Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Accurate fundamental parameters for 23 bright solar‐type stars

Identifieur interne : 001F34 ( Istex/Corpus ); précédent : 001F33; suivant : 001F35

Accurate fundamental parameters for 23 bright solar‐type stars

Auteurs : H. Bruntt ; T. R. Bedding ; P. Quirion ; G. Lo Curto ; F. Carrier ; B. Smalley ; T. H. Dall ; T. Arentoft ; M. Bazot ; R. P. Butler

Source :

RBID : ISTEX:A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C

English descriptors

Abstract

We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar‐type stars, from spectral type F5 to K2 and luminosity classes III–V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4–15 per cent. From indirect methods we determine luminosity and radius to 3 per cent. We find evidence that the luminosity from the indirect method is slightly overestimated (≈ 5 per cent) for the coolest stars, indicating that their bolometric corrections (BCs) are too negative. For Teff we find a slight offset of −40 ± 20 K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. The metallicity ranges from [Fe/H]=−1.7 to +0.4, and there is clear evidence for α‐element enhancement in the metal‐poor stars. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine v  sin   i and we present a new calibration of macroturbulence and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine Teff, log  g and [Fe/H] with absolute accuracies of 80 K, 0.08 and 0.07 dex. Photometric calibrations of Strömgren indices provide accurate results for Teff and [Fe/H] but will be more uncertain for distant stars when interstellar reddening becomes important. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry cannot be used. This paper is the first to compare direct and indirect methods for a large sample of stars, and we conclude that indirect methods are valid, although slight corrections may be needed.

Url:
DOI: 10.1111/j.1365-2966.2010.16575.x

Links to Exploration step

ISTEX:A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Accurate fundamental parameters for 23 bright solar‐type stars</title>
<author>
<name sortKey="Bruntt, H" sort="Bruntt, H" uniqKey="Bruntt H" first="H." last="Bruntt">H. Bruntt</name>
<affiliation>
<mods:affiliation>LESIA, Observatoire de Paris‐Meudon, 92195 Meudon Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: bruntt@phys.au.dk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bedding, T R" sort="Bedding, T R" uniqKey="Bedding T" first="T. R." last="Bedding">T. R. Bedding</name>
<affiliation>
<mods:affiliation>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Quirion, P" sort="Quirion, P" uniqKey="Quirion P" first="P." last="Quirion">P. Quirion</name>
<affiliation>
<mods:affiliation>Canadian Space Agency, 6767 Boulevard de l’Aéroport, Saint‐Hubert, Québec J3Y 8Y9, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lo Curto, G" sort="Lo Curto, G" uniqKey="Lo Curto G" first="G." last="Lo Curto">G. Lo Curto</name>
<affiliation>
<mods:affiliation>European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carrier, F" sort="Carrier, F" uniqKey="Carrier F" first="F." last="Carrier">F. Carrier</name>
<affiliation>
<mods:affiliation>Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smalley, B" sort="Smalley, B" uniqKey="Smalley B" first="B." last="Smalley">B. Smalley</name>
<affiliation>
<mods:affiliation>Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dall, T H" sort="Dall, T H" uniqKey="Dall T" first="T. H." last="Dall">T. H. Dall</name>
<affiliation>
<mods:affiliation>European Southern Observatory, Karl Schwarzschild Str. 2, 85748 Garching bei München, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Arentoft, T" sort="Arentoft, T" uniqKey="Arentoft T" first="T." last="Arentoft">T. Arentoft</name>
<affiliation>
<mods:affiliation>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bazot, M" sort="Bazot, M" uniqKey="Bazot M" first="M." last="Bazot">M. Bazot</name>
<affiliation>
<mods:affiliation>Universidade do Porto, Centro de Astrofísica, Rua das Estrelas, PT 4150‐762 Porto, Portugal</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Butler, R P" sort="Butler, R P" uniqKey="Butler R" first="R. P." last="Butler">R. P. Butler</name>
<affiliation>
<mods:affiliation>Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road NW, Washington, DC 20015‐1305, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1111/j.1365-2966.2010.16575.x</idno>
<idno type="url">https://api.istex.fr/document/A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F34</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Accurate fundamental parameters for 23 bright solar‐type stars</title>
<author>
<name sortKey="Bruntt, H" sort="Bruntt, H" uniqKey="Bruntt H" first="H." last="Bruntt">H. Bruntt</name>
<affiliation>
<mods:affiliation>LESIA, Observatoire de Paris‐Meudon, 92195 Meudon Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: bruntt@phys.au.dk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bedding, T R" sort="Bedding, T R" uniqKey="Bedding T" first="T. R." last="Bedding">T. R. Bedding</name>
<affiliation>
<mods:affiliation>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Quirion, P" sort="Quirion, P" uniqKey="Quirion P" first="P." last="Quirion">P. Quirion</name>
<affiliation>
<mods:affiliation>Canadian Space Agency, 6767 Boulevard de l’Aéroport, Saint‐Hubert, Québec J3Y 8Y9, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lo Curto, G" sort="Lo Curto, G" uniqKey="Lo Curto G" first="G." last="Lo Curto">G. Lo Curto</name>
<affiliation>
<mods:affiliation>European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carrier, F" sort="Carrier, F" uniqKey="Carrier F" first="F." last="Carrier">F. Carrier</name>
<affiliation>
<mods:affiliation>Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smalley, B" sort="Smalley, B" uniqKey="Smalley B" first="B." last="Smalley">B. Smalley</name>
