Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Depth profiles of fullerene in ion irradiated polyimide

Identifieur interne : 001041 ( Istex/Corpus ); précédent : 001040; suivant : 001042

Depth profiles of fullerene in ion irradiated polyimide

Auteurs : D. Fink ; R. Klett ; C. Mathis ; J. Vacik ; V. Hnatowicz ; L. T. Chadderton

Source :

RBID : ISTEX:5751C59775EDE55E08611907AF63A71BB926E44F

English descriptors

Abstract

Abstract: An analytical experimental technique is described which permits depth profiles of the fundamental molecule fullerene, C60, to be determined in solids for low molecular concentrations. The method combines a procedure for the simultaneous marking and immobilizing of fullerene in organic solids, by means of lithium salt formation, with “neutron depth profiling” — a highly sensitive approach in determining specific depth distributions of 6Li. The new technique — fullerene tracer profiling (FTP) — is described in some detail, and results of the first experiments are discussed. Fullerene solutions have been introduced into both pristine and ion-irradiated samples of the polymer polyimide (PI). The C60 depth distributions were then measured using fullerene tracer profiling. From the shapes of the depth distributions conclusions are drawn concerning the uptake of fullerene solutions by polymers and the mobility of fullerene. Fullerene does not penetrate unirradiated PI, but it does readily fill up latent tracks of energetic ions in this polymer. Depending on the specific ion track density, some 104 to 107 C60 molecules can be identified as being present in a single track. The diffusion coefficient for C60 is estimated to be at least 2 × 10−12 to 2 × 10−13 cm2s−1, much higher than expected. This may be ascribed in part to the remarkable elastic deformability of the fullerene molecule in both kinetic and dynamic motion, and to the near perfect spherical geometry accompanying elimination of dangling bonds in simultaneously minimising the surface energy.

