results with predicted dark matter clustering, we estimate the bias parameter for each sample to be b= 0.72 ± 0.02, b= 0.93 ± 0.03 and b= 1.43 ± 0.03. We calculate the two‐point redshift‐space autocorrelation function at z≈ 0.6 and find a clustering amplitude of so= 6.4 ± 0.8 h−1 Mpc. Finally, we use our photometric sample to search for the integrated Sachs–Wolfe signal in the Wilkinson Microwave Anisotropy Probe (WMAP) 5‐yr data. We cross‐correlate our three redshift samples with the WMAP W, V, Q and K bands and find an overall trend for a positive signal similar to that expected from models. However, the signal in each is relatively weak, with the results in the WMAP W band being wTg(<100 arcmin) = 0.25 ± 0.27, 0.17 ± 0.20  and 0.17 ± 0.16 μK for the low‐, mid‐ and high‐redshift samples, respectively. Combining all three galaxy samples, we find a signal of wTg(<100 arcmin) = 0.20 ± 0.12 μK in the WMAP W band, a significance of 1.7σ. However, in testing for systematics where the WMAP data are rotated with respect to the ELG sample, we found similar results at several different rotation angles, implying the apparent signal may be produced by systematic effects.

Url:
DOI: 10.1111/j.1365-2966.2009.16219.x

Links to Exploration step

ISTEX:CD77E96667D35077005339BC37A7F6D218674B2D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect</title>
<author>
<name sortKey="Bielby, Rich" sort="Bielby, Rich" uniqKey="Bielby R" first="Rich" last="Bielby">Rich Bielby</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut d'Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: bielby@iap.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shanks, T" sort="Shanks, T" uniqKey="Shanks T" first="T." last="Shanks">T. Shanks</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sawangwit, U" sort="Sawangwit, U" uniqKey="Sawangwit U" first="U." last="Sawangwit">U. Sawangwit</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Croom, S M" sort="Croom, S M" uniqKey="Croom S" first="S. M." last="Croom">S. M. Croom</name>
<affiliation>
<mods:affiliation>Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ross, Nicholas P" sort="Ross, Nicholas P" uniqKey="Ross N" first="Nicholas P." last="Ross">Nicholas P. Ross</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wake, D A" sort="Wake, D A" uniqKey="Wake D" first="D. A." last="Wake">D. A. Wake</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CD77E96667D35077005339BC37A7F6D218674B2D</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1111/j.1365-2966.2009.16219.x</idno>
<idno type="url">https://api.istex.fr/document/CD77E96667D35077005339BC37A7F6D218674B2D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002634</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002634</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect</title>
<author>
<name sortKey="Bielby, Rich" sort="Bielby, Rich" uniqKey="Bielby R" first="Rich" last="Bielby">Rich Bielby</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut d'Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: bielby@iap.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shanks, T" sort="Shanks, T" uniqKey="Shanks T" first="T." last="Shanks">T. Shanks</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sawangwit, U" sort="Sawangwit, U" uniqKey="Sawangwit U" first="U." last="Sawangwit">U. Sawangwit</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Croom, S M" sort="Croom, S M" uniqKey="Croom S" first="S. M." last="Croom">S. M. Croom</name>
<affiliation>
<mods:affiliation>Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ross, Nicholas P" sort="Ross, Nicholas P" uniqKey="Ross N" first="Nicholas P." last="Ross">Nicholas P. Ross</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wake, D A" sort="Wake, D A" uniqKey="Wake D" first="D. A." last="Wake">D. A. Wake</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">403</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1261">1261</biblScope>
<biblScope unit="page" to="1273">1273</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-04-11">2010-04-11</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aaomega</term>
<term>Aaomega instrument</term>
<term>Aaomega spectrograph</term>
<term>Absorption features</term>
<term>Angular correlation function</term>
<term>Angular correlation functions</term>
<term>Arcmin</term>
<term>Arcsec</term>
<term>Cabr</term>
<term>Coherent infall</term>
<term>Colour</term>
<term>Colour cuts</term>
<term>Colour plane</term>
<term>Correlation function</term>
<term>Croom</term>
<term>Data sets</term>
<term>Eld</term>
<term>Elgs</term>
<term>Emission features</term>
<term>Emission lines</term>
<term>Equivalent widths</term>
<term>Fosalba</term>
<term>Galactic</term>
<term>Galactic longitude</term>
<term>Galaxies figure</term>
<term>Galaxy</term>
<term>Galaxy population</term>
<term>Galaxy populations</term>
<term>Galaxy sample</term>
<term>Galaxy samples</term>
<term>Green triangles</term>
<term>Journal compilation</term>
<term>Lines show</term>
<term>Lrgs</term>
<term>Mnras</term>
<term>Nebular emission lines</term>
<term>Photometric</term>
<term>Photometric data</term>