<affiliation>
<mods:affiliation>Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dall, T H" sort="Dall, T H" uniqKey="Dall T" first="T. H." last="Dall">T. H. Dall</name>
<affiliation>
<mods:affiliation>European Southern Observatory, Karl Schwarzschild Str. 2, 85748 Garching bei München, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Arentoft, T" sort="Arentoft, T" uniqKey="Arentoft T" first="T." last="Arentoft">T. Arentoft</name>
<affiliation>
<mods:affiliation>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bazot, M" sort="Bazot, M" uniqKey="Bazot M" first="M." last="Bazot">M. Bazot</name>
<affiliation>
<mods:affiliation>Universidade do Porto, Centro de Astrofísica, Rua das Estrelas, PT 4150‐762 Porto, Portugal</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Butler, R P" sort="Butler, R P" uniqKey="Butler R" first="R. P." last="Butler">R. P. Butler</name>
<affiliation>
<mods:affiliation>Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road NW, Washington, DC 20015‐1305, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">405</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1907">1907</biblScope>
<biblScope unit="page" to="1923">1923</biblScope>
<biblScope unit="page-count">17</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-07-01">2010-07-01</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allende</term>
<term>Allende prieto</term>
<term>Angular diameter</term>
<term>Angular diameters</term>
<term>Asteroseismic</term>
<term>Asteroseismic data</term>
<term>Asteroseismic information</term>
<term>Asteroseismology</term>
<term>Astron</term>
<term>Atmospheric models</term>
<term>Atmospheric parameters</term>
<term>Author name</term>
<term>Bedding</term>
<term>Binary</term>
<term>Binary orbit</term>
<term>Binary stars</term>
<term>Bolometric</term>
<term>Bottom panel</term>
<term>Bright stars</term>
<term>Bruntt</term>
<term>Chemical composition</term>
<term>Classical constraints</term>
<term>Clem</term>
<term>Continuum windows</term>
<term>Cool stars</term>
<term>Direct method</term>
<term>Direct techniques</term>
<term>Dravins</term>
<term>Edvardsson</term>
<term>Effective temperature</term>
<term>Effective temperatures</term>
<term>Excellent agreement</term>
<term>Fbol</term>
<term>Fischer</term>
<term>Fuhrmann</term>
<term>Fuhrmann sousa soubiran</term>
<term>Full table</term>
<term>Fundamental parameters</term>
<term>Good agreement</term>
<term>Holmberg</term>
<term>Indirect method</term>
<term>Indirect methods</term>
<term>Interferometric</term>
<term>Interferometric measurements</term>
<term>Interferometry</term>
<term>Interstellar reddening</term>
<term>Journal compilation</term>
<term>Kepler</term>
<term>Kervella</term>
<term>Kjeldsen</term>
<term>Large separation</term>
<term>Luminosity</term>
<term>Macroturbulence</term>
<term>Metallicity</term>
<term>Mgren</term>
<term>Mgren indices</term>
<term>Microturbulence</term>
<term>Middle panel</term>
<term>Mnras</term>
<term>Model atmospheres</term>
<term>Modelling</term>
<term>Mozurkewich</term>
<term>Other studies</term>
<term>Parallax</term>
<term>Parameter</term>
<term>Photometric</term>
<term>Photometric calibrations</term>
<term>Photometric teff values</term>
<term>Prieto</term>
<term>Procyon</term>
<term>Relative difference</term>
<term>Rotational</term>
<term>Rotational velocity</term>
<term>Saar osten</term>
<term>Scatter</term>
<term>Solar spectrum</term>
<term>Soubiran</term>
<term>Sousa</term>
<term>Spectral lines</term>
<term>Spectral type</term>
<term>Spectral types</term>
<term>Spectroscopic</term>
<term>Spectroscopic analyses</term>
<term>Spectroscopic analysis</term>
<term>Spectroscopic methods</term>
<term>Spectroscopic value</term>
<term>Star</term>
<term>Stellar</term>
<term>Surface gravity</term>
<term>Target stars</term>
<term>Teff</term>
<term>Telluric</term>
<term>Telluric lines</term>
<term>Valenti</term>
<term>Valenti fischer</term>
<term>Vandenberg</term>
<term>Vandenberg clem</term>
<term>Venin</term>
<term>Vmicro</term>
<term>Wide range</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Allende</term>
<term>Allende prieto</term>
<term>Angular diameter</term>
<term>Angular diameters</term>
<term>Asteroseismic</term>
<term>Asteroseismic data</term>
<term>Asteroseismic information</term>
<term>Asteroseismology</term>
<term>Astron</term>
<term>Atmospheric models</term>
<term>Atmospheric parameters</term>
<term>Author name</term>
<term>Bedding</term>
<term>Binary</term>
<term>Binary orbit</term>
<term>Binary stars</term>
<term>Bolometric</term>
<term>Bottom panel</term>
<term>Bright stars</term>
<term>Bruntt</term>
<term>Chemical composition</term>
<term>Classical constraints</term>
<term>Clem</term>
<term>Continuum windows</term>
<term>Cool stars</term>
<term>Direct method</term>
<term>Direct techniques</term>
<term>Dravins</term>
<term>Edvardsson</term>
<term>Effective temperature</term>
<term>Effective temperatures</term>
<term>Excellent agreement</term>
<term>Fbol</term>
<term>Fischer</term>
<term>Fuhrmann</term>
<term>Fuhrmann sousa soubiran</term>
<term>Full table</term>
<term>Fundamental parameters</term>
<term>Good agreement</term>
<term>Holmberg</term>
<term>Indirect method</term>
<term>Indirect methods</term>
<term>Interferometric</term>
<term>Interferometric measurements</term>
<term>Interferometry</term>
<term>Interstellar reddening</term>
<term>Journal compilation</term>
<term>Kepler</term>
<term>Kervella</term>
<term>Kjeldsen</term>
<term>Large separation</term>
<term>Luminosity</term>
<term>Macroturbulence</term>
<term>Metallicity</term>
<term>Mgren</term>
<term>Mgren indices</term>
<term>Microturbulence</term>
<term>Middle panel</term>
<term>Mnras</term>
<term>Model atmospheres</term>
<term>Modelling</term>
<term>Mozurkewich</term>
<term>Other studies</term>