Url:
DOI: 10.1016/0168-583X(95)00185-9

Links to Exploration step

ISTEX:5751C59775EDE55E08611907AF63A71BB926E44F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Depth profiles of fullerene in ion irradiated polyimide</title>
<author>
<name sortKey="Fink, D" sort="Fink, D" uniqKey="Fink D" first="D." last="Fink">D. Fink</name>
<affiliation>
<mods:affiliation>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klett, R" sort="Klett, R" uniqKey="Klett R" first="R." last="Klett">R. Klett</name>
<affiliation>
<mods:affiliation>Corresponding author.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mathis, C" sort="Mathis, C" uniqKey="Mathis C" first="C." last="Mathis">C. Mathis</name>
<affiliation>
<mods:affiliation>Institut Charles Sadron, C.N.R.S., 6 rue Boussingault, F-67083 Strasbourg Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vacik, J" sort="Vacik, J" uniqKey="Vacik J" first="J." last="Vacik">J. Vacik</name>
<affiliation>
<mods:affiliation>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hnatowicz, V" sort="Hnatowicz, V" uniqKey="Hnatowicz V" first="V." last="Hnatowicz">V. Hnatowicz</name>
<affiliation>
<mods:affiliation>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chadderton, L T" sort="Chadderton, L T" uniqKey="Chadderton L" first="L. T." last="Chadderton">L. T. Chadderton</name>
<affiliation>
<mods:affiliation>CSIRO Division of Applied Physics, Lindfield, NSW, Australia and Institute for Advanced Studies, Australian National University, P.O. Box 4, Canberra, ACT 2601, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5751C59775EDE55E08611907AF63A71BB926E44F</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1016/0168-583X(95)00185-9</idno>
<idno type="url">https://api.istex.fr/document/5751C59775EDE55E08611907AF63A71BB926E44F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001041</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001041</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Depth profiles of fullerene in ion irradiated polyimide</title>
<author>
<name sortKey="Fink, D" sort="Fink, D" uniqKey="Fink D" first="D." last="Fink">D. Fink</name>
<affiliation>
<mods:affiliation>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klett, R" sort="Klett, R" uniqKey="Klett R" first="R." last="Klett">R. Klett</name>
<affiliation>
<mods:affiliation>Corresponding author.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mathis, C" sort="Mathis, C" uniqKey="Mathis C" first="C." last="Mathis">C. Mathis</name>
<affiliation>
<mods:affiliation>Institut Charles Sadron, C.N.R.S., 6 rue Boussingault, F-67083 Strasbourg Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vacik, J" sort="Vacik, J" uniqKey="Vacik J" first="J." last="Vacik">J. Vacik</name>
<affiliation>
<mods:affiliation>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hnatowicz, V" sort="Hnatowicz, V" uniqKey="Hnatowicz V" first="V." last="Hnatowicz">V. Hnatowicz</name>
<affiliation>
<mods:affiliation>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chadderton, L T" sort="Chadderton, L T" uniqKey="Chadderton L" first="L. T." last="Chadderton">L. T. Chadderton</name>
<affiliation>
<mods:affiliation>CSIRO Division of Applied Physics, Lindfield, NSW, Australia and Institute for Advanced Studies, Australian National University, P.O. Box 4, Canberra, ACT 2601, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Nuclear Inst. and Methods in Physics Research, B</title>
<title level="j" type="abbrev">NIMB</title>
<idno type="ISSN">0168-583X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1995">1995</date>
<biblScope unit="volume">100</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="69">69</biblScope>
<biblScope unit="page" to="79">79</biblScope>
</imprint>
<idno type="ISSN">0168-583X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0168-583X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chadderton</term>
<term>Concentration profiles</term>
<term>Depth distribution</term>
<term>Depth distributions</term>
<term>Depth profiles</term>
<term>Dopant</term>
<term>Doped</term>
<term>Doping</term>
<term>Energetic ions</term>
<term>Energy transfer</term>
<term>Fink</term>
<term>Fullerene</term>
<term>Fullerene doping</term>
<term>Fullerene mobility</term>
<term>Fullerene molecule</term>
<term>Fullerene molecules</term>
<term>Fullerene production</term>
<term>Fullerene tracer</term>
<term>Hnatowicz</term>
<term>Instr</term>
<term>Intrinsic defects</term>
<term>Ion</term>
<term>Lithium</term>
<term>Meth</term>
<term>Neutron</term>
<term>Neutron depth</term>
<term>Nucl</term>
<term>Other hand</term>
<term>Phys</term>
<term>Polyimide</term>
<term>Polymer</term>
<term>Radiat</term>
<term>Room temperature</term>
<term>Total amount</term>
<term>Total amounts</term>
<term>Tracer</term>
<term>Tracer distributions</term>
<term>Track doping</term>
<term>Undoped</term>
<term>Undoped samples</term>
<term>Unsaturable traps</term>
<term>Whilst</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Chadderton</term>
<term>Concentration profiles</term>