<term>Photometric redshift data</term>
<term>Photometric redshifts</term>
<term>Photometric samples</term>
<term>Photometric selection</term>
<term>Photometric selections</term>
<term>Positive signal</term>
<term>Redshift</term>
<term>Redshift distribution</term>
<term>Redshift ranges</term>
<term>Redshift samples</term>
<term>Sdss</term>
<term>Sdss data</term>
<term>Short exposure times</term>
<term>Similar results</term>
<term>Single power</term>
<term>Solid line</term>
<term>Spectrograph</term>
<term>Spectroscopic</term>
<term>Spectroscopic observations</term>
<term>Spectroscopic redshifts</term>
<term>Spectroscopic sample</term>
<term>Spectroscopically</term>
<term>Total number</term>
<term>Whilst</term>
<term>Wmap</term>
<term>Wmap data</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Aaomega</term>
<term>Aaomega instrument</term>
<term>Aaomega spectrograph</term>
<term>Absorption features</term>
<term>Angular correlation function</term>
<term>Angular correlation functions</term>
<term>Arcmin</term>
<term>Arcsec</term>
<term>Cabr</term>
<term>Coherent infall</term>
<term>Colour</term>
<term>Colour cuts</term>
<term>Colour plane</term>
<term>Correlation function</term>
<term>Croom</term>
<term>Data sets</term>
<term>Eld</term>
<term>Elgs</term>
<term>Emission features</term>
<term>Emission lines</term>
<term>Equivalent widths</term>
<term>Fosalba</term>
<term>Galactic</term>
<term>Galactic longitude</term>
<term>Galaxies figure</term>
<term>Galaxy</term>
<term>Galaxy population</term>
<term>Galaxy populations</term>
<term>Galaxy sample</term>
<term>Galaxy samples</term>
<term>Green triangles</term>
<term>Journal compilation</term>
<term>Lines show</term>
<term>Lrgs</term>
<term>Mnras</term>
<term>Nebular emission lines</term>
<term>Photometric</term>
<term>Photometric data</term>
<term>Photometric redshift data</term>
<term>Photometric redshifts</term>
<term>Photometric samples</term>
<term>Photometric selection</term>
<term>Photometric selections</term>
<term>Positive signal</term>
<term>Redshift</term>
<term>Redshift distribution</term>
<term>Redshift ranges</term>
<term>Redshift samples</term>
<term>Sdss</term>
<term>Sdss data</term>
<term>Short exposure times</term>
<term>Similar results</term>
<term>Single power</term>
<term>Solid line</term>
<term>Spectrograph</term>
<term>Spectroscopic</term>
<term>Spectroscopic observations</term>
<term>Spectroscopic redshifts</term>
<term>Spectroscopic sample</term>
<term>Spectroscopically</term>
<term>Total number</term>
<term>Whilst</term>
<term>Wmap</term>
<term>Wmap data</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We investigate the use of simple colour cuts applied to the Sloan Digital Sky Survey (SDSS) optical imaging to perform photometric selections of emission‐line galaxies (ELGs) out to z < 1. Our selection is aimed at discerning three separate redshift ranges: 0.2 ≲z≲ 0.4, 0.4 ≲z≲ 0.6 and 0.6 ≲z≲ 1.0, which we calibrate using data taken by the COMBO‐17 survey in a single field (S11). We thus perform colour cuts using the SDSS g, r and i bands and obtain mean photometric redshifts of and . We further calibrate our high‐redshift selection using spectroscopic observations with the AAOmega spectrograph on the 4‐m Anglo‐Australian Telescope, observing ≈50–200 galaxy candidates in four separate fields. With just 1 h of integration time and seeing of ≈ 1.6 arcsec, we successfully determined redshifts for ≈65 per cent of the targeted candidates. We compare our spectroscopic redshifts to the photometric redshifts from the COMBO‐17 survey and find reasonable agreement between the two. We calculate the angular correlation functions of these samples and find correlation lengths of r0= 2.78 ± 0.08, 3.71 ± 0.11  and 5.50 ± 0.13 h−1 Mpc for the low‐, mid‐ and high‐redshift samples, respectively. Comparing these results with predicted dark matter clustering, we estimate the bias parameter for each sample to be b= 0.72 ± 0.02, b= 0.93 ± 0.03 and b= 1.43 ± 0.03. We calculate the two‐point redshift‐space autocorrelation function at z≈ 0.6 and find a clustering amplitude of so= 6.4 ± 0.8 h−1 Mpc. Finally, we use our photometric sample to search for the integrated Sachs–Wolfe signal in the Wilkinson Microwave Anisotropy Probe (WMAP) 5‐yr data. We cross‐correlate our three redshift samples with the WMAP W, V, Q and K bands and find an overall trend for a positive signal similar to that expected from models. However, the signal in each is relatively weak, with the results in the WMAP W band being wTg(<100 arcmin) = 0.25 ± 0.27, 0.17 ± 0.20  and 0.17 ± 0.16 μK for the low‐, mid‐ and high‐redshift samples, respectively. Combining all three galaxy samples, we find a signal of wTg(<100 arcmin) = 0.20 ± 0.12 μK in the WMAP W band, a significance of 1.7σ. However, in testing for systematics where the WMAP data are rotated with respect to the ELG sample, we found similar results at several different rotation angles, implying the apparent signal may be produced by systematic effects.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>redshift</json:string>
<json:string>photometric</json:string>