<term>Parallax</term>
<term>Parameter</term>
<term>Photometric</term>
<term>Photometric calibrations</term>
<term>Photometric teff values</term>
<term>Prieto</term>
<term>Procyon</term>
<term>Relative difference</term>
<term>Rotational</term>
<term>Rotational velocity</term>
<term>Saar osten</term>
<term>Scatter</term>
<term>Solar spectrum</term>
<term>Soubiran</term>
<term>Sousa</term>
<term>Spectral lines</term>
<term>Spectral type</term>
<term>Spectral types</term>
<term>Spectroscopic</term>
<term>Spectroscopic analyses</term>
<term>Spectroscopic analysis</term>
<term>Spectroscopic methods</term>
<term>Spectroscopic value</term>
<term>Star</term>
<term>Stellar</term>
<term>Surface gravity</term>
<term>Target stars</term>
<term>Teff</term>
<term>Telluric</term>
<term>Telluric lines</term>
<term>Valenti</term>
<term>Valenti fischer</term>
<term>Vandenberg</term>
<term>Vandenberg clem</term>
<term>Venin</term>
<term>Vmicro</term>
<term>Wide range</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar‐type stars, from spectral type F5 to K2 and luminosity classes III–V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4–15 per cent. From indirect methods we determine luminosity and radius to 3 per cent. We find evidence that the luminosity from the indirect method is slightly overestimated (≈ 5 per cent) for the coolest stars, indicating that their bolometric corrections (BCs) are too negative. For Teff we find a slight offset of −40 ± 20 K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. The metallicity ranges from [Fe/H]=−1.7 to +0.4, and there is clear evidence for α‐element enhancement in the metal‐poor stars. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine v  sin   i and we present a new calibration of macroturbulence and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine Teff, log  g and [Fe/H] with absolute accuracies of 80 K, 0.08 and 0.07 dex. Photometric calibrations of Strömgren indices provide accurate results for Teff and [Fe/H] but will be more uncertain for distant stars when interstellar reddening becomes important. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry cannot be used. This paper is the first to compare direct and indirect methods for a large sample of stars, and we conclude that indirect methods are valid, although slight corrections may be needed.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>teff</json:string>
<json:string>spectroscopic</json:string>
<json:string>asteroseismic</json:string>
<json:string>mnras</json:string>
<json:string>macroturbulence</json:string>
<json:string>bruntt</json:string>
<json:string>valenti</json:string>
<json:string>fundamental parameters</json:string>
<json:string>fbol</json:string>
<json:string>metallicity</json:string>
<json:string>parallax</json:string>
<json:string>journal compilation</json:string>
<json:string>indirect methods</json:string>
<json:string>spectroscopic analysis</json:string>
<json:string>photometric</json:string>
<json:string>procyon</json:string>
<json:string>mgren</json:string>
<json:string>kjeldsen</json:string>
<json:string>bolometric</json:string>
<json:string>binary</json:string>
<json:string>fischer</json:string>
<json:string>valenti fischer</json:string>
<json:string>good agreement</json:string>
<json:string>microturbulence</json:string>
<json:string>interferometry</json:string>
<json:string>angular diameter</json:string>
<json:string>effective temperature</json:string>
<json:string>asteroseismology</json:string>
<json:string>luminosity</json:string>
<json:string>allende prieto</json:string>
<json:string>holmberg</json:string>
<json:string>atmospheric parameters</json:string>
<json:string>allende</json:string>
<json:string>prieto</json:string>
<json:string>interferometric</json:string>
<json:string>dravins</json:string>
<json:string>vmicro</json:string>
<json:string>angular diameters</json:string>
<json:string>rotational</json:string>
<json:string>modelling</json:string>
<json:string>kervella</json:string>
<json:string>author name</json:string>
<json:string>rotational velocity</json:string>
<json:string>soubiran</json:string>
<json:string>indirect method</json:string>
<json:string>vandenberg</json:string>
<json:string>astron</json:string>
<json:string>surface gravity</json:string>
<json:string>asteroseismic information</json:string>
<json:string>edvardsson</json:string>
<json:string>telluric</json:string>
<json:string>clem</json:string>
<json:string>mozurkewich</json:string>
<json:string>venin</json:string>
<json:string>stellar</json:string>
<json:string>target stars</json:string>
<json:string>chemical composition</json:string>
<json:string>vandenberg clem</json:string>
<json:string>cool stars</json:string>
<json:string>mgren indices</json:string>
<json:string>asteroseismic data</json:string>
<json:string>telluric lines</json:string>
<json:string>large separation</json:string>
<json:string>binary stars</json:string>
<json:string>interstellar reddening</json:string>
<json:string>spectral type</json:string>
<json:string>effective temperatures</json:string>
<json:string>spectral types</json:string>
<json:string>binary orbit</json:string>
<json:string>saar osten</json:string>
<json:string>bottom panel</json:string>
<json:string>model atmospheres</json:string>
<json:string>middle panel</json:string>
<json:string>spectroscopic value</json:string>
<json:string>full table</json:string>
<json:string>spectroscopic methods</json:string>
<json:string>solar spectrum</json:string>
<json:string>parameter</json:string>
<json:string>fuhrmann</json:string>
<json:string>sousa</json:string>
<json:string>kepler</json:string>
<json:string>star</json:string>
<json:string>continuum windows</json:string>
<json:string>excellent agreement</json:string>
<json:string>photometric teff values</json:string>
<json:string>atmospheric models</json:string>