<term>Depth distribution</term>
<term>Depth distributions</term>
<term>Depth profiles</term>
<term>Dopant</term>
<term>Doped</term>
<term>Doping</term>
<term>Energetic ions</term>
<term>Energy transfer</term>
<term>Fink</term>
<term>Fullerene</term>
<term>Fullerene doping</term>
<term>Fullerene mobility</term>
<term>Fullerene molecule</term>
<term>Fullerene molecules</term>
<term>Fullerene production</term>
<term>Fullerene tracer</term>
<term>Hnatowicz</term>
<term>Instr</term>
<term>Intrinsic defects</term>
<term>Ion</term>
<term>Lithium</term>
<term>Meth</term>
<term>Neutron</term>
<term>Neutron depth</term>
<term>Nucl</term>
<term>Other hand</term>
<term>Phys</term>
<term>Polyimide</term>
<term>Polymer</term>
<term>Radiat</term>
<term>Room temperature</term>
<term>Total amount</term>
<term>Total amounts</term>
<term>Tracer</term>
<term>Tracer distributions</term>
<term>Track doping</term>
<term>Undoped</term>
<term>Undoped samples</term>
<term>Unsaturable traps</term>
<term>Whilst</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: An analytical experimental technique is described which permits depth profiles of the fundamental molecule fullerene, C60, to be determined in solids for low molecular concentrations. The method combines a procedure for the simultaneous marking and immobilizing of fullerene in organic solids, by means of lithium salt formation, with “neutron depth profiling” — a highly sensitive approach in determining specific depth distributions of 6Li. The new technique — fullerene tracer profiling (FTP) — is described in some detail, and results of the first experiments are discussed. Fullerene solutions have been introduced into both pristine and ion-irradiated samples of the polymer polyimide (PI). The C60 depth distributions were then measured using fullerene tracer profiling. From the shapes of the depth distributions conclusions are drawn concerning the uptake of fullerene solutions by polymers and the mobility of fullerene. Fullerene does not penetrate unirradiated PI, but it does readily fill up latent tracks of energetic ions in this polymer. Depending on the specific ion track density, some 104 to 107 C60 molecules can be identified as being present in a single track. The diffusion coefficient for C60 is estimated to be at least 2 × 10−12 to 2 × 10−13 cm2s−1, much higher than expected. This may be ascribed in part to the remarkable elastic deformability of the fullerene molecule in both kinetic and dynamic motion, and to the near perfect spherical geometry accompanying elimination of dangling bonds in simultaneously minimising the surface energy.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>fullerene</json:string>
<json:string>doping</json:string>
<json:string>tracer</json:string>
<json:string>dopant</json:string>
<json:string>polymer</json:string>
<json:string>nucl</json:string>
<json:string>polyimide</json:string>
<json:string>meth</json:string>
<json:string>instr</json:string>
<json:string>lithium</json:string>
<json:string>chadderton</json:string>
<json:string>phys</json:string>
<json:string>undoped</json:string>
<json:string>radiat</json:string>
<json:string>depth profiles</json:string>
<json:string>room temperature</json:string>
<json:string>whilst</json:string>
<json:string>fullerene tracer</json:string>
<json:string>hnatowicz</json:string>
<json:string>fullerene molecule</json:string>
<json:string>intrinsic defects</json:string>
<json:string>neutron depth</json:string>
<json:string>fullerene molecules</json:string>
<json:string>other hand</json:string>
<json:string>undoped samples</json:string>
<json:string>energetic ions</json:string>
<json:string>depth distributions</json:string>
<json:string>depth distribution</json:string>
<json:string>neutron</json:string>
<json:string>doped</json:string>
<json:string>concentration profiles</json:string>
<json:string>track doping</json:string>
<json:string>unsaturable traps</json:string>
<json:string>fullerene doping</json:string>
<json:string>fullerene mobility</json:string>
<json:string>fullerene production</json:string>
<json:string>total amount</json:string>
<json:string>tracer distributions</json:string>
<json:string>energy transfer</json:string>
<json:string>total amounts</json:string>
<json:string>ion</json:string>
<json:string>fink</json:string>
<json:string>pristine</json:string>
<json:string>molecule</json:string>
<json:string>doping experiments</json:string>
<json:string>doped samples</json:string>
<json:string>pristine polymers</json:string>
<json:string>mobile dopants</json:string>
<json:string>thick foils</json:string>
<json:string>nuclear reaction analysis</json:string>
<json:string>polyimide foils</json:string>
<json:string>pristine material</json:string>
<json:string>radial distance</json:string>
<json:string>track core</json:string>
<json:string>lithium salt</json:string>
<json:string>track cores</json:string>
<json:string>dopant concentration</json:string>
<json:string>fullerene solutions</json:string>