<json:string>sdss</json:string>
<json:string>mnras</json:string>
<json:string>wmap</json:string>
<json:string>elgs</json:string>
<json:string>spectroscopic</json:string>
<json:string>arcmin</json:string>
<json:string>galaxy</json:string>
<json:string>photometric redshifts</json:string>
<json:string>colour</json:string>
<json:string>whilst</json:string>
<json:string>eld</json:string>
<json:string>wmap data</json:string>
<json:string>journal compilation</json:string>
<json:string>aaomega</json:string>
<json:string>arcsec</json:string>
<json:string>lrgs</json:string>
<json:string>photometric selection</json:string>
<json:string>photometric selections</json:string>
<json:string>correlation function</json:string>
<json:string>galaxy samples</json:string>
<json:string>croom</json:string>
<json:string>fosalba</json:string>
<json:string>spectrograph</json:string>
<json:string>emission lines</json:string>
<json:string>cabr</json:string>
<json:string>spectroscopically</json:string>
<json:string>spectroscopic redshifts</json:string>
<json:string>angular correlation function</json:string>
<json:string>colour plane</json:string>
<json:string>spectroscopic observations</json:string>
<json:string>sdss data</json:string>
<json:string>redshift ranges</json:string>
<json:string>redshift distribution</json:string>
<json:string>galactic</json:string>
<json:string>aaomega spectrograph</json:string>
<json:string>colour cuts</json:string>
<json:string>spectroscopic sample</json:string>
<json:string>galactic longitude</json:string>
<json:string>equivalent widths</json:string>
<json:string>galaxy sample</json:string>
<json:string>galaxies figure</json:string>
<json:string>green triangles</json:string>
<json:string>single power</json:string>
<json:string>galaxy populations</json:string>
<json:string>photometric data</json:string>
<json:string>lines show</json:string>
<json:string>similar results</json:string>
<json:string>absorption features</json:string>
<json:string>data sets</json:string>
<json:string>aaomega instrument</json:string>
<json:string>nebular emission lines</json:string>
<json:string>total number</json:string>
<json:string>short exposure times</json:string>
<json:string>photometric samples</json:string>
<json:string>emission features</json:string>
<json:string>positive signal</json:string>
<json:string>redshift samples</json:string>
<json:string>galaxy population</json:string>
<json:string>solid line</json:string>
<json:string>coherent infall</json:string>
<json:string>angular correlation functions</json:string>
<json:string>photometric redshift data</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Rich Bielby</name>
<affiliations>
<json:string>Department of Physics, Durham University, South Road, Durham DH1 3LE</json:string>
<json:string>Institut d'Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France</json:string>
<json:string>E-mail: bielby@iap.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. Shanks</name>
<affiliations>
<json:string>Department of Physics, Durham University, South Road, Durham DH1 3LE</json:string>
</affiliations>
</json:item>
<json:item>
<name>U. Sawangwit</name>
<affiliations>
<json:string>Department of Physics, Durham University, South Road, Durham DH1 3LE</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. M. Croom</name>
<affiliations>
<json:string>Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Nicholas P. Ross</name>
<affiliations>
<json:string>Department of Physics, Durham University, South Road, Durham DH1 3LE</json:string>
<json:string>Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. A. Wake</name>
<affiliations>
<json:string>Department of Physics, Durham University, South Road, Durham DH1 3LE</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>galaxies: general</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>galaxies: photometry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>galaxies: spiral</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cosmic microwave background</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>large‐scale structure of Universe</value>
</json:item>
</subject>
<articleId>
<json:string>MNR16219</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-T4LBDVKB-4</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We investigate the use of simple colour cuts applied to the Sloan Digital Sky Survey (SDSS) optical imaging to perform photometric selections of emission‐line galaxies (ELGs) out to z > 1. Our selection is aimed at discerning three separate redshift ranges: 0.2 ≲z≲ 0.4, 0.4 ≲z≲ 0.6 and 0.6 ≲z≲ 1.0, which we calibrate using data taken by the COMBO‐17 survey in a single field (S11). We thus perform colour cuts using the SDSS g, r and i bands and obtain mean photometric redshifts of and . We further calibrate our high‐redshift selection using spectroscopic observations with the AAOmega spectrograph on the 4‐m Anglo‐Australian Telescope, observing ≈50–200 galaxy candidates in four separate fields. With just 1 h of integration time and seeing of ≈ 1.6 arcsec, we successfully determined redshifts for ≈65 per cent of the targeted candidates. We compare our spectroscopic