<json:string>direct method</json:string>
<json:string>spectral lines</json:string>
<json:string>spectroscopic analyses</json:string>
<json:string>interferometric measurements</json:string>
<json:string>classical constraints</json:string>
<json:string>photometric calibrations</json:string>
<json:string>other studies</json:string>
<json:string>wide range</json:string>
<json:string>direct techniques</json:string>
<json:string>relative difference</json:string>
<json:string>bright stars</json:string>
<json:string>fuhrmann sousa soubiran</json:string>
<json:string>scatter</json:string>
<json:string>bedding</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>H. Bruntt</name>
<affiliations>
<json:string>LESIA, Observatoire de Paris‐Meudon, 92195 Meudon Cedex, France</json:string>
<json:string>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia</json:string>
<json:string>E-mail: bruntt@phys.au.dk</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. R. Bedding</name>
<affiliations>
<json:string>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>P.‐O. Quirion</name>
<affiliations>
<json:string>Canadian Space Agency, 6767 Boulevard de l’Aéroport, Saint‐Hubert, Québec J3Y 8Y9, Canada</json:string>
<json:string>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. Lo Curto</name>
<affiliations>
<json:string>European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile</json:string>
</affiliations>
</json:item>
<json:item>
<name>F. Carrier</name>
<affiliations>
<json:string>Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>B. Smalley</name>
<affiliations>
<json:string>Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. H. Dall</name>
<affiliations>
<json:string>European Southern Observatory, Karl Schwarzschild Str. 2, 85748 Garching bei München, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. Arentoft</name>
<affiliations>
<json:string>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Bazot</name>
<affiliations>
<json:string>Universidade do Porto, Centro de Astrofísica, Rua das Estrelas, PT 4150‐762 Porto, Portugal</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. P. Butler</name>
<affiliations>
<json:string>Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road NW, Washington, DC 20015‐1305, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>techniques: spectroscopic</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stars: abundances</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stars: fundamental parameters</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stars: solar‐type</value>
</json:item>
</subject>
<articleId>
<json:string>MNR16575</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-F54CBK0F-5</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar‐type stars, from spectral type F5 to K2 and luminosity classes III–V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4–15 per cent. From indirect methods we determine luminosity and radius to 3 per cent. We find evidence that the luminosity from the indirect method is slightly overestimated (≈ 5 per cent) for the coolest stars, indicating that their bolometric corrections (BCs) are too negative. For Teff we find a slight offset of −40 ± 20 K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. The metallicity ranges from [Fe/H]=−1.7 to +0.4, and there is clear evidence for α‐element enhancement in the metal‐poor stars. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine v  sin   i and we present a new calibration of macroturbulence and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine Teff, log  g and [Fe/H] with absolute accuracies of 80 K, 0.08 and 0.07 dex. Photometric calibrations of Strömgren indices provide accurate results for Teff and [Fe/H] but will be more uncertain for distant stars when interstellar reddening becomes important. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry cannot be used. This paper is the first to compare direct and indirect methods for a large sample of stars, and we conclude that indirect methods are valid, although slight corrections may be needed.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>13268</pdfWordCount>
<pdfCharCount>73326</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>17</pdfPageCount>
<pdfPageSize>595.274 x 782.286 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>332</abstractWordCount>
<abstractCharCount>2196</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Accurate fundamental parameters for 23 bright solar‐type stars</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Monthly Notices of the Royal Astronomical Society</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2966</json:string>
</doi>
<issn>
<json:string>0035-8711</json:string>
</issn>
<eissn>
<json:string>1365-2966</json:string>
</eissn>
<publisherId>
<json:string>MNR</json:string>
</publisherId>
<volume>405</volume>
<issue>3</issue>
<pages>
<first>1907</first>
<last>1923</last>
<total>17</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2010</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Keele University</json:string>
<json:string>University of Aarhus</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>R. P. Butler</json:string>
<json:string>H. Dall</json:string>
<json:string>Karl Schwarzschild</json:string>
<json:string>Alonso de Cordova</json:string>
<json:string>F. Carrier</json:string>
<json:string>The</json:string>
<json:string>H. Bruntt</json:string>
<json:string>Sydney Accepted</json:string>
<json:string>O. Quirion</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>Staffordshire</json:string>
<json:string>Meudon</json:string>
<json:string>Chile</json:string>
<json:string>Washington</json:string>
<json:string>DC</json:string>
<json:string>Santiago</json:string>
<json:string>Porto</json:string>
<json:string>Denmark</json:string>
<json:string>Portugal</json:string>