<json:string>track densities</json:string>
<json:string>aqueous doping</json:string>
<json:string>salt doping</json:string>
<json:string>tracer solution</json:string>
<json:string>small ions</json:string>
<json:string>polymeric matrix</json:string>
<json:string>dopant mobility</json:string>
<json:string>diffusion coefficients</json:string>
<json:string>condensed matter</json:string>
<json:string>czech academy</json:string>
<json:string>saturable traps</json:string>
<json:string>doping time</json:string>
<json:string>faint traces</json:string>
<json:string>defect</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>D. Fink</name>
<affiliations>
<json:string>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Klett</name>
<affiliations>
<json:string>Corresponding author.</json:string>
<json:string>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Mathis</name>
<affiliations>
<json:string>Institut Charles Sadron, C.N.R.S., 6 rue Boussingault, F-67083 Strasbourg Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Vacik</name>
<affiliations>
<json:string>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</json:string>
</affiliations>
</json:item>
<json:item>
<name>V. Hnatowicz</name>
<affiliations>
<json:string>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</json:string>
</affiliations>
</json:item>
<json:item>
<name>L.T. Chadderton</name>
<affiliations>
<json:string>CSIRO Division of Applied Physics, Lindfield, NSW, Australia and Institute for Advanced Studies, Australian National University, P.O. Box 4, Canberra, ACT 2601, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Ion beam modification of materials</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-H1P1WX18-H</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: An analytical experimental technique is described which permits depth profiles of the fundamental molecule fullerene, C60, to be determined in solids for low molecular concentrations. The method combines a procedure for the simultaneous marking and immobilizing of fullerene in organic solids, by means of lithium salt formation, with “neutron depth profiling” — a highly sensitive approach in determining specific depth distributions of 6Li. The new technique — fullerene tracer profiling (FTP) — is described in some detail, and results of the first experiments are discussed. Fullerene solutions have been introduced into both pristine and ion-irradiated samples of the polymer polyimide (PI). The C60 depth distributions were then measured using fullerene tracer profiling. From the shapes of the depth distributions conclusions are drawn concerning the uptake of fullerene solutions by polymers and the mobility of fullerene. Fullerene does not penetrate unirradiated PI, but it does readily fill up latent tracks of energetic ions in this polymer. Depending on the specific ion track density, some 104 to 107 C60 molecules can be identified as being present in a single track. The diffusion coefficient for C60 is estimated to be at least 2 × 10−12 to 2 × 10−13 cm2s−1, much higher than expected. This may be ascribed in part to the remarkable elastic deformability of the fullerene molecule in both kinetic and dynamic motion, and to the near perfect spherical geometry accompanying elimination of dangling bonds in simultaneously minimising the surface energy.</abstract>
<qualityIndicators>
<score>9.892</score>
<pdfWordCount>6707</pdfWordCount>
<pdfCharCount>40008</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>537 x 749 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>241</abstractWordCount>
<abstractCharCount>1578</abstractCharCount>
<keywordCount>1</keywordCount>
</qualityIndicators>
<title>Depth profiles of fullerene in ion irradiated polyimide</title>
<pii>
<json:string>0168-583X(95)00185-9</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Nuclear Inst. and Methods in Physics Research, B</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1995</publicationDate>
<issn>
<json:string>0168-583X</json:string>
</issn>
<pii>
<json:string>S0168-583X(00)X0032-8</json:string>
</pii>
<volume>100</volume>
<issue>1</issue>
<pages>
<first>69</first>
<last>79</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1995</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>CO, CO</json:string>
<json:string>Australia and Institute for Advanced Studies, Australian National Unil</json:string>
<json:string>Goodfellows Ltd.</json:string>
<json:string>Australia Received</json:string>
<json:string>Czech Academy of Sciences</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>L.T. Chadderton</json:string>
<json:string>V. Hnatowicz</json:string>
<json:string>France L Institute</json:string>
<json:string>J. Vacik</json:string>
<json:string>Charles Sadron</json:string>
</persName>
<placeName>
<json:string>Canberra</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[4]</json:string>
<json:string>[23]</json:string>
<json:string>[29]</json:string>
<json:string>[22]</json:string>
<json:string>[28]</json:string>
<json:string>[21]</json:string>