redshifts to the photometric redshifts from the COMBO‐17 survey and find reasonable agreement between the two. We calculate the angular correlation functions of these samples and find correlation lengths of r0= 2.78 ± 0.08, 3.71 ± 0.11  and 5.50 ± 0.13 h−1 Mpc for the low‐, mid‐ and high‐redshift samples, respectively. Comparing these results with predicted dark matter clustering, we estimate the bias parameter for each sample to be b= 0.72 ± 0.02, b= 0.93 ± 0.03 and b= 1.43 ± 0.03. We calculate the two‐point redshift‐space autocorrelation function at z≈ 0.6 and find a clustering amplitude of so= 6.4 ± 0.8 h−1 Mpc. Finally, we use our photometric sample to search for the integrated Sachs–Wolfe signal in the Wilkinson Microwave Anisotropy Probe (WMAP) 5‐yr data. We cross‐correlate our three redshift samples with the WMAP W, V, Q and K bands and find an overall trend for a positive signal similar to that expected from models. However, the signal in each is relatively weak, with the results in the WMAP W band being wTg(>100 arcmin) = 0.25 ± 0.27, 0.17 ± 0.20  and 0.17 ± 0.16 μK for the low‐, mid‐ and high‐redshift samples, respectively. Combining all three galaxy samples, we find a signal of wTg(>100 arcmin) = 0.20 ± 0.12 μK in the WMAP W band, a significance of 1.7σ. However, in testing for systematics where the WMAP data are rotated with respect to the ELG sample, we found similar results at several different rotation angles, implying the apparent signal may be produced by systematic effects.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>10169</pdfWordCount>
<pdfCharCount>53358</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>13</pdfPageCount>
<pdfPageSize>595.274 x 782.286 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>388</abstractWordCount>
<abstractCharCount>2392</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Monthly Notices of the Royal Astronomical Society</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2966</json:string>
</doi>
<issn>
<json:string>0035-8711</json:string>
</issn>
<eissn>
<json:string>1365-2966</json:string>
</eissn>
<publisherId>
<json:string>MNR</json:string>
</publisherId>
<volume>403</volume>
<issue>3</issue>
<pages>
<first>1261</first>
<last>1273</last>
<total>13</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1300</json:string>
<json:string>58s</json:string>
<json:string>2006</json:string>
<json:string>4000</json:string>
<json:string>8240</json:string>
<json:string>7248</json:string>
<json:string>2010</json:string>
<json:string>1200</json:string>
</date>
<geogName>
<json:string>Mbj</json:string>
</geogName>
<orgName>
<json:string>Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW</json:string>
<json:string>Davey Laboratory, University Park, PA</json:string>
<json:string>Princeton University</json:string>
<json:string>Australian Research Council QEII Fellowship</json:string>
<json:string>Australian Academy of Science</json:string>
<json:string>Goddard Space Flight Center</json:string>
<json:string>Pennsylvania State University</json:string>
<json:string>Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space</json:string>
<json:string>Department of Astronomy and Astrophysics</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Sky Survey</json:string>
<json:string>Our</json:string>
<json:string>Shirley Ho</json:string>
<json:string>Marie Curie</json:string>
<json:string>Russell Award</json:string>
<json:string>D. A. Wake</json:string>
<json:string>C. Wolf</json:string>
<json:string>S. M. Croom</json:string>
<json:string>U. Sawangwit</json:string>
<json:string>Nicholas P. Ross</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>France</json:string>
</placeName>
<ref_url>
<json:string>http://www.sdss.org/</json:string>
<json:string>http://casjobs.sdss.org</json:string>
</ref_url>
<ref_bibl>
<json:string>Norberg et al. (2002)</json:string>
<json:string>Ho et al. (2008)</json:string>
<json:string>Hawkins et al. (2003)</json:string>
<json:string>Kaiser 1987</json:string>
<json:string>Cabanac et al. 1262</json:string>
<json:string>Saunders et al. 2004</json:string>
<json:string>Kennicutt 1992</json:string>
<json:string>Padmanabhan et al. 2005a</json:string>
<json:string>Irwin & Lewis 2001</json:string>
<json:string>Jarrett et al. 2000</json:string>
<json:string>Richards et al. 2009</json:string>
<json:string>Adelman-McCarthy et al. 2008</json:string>
<json:string>Sawangwit et al. 2009</json:string>
<json:string>Giannantonio et al. (2008)</json:string>
<json:string>Boldt 1987</json:string>
<json:string>Kaiser et al. 2005</json:string>
<json:string>Wolf et al. 2003</json:string>
<json:string>Rowan-Robinson et al. 2008</json:string>
<json:string>Hinshaw et al. 2009</json:string>
<json:string>Padmanabhan et al. (2005b)</json:string>
<json:string>Smith et al. 2003</json:string>
<json:string>Cole et al. 2005</json:string>
<json:string>Phillipps et al. (1978)</json:string>
<json:string>Sachs & Wolfe 1967</json:string>
<json:string>Colless et al. 2001</json:string>
<json:string>Shi, Gu & Peng 2006</json:string>
<json:string>Lamareille et al. (2004)</json:string>
<json:string>Scoville et al. 2007</json:string>