<json:string>Leuven</json:string>
<json:string>Belgium</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Department of Terrestrial Magnetism, 5241</json:string>
<json:string>Christensen-Dalsgaard 2008</json:string>
<json:string>Canadian Space Agency, 6767</json:string>
<json:string>France Institute for Astronomy, School of Physics, The University of Sydney, 2006</json:string>
<json:string>Stello et al. (2009b)</json:string>
<json:string>Aerts et al. 2008</json:string>
<json:string>Ammler-von Eiff et al. 2009</json:string>
<json:string>Basu et al. (2010)</json:string>
<json:string>Christensen-Dalsgaard et al. 2010</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-F54CBK0F-5</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - astronomy & astrophysics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - astronomy & astrophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Astronomy and Astrophysics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - terre, ocean, espace</json:string>
<json:string>4 - astronomie</json:string>
</inist>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2966.2010.16575.x</json:string>
</doi>
<id>A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Accurate fundamental parameters for 23 bright solar‐type stars</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2010 The Authors. Journal compilation © 2010 RAS</licence>
</availability>
<date type="published" when="2010-07-01"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Accurate fundamental parameters for 23 bright solar‐type stars</title>
<title level="a" type="short">Fundamental parameters for 23 solar‐type stars</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">H.</forename>
<surname>Bruntt</surname>
</persName>
<affiliation>LESIA, Observatoire de Paris‐Meudon, 92195 Meudon Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>E‐mail: bruntt@phys.au.dk</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">T. R.</forename>
<surname>Bedding</surname>
</persName>
<affiliation>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">P.‐O.</forename>
<surname>Quirion</surname>
</persName>
<affiliation>Canadian Space Agency, 6767 Boulevard de l’Aéroport, Saint‐Hubert, Québec J3Y 8Y9, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
<affiliation>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark
<address>
<country key="DK"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">G.</forename>
<surname>Lo Curto</surname>
</persName>
<affiliation>European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile
<address>
<country key="CL"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">F.</forename>
<surname>Carrier</surname>
</persName>
<affiliation>Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Belgium
<address>
<country key="BE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">B.</forename>
<surname>Smalley</surname>
</persName>
<affiliation>Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">T. H.</forename>
<surname>Dall</surname>
</persName>
<affiliation>European Southern Observatory, Karl Schwarzschild Str. 2, 85748 Garching bei München, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0007">
<persName>
<forename type="first">T.</forename>
<surname>Arentoft</surname>
</persName>
<affiliation>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark
<address>
<country key="DK"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0008">
<persName>
<forename type="first">M.</forename>
<surname>Bazot</surname>
</persName>
<affiliation>Universidade do Porto, Centro de Astrofísica, Rua das Estrelas, PT 4150‐762 Porto, Portugal
<address>
<country key="PT"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0009">
<persName>
<forename type="first">R. P.</forename>
<surname>Butler</surname>
</persName>
<affiliation>Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road NW, Washington, DC 20015‐1305, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<idno type="istex">A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C</idno>
<idno type="ark">ark:/67375/WNG-F54CBK0F-5</idno>
<idno type="DOI">10.1111/j.1365-2966.2010.16575.x</idno>
<idno type="unit">MNR16575</idno>
<idno type="toTypesetVersion">file:MNR.MNR16575.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="pISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2966</idno>
<idno type="book-part-DOI">10.1111/mnr.2010.405.issue-3</idno>
<idno type="product">MNR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">405</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1907">1907</biblScope>
<biblScope unit="page" to="1923">1923</biblScope>
<biblScope unit="page-count">17</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-07-01"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>ABSTRACT</head>
<p>We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar‐type stars, from spectral type F5 to K2 and luminosity classes III–V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4–15 per cent. From indirect methods we determine luminosity and radius to 3 per cent. We find evidence that the luminosity from the indirect method is slightly overestimated (
<emph>
<span>≈ 5</span>
</emph>
per cent) for the coolest stars, indicating that their bolometric corrections (BCs) are too negative. For
<emph>
<span>
<hi rend="italic">T</hi>
<hi rend="subscript">eff</hi>
</span>
</emph>
we find a slight offset of
<emph>
<span>−40 ± 20</span>
</emph>
 K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. The metallicity ranges from
<emph>
<span>[Fe/H]=−1.7</span>
</emph>
to
<emph>
<span>+0.4</span>
</emph>
, and there is clear evidence for α‐element enhancement in the metal‐poor stars. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine
<emph>
<span>
<hi rend="italic">v</hi>
  sin   
<hi rend="italic">i</hi>
</span>
</emph>