<json:string>[27]</json:string>
<json:string>[3]</json:string>
<json:string>[20]</json:string>
<json:string>[26]</json:string>
<json:string>[12,13]</json:string>
<json:string>[7]</json:string>
<json:string>D. Fink et al.</json:string>
<json:string>[25]</json:string>
<json:string>[9]</json:string>
<json:string>[2]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-H1P1WX18-H</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - physics, nuclear</json:string>
<json:string>2 - physics, atomic, molecular & chemical</json:string>
<json:string>2 - nuclear science & technology</json:string>
<json:string>2 - instruments & instrumentation</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - applied physics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Instrumentation</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Nuclear and High Energy Physics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - chimie</json:string>
<json:string>4 - chimie analytique</json:string>
</inist>
</categories>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1016/0168-583X(95)00185-9</json:string>
</doi>
<id>5751C59775EDE55E08611907AF63A71BB926E44F</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/5751C59775EDE55E08611907AF63A71BB926E44F/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/5751C59775EDE55E08611907AF63A71BB926E44F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/5751C59775EDE55E08611907AF63A71BB926E44F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Depth profiles of fullerene in ion irradiated polyimide</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1995</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Depth profiles of fullerene in ion irradiated polyimide</title>
<author xml:id="author-0000">
<persName>
<forename type="first">D.</forename>
<surname>Fink</surname>
</persName>
<affiliation>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">R.</forename>
<surname>Klett</surname>
</persName>
<affiliation>Corresponding author.</affiliation>
<affiliation>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">C.</forename>
<surname>Mathis</surname>
</persName>
<affiliation>Institut Charles Sadron, C.N.R.S., 6 rue Boussingault, F-67083 Strasbourg Cedex, France</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">J.</forename>
<surname>Vacik</surname>
</persName>
<affiliation>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">V.</forename>
<surname>Hnatowicz</surname>
</persName>
<affiliation>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">L.T.</forename>
<surname>Chadderton</surname>
</persName>
<affiliation>CSIRO Division of Applied Physics, Lindfield, NSW, Australia and Institute for Advanced Studies, Australian National University, P.O. Box 4, Canberra, ACT 2601, Australia</affiliation>
</author>
<idno type="istex">5751C59775EDE55E08611907AF63A71BB926E44F</idno>
<idno type="DOI">10.1016/0168-583X(95)00185-9</idno>
<idno type="PII">0168-583X(95)00185-9</idno>
</analytic>
<monogr>
<title level="j">Nuclear Inst. and Methods in Physics Research, B</title>
<title level="j" type="abbrev">NIMB</title>
<idno type="pISSN">0168-583X</idno>
<idno type="PII">S0168-583X(00)X0032-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1995"></date>
<biblScope unit="volume">100</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="69">69</biblScope>
<biblScope unit="page" to="79">79</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1995</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>An analytical experimental technique is described which permits depth profiles of the fundamental molecule fullerene, C60, to be determined in solids for low molecular concentrations. The method combines a procedure for the simultaneous marking and immobilizing of fullerene in organic solids, by means of lithium salt formation, with “neutron depth profiling” — a highly sensitive approach in determining specific depth distributions of 6Li. The new technique — fullerene tracer profiling (FTP) — is described in some detail, and results of the first experiments are discussed. Fullerene solutions have been introduced into both pristine and ion-irradiated samples of the polymer polyimide (PI). The C60 depth distributions were then measured using fullerene tracer profiling. From the shapes of the depth distributions conclusions are drawn concerning the uptake of fullerene solutions by polymers and the mobility of fullerene. Fullerene does not penetrate unirradiated PI, but it does readily fill up latent tracks of energetic ions in this polymer. Depending on the specific ion track density, some 104 to 107 C60 molecules can be identified as being present in a single track. The diffusion coefficient for C60 is estimated to be at least 2 × 10−12 to 2 × 10−13 cm2s−1, much higher than expected. This may be ascribed in part to the remarkable elastic deformability of the fullerene molecule in both kinetic and dynamic motion, and to the near perfect spherical geometry accompanying elimination of dangling bonds in simultaneously minimising the surface energy.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>article-category</head>