<json:string>Fosalba et al. 2003</json:string>
<json:string>Croom et al. 2001</json:string>
<json:string>Blake et al. (2009)</json:string>
<json:string>R. Bielby et al.</json:string>
<json:string>Collister et al. 2007</json:string>
<json:string>Gray et al. 2004</json:string>
<json:string>Blake et al. 2009</json:string>
<json:string>Hawkins et al. 2003</json:string>
<json:string>Bennett et al. 2003</json:string>
<json:string>Condon et al. 1998</json:string>
<json:string>Fry 1996</json:string>
<json:string>Yee et al. 2007</json:string>
<json:string>Sweeney et al. 2009</json:string>
<json:string>Eisenstein et al. (2005)</json:string>
<json:string>Croom et al. 2005</json:string>
<json:string>Eisenstein et al. 2001</json:string>
<json:string>Lawrence et al. 2007</json:string>
<json:string>Scranton et al. 2003</json:string>
<json:string>McCracken et al. 2008</json:string>
<json:string>Bruzual & Charlot 2003</json:string>
<json:string>Simon et al. 2009</json:string>
<json:string>Fukugita et al. 1996</json:string>
<json:string>Sharp et al. 2006</json:string>
<json:string>Croom et al. 2004</json:string>
<json:string>York et al. 2000</json:string>
<json:string>Ross et al. 2008</json:string>
<json:string>McMahon et al. 2001</json:string>
<json:string>Rassat et al. 2007</json:string>
<json:string>Eisenstein et al. 2005</json:string>
<json:string>Peacock 1999</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-T4LBDVKB-4</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - astronomy & astrophysics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - astronomy & astrophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Astronomy and Astrophysics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2966.2009.16219.x</json:string>
</doi>
<id>CD77E96667D35077005339BC37A7F6D218674B2D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/CD77E96667D35077005339BC37A7F6D218674B2D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/CD77E96667D35077005339BC37A7F6D218674B2D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CD77E96667D35077005339BC37A7F6D218674B2D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2010 The Authors. Journal compilation © 2010 RAS</licence>
</availability>
<date type="published" when="2010-04-11"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect</title>
<title level="a" type="short">Photometric selection of emission‐line galaxies</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Rich</forename>
<surname>Bielby</surname>
</persName>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
<affiliation>Institut d'Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>E‐mail: bielby@iap.fr</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">T.</forename>
<surname>Shanks</surname>
</persName>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">U.</forename>
<surname>Sawangwit</surname>
</persName>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">S. M.</forename>
<surname>Croom</surname>
</persName>
<affiliation>Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Nicholas P.</forename>
<surname>Ross</surname>
</persName>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
<affiliation>Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">D. A.</forename>
<surname>Wake</surname>
</persName>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
</author>
<idno type="istex">CD77E96667D35077005339BC37A7F6D218674B2D</idno>
<idno type="ark">ark:/67375/WNG-T4LBDVKB-4</idno>
<idno type="DOI">10.1111/j.1365-2966.2009.16219.x</idno>
<idno type="unit">MNR16219</idno>
<idno type="toTypesetVersion">file:MNR.MNR16219.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="pISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2966</idno>
<idno type="book-part-DOI">10.1111/mnr.2010.403.issue-3</idno>
<idno type="product">MNR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">403</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1261">1261</biblScope>
<biblScope unit="page" to="1273">1273</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-04-11"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>ABSTRACT</head>
<p>We investigate the use of simple colour cuts applied to the Sloan Digital Sky Survey (SDSS) optical imaging to perform photometric selections of emission‐line galaxies (ELGs) out to
<emph>
<span>
<hi rend="italic">z</hi>
< 1</span>
</emph>
. Our selection is aimed at discerning three separate redshift ranges:
<emph>
<span>0.2 ≲
<hi rend="italic">z</hi>
≲ 0.4, 0.4 ≲
<hi rend="italic">z</hi>
≲ 0.6</span>
</emph>
and
<emph>
<span>0.6 ≲
<hi rend="italic">z</hi>
≲ 1.0</span>
</emph>
, which we calibrate using data taken by the COMBO‐17 survey in a single field (S11). We thus perform colour cuts using the SDSS
<hi rend="italic">g</hi>
,
<hi rend="italic">r</hi>
and
<hi rend="italic">i</hi>
bands and obtain mean photometric redshifts of
<graphic url="equation/MNR_16219_mu1.gif" rend="inline image"></graphic>
and
<graphic url="equation/MNR_16219_mu2.gif" rend="inline image"></graphic>