and we present a new calibration of macroturbulence and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine
<emph>
<span>
<hi rend="italic">T</hi>
<hi rend="subscript">eff</hi>
</span>
</emph>
,
<emph>
<span>log  
<hi rend="italic">g</hi>
</span>
</emph>
and [Fe/H] with absolute accuracies of 80 K, 0.08 and 0.07 dex. Photometric calibrations of Strömgren indices provide accurate results for
<emph>
<span>
<hi rend="italic">T</hi>
<hi rend="subscript">eff</hi>
</span>
</emph>
and [Fe/H] but will be more uncertain for distant stars when interstellar reddening becomes important. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry cannot be used. This paper is the first to compare direct and indirect methods for a large sample of stars, and we conclude that indirect methods are valid, although slight corrections may be needed.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">techniques: spectroscopic</term>
<term xml:id="k2">stars: abundances</term>
<term xml:id="k3">stars: fundamental parameters</term>
<term xml:id="k4">stars: solar‐type</term>
</keywords>
<keywords rend="tocHeading1">
<term>Papers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2966</doi>
<issn type="print">0035-8711</issn>
<issn type="electronic">1365-2966</issn>
<idGroup>
<id type="product" value="MNR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY">Monthly Notices of the Royal Astronomical Society</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="07103">
<doi origin="wiley">10.1111/mnr.2010.405.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="405">405</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="2010-07-01">July 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="36" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2966.2010.16575.x</doi>
<idGroup>
<id type="unit" value="MNR16575"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="17"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Papers</title>
</titleGroup>
<copyright>© 2010 The Authors. Journal compilation © 2010 RAS</copyright>
<eventGroup>
<event type="firstOnline" date="2010-05-11"></event>
<event type="publishedOnlineFinalForm" date="2010-06-23"></event>
<event type="publishedOnlineAcceptedOrEarlyUnpaginated" date="2010-05-11"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.4 mode:FullText source:FullText result:FullText" date="2010-12-14"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-02"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1907">1907</numbering>
<numbering type="pageLast" number="1923">1923</numbering>
</numberingGroup>
<correspondenceTo> E‐mail:
<email>bruntt@phys.au.dk</email>
</correspondenceTo>
<objectNameGroup>
<objectName elementName="appendix">Appendices</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:MNR.MNR16575.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted 2010 February 22. Received 2010 February 22; in original form 2009 December 18</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="11"></count>
<count type="tableTotal" number="8"></count>
<count type="formulaTotal" number="1268"></count>
<count type="referenceTotal" number="107"></count>
<count type="linksCrossRef" number="322"></count>
</countGroup>
<titleGroup>
<title type="main">Accurate fundamental parameters for 23 bright solar‐type stars</title>
<title type="shortAuthors">
<i>H. Bruntt et al.</i>
</title>
<title type="short">
<i>Fundamental parameters for 23 solar‐type stars</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2" corresponding="yes">
<personName>
<givenNames>H.</givenNames>
<familyName>Bruntt</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>T. R.</givenNames>
<familyName>Bedding</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a3 #a4">
<personName>
<givenNames>P.‐O.</givenNames>
<familyName>Quirion</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a5">
<personName>
<givenNames>G.</givenNames>
<familyName>Lo Curto</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a6">
<personName>
<givenNames>F.</givenNames>
<familyName>Carrier</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a7">
<personName>
<givenNames>B.</givenNames>
<familyName>Smalley</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a8">
<personName>
<givenNames>T. H.</givenNames>
<familyName>Dall</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr8" affiliationRef="#a4">
<personName>
<givenNames>T.</givenNames>
<familyName>Arentoft</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr9" affiliationRef="#a9">
<personName>
<givenNames>M.</givenNames>
<familyName>Bazot</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr10" affiliationRef="#a10">
<personName>
<givenNames>R. P.</givenNames>
<familyName>Butler</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="FR">
<unparsedAffiliation>LESIA, Observatoire de Paris‐Meudon, 92195 Meudon Cedex, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="AU">
<unparsedAffiliation>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="CA">
<unparsedAffiliation>Canadian Space Agency, 6767 Boulevard de l’Aéroport, Saint‐Hubert, Québec J3Y 8Y9, Canada</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="DK">
<unparsedAffiliation>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="CL">
<unparsedAffiliation>European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a6" countryCode="BE">
<unparsedAffiliation>Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Belgium</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a7">
<unparsedAffiliation>Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a8" countryCode="DE">
<unparsedAffiliation>European Southern Observatory, Karl Schwarzschild Str. 2, 85748 Garching bei München, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a9" countryCode="PT">
<unparsedAffiliation>Universidade do Porto, Centro de Astrofísica, Rua das Estrelas, PT 4150‐762 Porto, Portugal</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a10" countryCode="US">