. We further calibrate our high‐redshift selection using spectroscopic observations with the AAOmega spectrograph on the 4‐m Anglo‐Australian Telescope, observing ≈50–200 galaxy candidates in four separate fields. With just 1 h of integration time and seeing of
<emph>
<span>≈ 1.6 arcsec</span>
</emph>
, we successfully determined redshifts for ≈65 per cent of the targeted candidates. We compare our spectroscopic redshifts to the photometric redshifts from the COMBO‐17 survey and find reasonable agreement between the two. We calculate the angular correlation functions of these samples and find correlation lengths of
<emph>
<span>
<hi rend="italic">r</hi>
<hi rend="subscript">0</hi>
= 2.78 ± 0.08, 3.71 ± 0.11 </span>
</emph>
and
<emph>
<span>5.50 ± 0.13 
<hi rend="italic">h</hi>
<hi rend="superscript">−1</hi>
 Mpc</span>
</emph>
for the low‐, mid‐ and high‐redshift samples, respectively. Comparing these results with predicted dark matter clustering, we estimate the bias parameter for each sample to be
<emph>
<span>
<hi rend="italic">b</hi>
= 0.72 ± 0.02,
<hi rend="italic">b</hi>
= 0.93 ± 0.03</span>
</emph>
and
<emph>
<span>
<hi rend="italic">b</hi>
= 1.43 ± 0.03</span>
</emph>
. We calculate the two‐point redshift‐space autocorrelation function at
<emph>
<span>
<hi rend="italic">z</hi>
≈ 0.6</span>
</emph>
and find a clustering amplitude of
<emph>
<span>
<hi rend="italic">s
<hi rend="subscript">o</hi>
</hi>
= 6.4 ± 0.8 
<hi rend="italic">h</hi>
<hi rend="superscript">−1</hi>
 Mpc</span>
</emph>
. Finally, we use our photometric sample to search for the integrated Sachs–Wolfe signal in the
<hi rend="italic">Wilkinson Microwave Anisotropy Probe</hi>
(
<hi rend="italic">WMAP</hi>
) 5‐yr data. We cross‐correlate our three redshift samples with the
<hi rend="italic">WMAP</hi>
<emph>
<span>
<hi rend="italic">W</hi>
,
<hi rend="italic">V</hi>
,
<hi rend="italic">Q</hi>
</span>
</emph>
and
<hi rend="italic">K</hi>
bands and find an overall trend for a positive signal similar to that expected from models. However, the signal in each is relatively weak, with the results in the
<hi rend="italic">WMAP W</hi>
band being
<emph>
<span>
<hi rend="italic">w</hi>
<hi rend="subscript">Tg</hi>
(<100 arcmin) = 0.25 ± 0.27, 0.17 ± 0.20 </span>
</emph>
and
<emph>
<span>0.17 ± 0.16 μK</span>
</emph>
for the low‐, mid‐ and high‐redshift samples, respectively. Combining all three galaxy samples, we find a signal of
<emph>
<span>
<hi rend="italic">w</hi>
<hi rend="subscript">Tg</hi>
(<100 arcmin) = 0.20 ± 0.12 μK</span>
</emph>
in the
<hi rend="italic">WMAP W</hi>
band, a significance of 1.7σ. However, in testing for systematics where the
<hi rend="italic">WMAP</hi>
data are rotated with respect to the ELG sample, we found similar results at several different rotation angles, implying the apparent signal may be produced by systematic effects.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">galaxies: general</term>
<term xml:id="k2">galaxies: photometry</term>
<term xml:id="k3">galaxies: spiral</term>
<term xml:id="k4">cosmic microwave background</term>
<term xml:id="k5">large‐scale structure of Universe</term>
</keywords>
<keywords rend="tocHeading1">
<term>Papers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/CD77E96667D35077005339BC37A7F6D218674B2D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2966</doi>
<issn type="print">0035-8711</issn>
<issn type="electronic">1365-2966</issn>
<idGroup>
<id type="product" value="MNR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY">Monthly Notices of the Royal Astronomical Society</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="04103">
<doi origin="wiley">10.1111/mnr.2010.403.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="403">403</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="2010-04-11">April 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="14" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2966.2009.16219.x</doi>
<idGroup>
<id type="unit" value="MNR16219"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Papers</title>
</titleGroup>
<copyright>© 2010 The Authors. Journal compilation © 2010 RAS</copyright>
<eventGroup>
<event type="firstOnline" date="2010-02-10"></event>
<event type="publishedOnlineFinalForm" date="2010-04-01"></event>
<event type="publishedOnlineAcceptedOrEarlyUnpaginated" date="2010-02-10"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.4 mode:FullText source:FullText result:FullText" date="2010-12-14"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-02"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1261">1261</numbering>
<numbering type="pageLast" number="1273">1273</numbering>
</numberingGroup>
<correspondenceTo> E‐mail:
<email>bielby@iap.fr</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MNR.MNR16219.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted 2009 December 14. Received 2009 November 27; in original form 2009 February 6</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="18"></count>
<count type="tableTotal" number="3"></count>
<count type="formulaTotal" number="298"></count>
<count type="referenceTotal" number="60"></count>
<count type="linksCrossRef" number="137"></count>
</countGroup>
<titleGroup>
<title type="main">Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect</title>
<title type="shortAuthors">
<i>R. Bielby et al.</i>
</title>
<title type="short">
<i>Photometric selection of emission‐line galaxies</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2" corresponding="yes">
<personName>
<givenNames>Rich</givenNames>
<familyName>Bielby</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>T.</givenNames>
<familyName>Shanks</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>U.</givenNames>
<familyName>Sawangwit</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a3">
<personName>
<givenNames>S. M.</givenNames>
<familyName>Croom</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a1 #a4">
<personName>
<givenNames>Nicholas P.</givenNames>
<familyName>Ross</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a1">
<personName>
<givenNames>D. A.</givenNames>
<familyName>Wake</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1">
<unparsedAffiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="FR">
<unparsedAffiliation>Institut d'Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="AU">
<unparsedAffiliation>Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="US">
<unparsedAffiliation>Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">galaxies: general</keyword>
<keyword xml:id="k2">galaxies: photometry</keyword>
<keyword xml:id="k3">galaxies: spiral</keyword>
<keyword xml:id="k4">cosmic microwave background</keyword>
<keyword xml:id="k5">large‐scale structure of Universe</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">ABSTRACT</title>
<p>We investigate the use of simple colour cuts applied to the Sloan Digital Sky Survey (SDSS) optical imaging to perform photometric selections of emission‐line galaxies (ELGs) out to
<span type="mathematics">
<i>z</i>
< 1</span>
. Our selection is aimed at discerning three separate redshift ranges:
<span type="mathematics">0.2 ≲
<i>z</i>
≲ 0.4, 0.4 ≲
<i>z</i>
≲ 0.6</span>
and
<span type="mathematics">0.6 ≲
<i>z</i>
≲ 1.0</span>
, which we calibrate using data taken by the COMBO‐17 survey in a single field (S11). We thus perform colour cuts using the SDSS
<i>g</i>
,
<i>r</i>
and
<i>i</i>
bands and obtain mean photometric redshifts of
<inlineGraphic alt="inline image" location="equation/MNR_16219_mu1.gif" href=""></inlineGraphic>
and
<inlineGraphic alt="inline image" location="equation/MNR_16219_mu2.gif" href=""></inlineGraphic>
. We further calibrate our high‐redshift selection using spectroscopic observations with the AAOmega spectrograph on the 4‐m Anglo‐Australian Telescope, observing ≈50–200 galaxy candidates in four separate fields. With just 1 h of integration time and seeing of
<span type="mathematics">≈ 1.6 arcsec</span>
, we successfully determined redshifts for ≈65 per cent of the targeted candidates. We compare our spectroscopic redshifts to the photometric redshifts from the COMBO‐17 survey and find reasonable agreement between the two. We calculate the angular correlation functions of these samples and find correlation lengths of
<span type="mathematics">
<i>r</i>
<sub>0</sub>
= 2.78 ± 0.08, 3.71 ± 0.11 </span>
and
<span type="mathematics">5.50 ± 0.13 
<i>h</i>
<sup>−1</sup>
 Mpc</span>
for the low‐, mid‐ and high‐redshift samples, respectively. Comparing these results with predicted dark matter clustering, we estimate the bias parameter for each sample to be
<span type="mathematics">
<i>b</i>
= 0.72 ± 0.02,
<i>b</i>
= 0.93 ± 0.03</span>
and
<span type="mathematics">
<i>b</i>
= 1.43 ± 0.03</span>
. We calculate the two‐point redshift‐space autocorrelation function at
<span type="mathematics">
<i>z</i>
≈ 0.6</span>
and find a clustering amplitude of
<span type="mathematics">
<i>s
<sub>o</sub>
</i>
= 6.4 ± 0.8 
<i>h</i>
<sup>−1</sup>
 Mpc</span>
. Finally, we use our photometric sample to search for the integrated Sachs–Wolfe signal in the
<i>Wilkinson Microwave Anisotropy Probe</i>
(
<i>WMAP</i>
) 5‐yr data. We cross‐correlate our three redshift samples with the
<i>WMAP</i>
<span type="mathematics">
<i>W</i>
,
<i>V</i>
,
<i>Q</i>
</span>
and
<i>K</i>
bands and find an overall trend for a positive signal similar to that expected from models. However, the signal in each is relatively weak, with the results in the
<i>WMAP W</i>
band being
<span type="mathematics">
<i>w</i>
<sub>Tg</sub>
(<100 arcmin) = 0.25 ± 0.27, 0.17 ± 0.20 </span>
and
<span type="mathematics">0.17 ± 0.16 μK</span>
for the low‐, mid‐ and high‐redshift samples, respectively. Combining all three galaxy samples, we find a signal of
<span type="mathematics">
<i>w</i>
<sub>Tg</sub>
(<100 arcmin) = 0.20 ± 0.12 μK</span>
in the
<i>WMAP W</i>
band, a significance of 1.7σ. However, in testing for systematics where the
<i>WMAP</i>
data are rotated with respect to the ELG sample, we found similar results at several different rotation angles, implying the apparent signal may be produced by systematic effects.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Photometric selection of emission‐line galaxies</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rich</namePart>
<namePart type="family">Bielby</namePart>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