<unparsedAffiliation>Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road NW, Washington, DC 20015‐1305, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">techniques: spectroscopic</keyword>
<keyword xml:id="k2">stars: abundances</keyword>
<keyword xml:id="k3">stars: fundamental parameters</keyword>
<keyword xml:id="k4">stars: solar‐type</keyword>
</keywordGroup>
<supportingInformation>
<p>
<b>Table A1.</b>
Comparison of effective temperatures from this paper (Strömgren, vwa) with values found in the literature as identified by the first author name.</p>
<p>
<b>Table A2.</b>
Comparison of the surface gravity from vwa with values found in the literature as identified by the first author name.</p>
<p>
<b>Table A3.</b>
Comparison of the metallicity from vwa with values found in the literature as identified by the first author name.</p>
<p>
<b>Table B1.</b>
The determined projected rotational velocity and macroturbulence from this paper are compared with five other studies from the literature identified by the first author name.</p>
<p>Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.</p>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:00358711:media:mnr16575:MNR_16575_sm_appendixtables"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">ABSTRACT</title>
<p>We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar‐type stars, from spectral type F5 to K2 and luminosity classes III–V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4–15 per cent. From indirect methods we determine luminosity and radius to 3 per cent. We find evidence that the luminosity from the indirect method is slightly overestimated (
<span type="mathematics">≈ 5</span>
per cent) for the coolest stars, indicating that their bolometric corrections (BCs) are too negative. For
<span type="mathematics">
<i>T</i>
<sub>eff</sub>
</span>
we find a slight offset of
<span type="mathematics">−40 ± 20</span>
 K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. The metallicity ranges from
<span type="mathematics">[Fe/H]=−1.7</span>
to
<span type="mathematics">+0.4</span>
, and there is clear evidence for α‐element enhancement in the metal‐poor stars. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine
<span type="mathematics">
<i>v</i>
  sin   
<i>i</i>
</span>
and we present a new calibration of macroturbulence and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine
<span type="mathematics">
<i>T</i>
<sub>eff</sub>
</span>
,
<span type="mathematics">log  
<i>g</i>
</span>
and [Fe/H] with absolute accuracies of 80 K, 0.08 and 0.07 dex. Photometric calibrations of Strömgren indices provide accurate results for
<span type="mathematics">
<i>T</i>
<sub>eff</sub>
</span>
and [Fe/H] but will be more uncertain for distant stars when interstellar reddening becomes important. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry cannot be used. This paper is the first to compare direct and indirect methods for a large sample of stars, and we conclude that indirect methods are valid, although slight corrections may be needed.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Accurate fundamental parameters for 23 bright solar‐type stars</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Fundamental parameters for 23 solar‐type stars</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Accurate fundamental parameters for 23 bright solar‐type stars</title>
</titleInfo>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Bruntt</namePart>
<affiliation>LESIA, Observatoire de Paris‐Meudon, 92195 Meudon Cedex, France</affiliation>
<affiliation>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia</affiliation>
<affiliation>E-mail: bruntt@phys.au.dk</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T. R.</namePart>
<namePart type="family">Bedding</namePart>
<affiliation>Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.‐O.</namePart>
<namePart type="family">Quirion</namePart>
<affiliation>Canadian Space Agency, 6767 Boulevard de l’Aéroport, Saint‐Hubert, Québec J3Y 8Y9, Canada</affiliation>
<affiliation>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Lo Curto</namePart>
<affiliation>European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Carrier</namePart>
<affiliation>Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B.</namePart>
<namePart type="family">Smalley</namePart>
<affiliation>Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T. H.</namePart>
<namePart type="family">Dall</namePart>
<affiliation>European Southern Observatory, Karl Schwarzschild Str. 2, 85748 Garching bei München, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Arentoft</namePart>
<affiliation>Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, University of Aarhus, DK‐8000 Aarhus C, Denmark</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Bazot</namePart>
<affiliation>Universidade do Porto, Centro de Astrofísica, Rua das Estrelas, PT 4150‐762 Porto, Portugal</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. P.</namePart>
<namePart type="family">Butler</namePart>
<affiliation>Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road NW, Washington, DC 20015‐1305, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-07-01</dateIssued>
<edition>Accepted 2010 February 22. Received 2010 February 22; in original form 2009 December 18</edition>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">11</extent>
<extent unit="tables">8</extent>
<extent unit="formulas">1268</extent>
<extent unit="references">107</extent>
<extent unit="linksCrossRef">322</extent>
</physicalDescription>