<affiliation>Institut d'Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France</affiliation>
<affiliation>E-mail: bielby@iap.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Shanks</namePart>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">U.</namePart>
<namePart type="family">Sawangwit</namePart>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S. M.</namePart>
<namePart type="family">Croom</namePart>
<affiliation>Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicholas P.</namePart>
<namePart type="family">Ross</namePart>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
<affiliation>Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. A.</namePart>
<namePart type="family">Wake</namePart>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-04-11</dateIssued>
<edition>Accepted 2009 December 14. Received 2009 November 27; in original form 2009 February 6</edition>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">18</extent>
<extent unit="tables">3</extent>
<extent unit="formulas">298</extent>
<extent unit="references">60</extent>
<extent unit="linksCrossRef">137</extent>
</physicalDescription>
<abstract lang="en">We investigate the use of simple colour cuts applied to the Sloan Digital Sky Survey (SDSS) optical imaging to perform photometric selections of emission‐line galaxies (ELGs) out to z < 1. Our selection is aimed at discerning three separate redshift ranges: 0.2 ≲z≲ 0.4, 0.4 ≲z≲ 0.6 and 0.6 ≲z≲ 1.0, which we calibrate using data taken by the COMBO‐17 survey in a single field (S11). We thus perform colour cuts using the SDSS g, r and i bands and obtain mean photometric redshifts of and . We further calibrate our high‐redshift selection using spectroscopic observations with the AAOmega spectrograph on the 4‐m Anglo‐Australian Telescope, observing ≈50–200 galaxy candidates in four separate fields. With just 1 h of integration time and seeing of ≈ 1.6 arcsec, we successfully determined redshifts for ≈65 per cent of the targeted candidates. We compare our spectroscopic redshifts to the photometric redshifts from the COMBO‐17 survey and find reasonable agreement between the two. We calculate the angular correlation functions of these samples and find correlation lengths of r0= 2.78 ± 0.08, 3.71 ± 0.11  and 5.50 ± 0.13 h−1 Mpc for the low‐, mid‐ and high‐redshift samples, respectively. Comparing these results with predicted dark matter clustering, we estimate the bias parameter for each sample to be b= 0.72 ± 0.02, b= 0.93 ± 0.03 and b= 1.43 ± 0.03. We calculate the two‐point redshift‐space autocorrelation function at z≈ 0.6 and find a clustering amplitude of so= 6.4 ± 0.8 h−1 Mpc. Finally, we use our photometric sample to search for the integrated Sachs–Wolfe signal in the Wilkinson Microwave Anisotropy Probe (WMAP) 5‐yr data. We cross‐correlate our three redshift samples with the WMAP W, V, Q and K bands and find an overall trend for a positive signal similar to that expected from models. However, the signal in each is relatively weak, with the results in the WMAP W band being wTg(<100 arcmin) = 0.25 ± 0.27, 0.17 ± 0.20  and 0.17 ± 0.16 μK for the low‐, mid‐ and high‐redshift samples, respectively. Combining all three galaxy samples, we find a signal of wTg(<100 arcmin) = 0.20 ± 0.12 μK in the WMAP W band, a significance of 1.7σ. However, in testing for systematics where the WMAP data are rotated with respect to the ELG sample, we found similar results at several different rotation angles, implying the apparent signal may be produced by systematic effects.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>galaxies: general</topic>
<topic>galaxies: photometry</topic>
<topic>galaxies: spiral</topic>
<topic>cosmic microwave background</topic>
<topic>large‐scale structure of Universe</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Monthly Notices of the Royal Astronomical Society</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0035-8711</identifier>
<identifier type="eISSN">1365-2966</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2966</identifier>
<identifier type="PublisherID">MNR</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>403</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1261</start>
<end>1273</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CD77E96667D35077005339BC37A7F6D218674B2D</identifier>
<identifier type="ark">ark:/67375/WNG-T4LBDVKB-4</identifier>
<identifier type="DOI">10.1111/j.1365-2966.2009.16219.x</identifier>
<identifier type="ArticleID">MNR16219</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 The Authors. Journal compilation © 2010 RAS</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/CD77E96667D35077005339BC37A7F6D218674B2D/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002634 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002634 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CD77E96667D35077005339BC37A7F6D218674B2D
   |texte=   Photometric selection of emission‐line galaxies, clustering analysis and a search for the integrated Sachs–Wolfe effect
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024