<abstract lang="en">We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar‐type stars, from spectral type F5 to K2 and luminosity classes III–V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4–15 per cent. From indirect methods we determine luminosity and radius to 3 per cent. We find evidence that the luminosity from the indirect method is slightly overestimated (≈ 5 per cent) for the coolest stars, indicating that their bolometric corrections (BCs) are too negative. For Teff we find a slight offset of −40 ± 20 K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. The metallicity ranges from [Fe/H]=−1.7 to +0.4, and there is clear evidence for α‐element enhancement in the metal‐poor stars. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine v  sin   i and we present a new calibration of macroturbulence and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine Teff, log  g and [Fe/H] with absolute accuracies of 80 K, 0.08 and 0.07 dex. Photometric calibrations of Strömgren indices provide accurate results for Teff and [Fe/H] but will be more uncertain for distant stars when interstellar reddening becomes important. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry cannot be used. This paper is the first to compare direct and indirect methods for a large sample of stars, and we conclude that indirect methods are valid, although slight corrections may be needed.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>techniques: spectroscopic</topic>
<topic>stars: abundances</topic>
<topic>stars: fundamental parameters</topic>
<topic>stars: solar‐type</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Monthly Notices of the Royal Astronomical Society</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<note type="content"> Table A1. Comparison of effective temperatures from this paper (Strömgren, vwa) with values found in the literature as identified by the first author name. Table A2. Comparison of the surface gravity from vwa with values found in the literature as identified by the first author name. Table A3. Comparison of the metallicity from vwa with values found in the literature as identified by the first author name. Table B1. The determined projected rotational velocity and macroturbulence from this paper are compared with five other studies from the literature identified by the first author name. Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article. Table A1. Comparison of effective temperatures from this paper (Strömgren, vwa) with values found in the literature as identified by the first author name. Table A2. Comparison of the surface gravity from vwa with values found in the literature as identified by the first author name. Table A3. Comparison of the metallicity from vwa with values found in the literature as identified by the first author name. Table B1. The determined projected rotational velocity and macroturbulence from this paper are compared with five other studies from the literature identified by the first author name. Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article. Table A1. Comparison of effective temperatures from this paper (Strömgren, vwa) with values found in the literature as identified by the first author name. Table A2. Comparison of the surface gravity from vwa with values found in the literature as identified by the first author name. Table A3. Comparison of the metallicity from vwa with values found in the literature as identified by the first author name. Table B1. The determined projected rotational velocity and macroturbulence from this paper are compared with five other studies from the literature identified by the first author name. Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article. Table A1. Comparison of effective temperatures from this paper (Strömgren, vwa) with values found in the literature as identified by the first author name. Table A2. Comparison of the surface gravity from vwa with values found in the literature as identified by the first author name. Table A3. Comparison of the metallicity from vwa with values found in the literature as identified by the first author name. Table B1. The determined projected rotational velocity and macroturbulence from this paper are compared with five other studies from the literature identified by the first author name. Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article. Table A1. Comparison of effective temperatures from this paper (Strömgren, vwa) with values found in the literature as identified by the first author name. Table A2. Comparison of the surface gravity from vwa with values found in the literature as identified by the first author name. Table A3. Comparison of the metallicity from vwa with values found in the literature as identified by the first author name. Table B1. The determined projected rotational velocity and macroturbulence from this paper are compared with five other studies from the literature identified by the first author name. Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.Supporting Info Item: Supporting info item - </note>
<identifier type="ISSN">0035-8711</identifier>
<identifier type="eISSN">1365-2966</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2966</identifier>
<identifier type="PublisherID">MNR</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>405</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1907</start>
<end>1923</end>
<total>17</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C</identifier>
<identifier type="ark">ark:/67375/WNG-F54CBK0F-5</identifier>
<identifier type="DOI">10.1111/j.1365-2966.2010.16575.x</identifier>
<identifier type="ArticleID">MNR16575</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 The Authors. Journal compilation © 2010 RAS</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001F34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A5609DF1FAD427865A77F392B6C2C2A3A7BBE86C
   |texte=   Accurate fundamental parameters for 23 bright solar‐type stars
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024