<item>
<term>Ion beam modification of materials</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1994-12-22">Modified</change>
<change when="1995">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/5751C59775EDE55E08611907AF63A71BB926E44F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>NIMB</jid>
<aid>95001859</aid>
<ce:pii>0168-583X(95)00185-9</ce:pii>
<ce:doi>10.1016/0168-583X(95)00185-9</ce:doi>
<ce:copyright type="unknown" year="1995"></ce:copyright>
<ce:doctopics>
<ce:doctopic>
<ce:text>Ion beam modification of materials</ce:text>
</ce:doctopic>
</ce:doctopics>
</item-info>
<head>
<ce:title>Depth profiles of fullerene in ion irradiated polyimide</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>D.</ce:given-name>
<ce:surname>Fink</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>R.</ce:given-name>
<ce:surname>Klett</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>C.</ce:given-name>
<ce:surname>Mathis</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>J.</ce:given-name>
<ce:surname>Vacik</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>V.</ce:given-name>
<ce:surname>Hnatowicz</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>L.T.</ce:given-name>
<ce:surname>Chadderton</ce:surname>
<ce:cross-ref refid="AFF4">
<ce:sup>d</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Institut Charles Sadron, C.N.R.S., 6 rue Boussingault, F-67083 Strasbourg Cedex, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF4">
<ce:label>d</ce:label>
<ce:textfn>CSIRO Division of Applied Physics, Lindfield, NSW, Australia and Institute for Advanced Studies, Australian National University, P.O. Box 4, Canberra, ACT 2601, Australia</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label></ce:label>
<ce:text>Corresponding author.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="5" month="9" year="1994"></ce:date-received>
<ce:date-revised day="22" month="12" year="1994"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>An analytical experimental technique is described which permits depth profiles of the fundamental molecule fullerene, C
<ce:inf>60</ce:inf>
, to be determined in solids for low molecular concentrations. The method combines a procedure for the simultaneous marking and immobilizing of fullerene in organic solids, by means of lithium salt formation, with “neutron depth profiling” — a highly sensitive approach in determining specific depth distributions of
<ce:sup loc="pre">6</ce:sup>
Li. The new technique — fullerene tracer profiling (FTP) — is described in some detail, and results of the first experiments are discussed.</ce:simple-para>
<ce:simple-para>Fullerene solutions have been introduced into both pristine and ion-irradiated samples of the polymer polyimide (PI). The C
<ce:inf>60</ce:inf>
depth distributions were then measured using fullerene tracer profiling. From the shapes of the depth distributions conclusions are drawn concerning the uptake of fullerene solutions by polymers and the mobility of fullerene.</ce:simple-para>
<ce:simple-para>Fullerene does not penetrate unirradiated PI, but it does readily fill up latent tracks of energetic ions in this polymer. Depending on the specific ion track density, some 10
<ce:sup>4</ce:sup>
to 10
<ce:sup>7</ce:sup>
C
<ce:inf>60</ce:inf>
molecules can be identified as being present in a single track. The diffusion coefficient for C
<ce:inf>60</ce:inf>
is estimated to be at least 2 × 10
<ce:sup>−12</ce:sup>
to 2 × 10
<ce:sup>−13</ce:sup>
cm
<ce:sup>2</ce:sup>
s
<ce:sup>−1</ce:sup>
, much higher than expected. This may be ascribed in part to the remarkable elastic deformability of the fullerene molecule in both kinetic and dynamic motion, and to the near perfect spherical geometry accompanying elimination of dangling bonds in simultaneously minimising the surface energy.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Depth profiles of fullerene in ion irradiated polyimide</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Depth profiles of fullerene in ion irradiated polyimide</title>
</titleInfo>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Fink</namePart>
<affiliation>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Klett</namePart>
<affiliation>Corresponding author.</affiliation>
<affiliation>Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Mathis</namePart>
<affiliation>Institut Charles Sadron, C.N.R.S., 6 rue Boussingault, F-67083 Strasbourg Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Vacik</namePart>
<affiliation>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V.</namePart>
<namePart type="family">Hnatowicz</namePart>
<affiliation>Institute of Nuclear Physics, Czech Academy of Sciences, 25068 Rez near Prague, Czech Republic</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.T.</namePart>
<namePart type="family">Chadderton</namePart>
<affiliation>CSIRO Division of Applied Physics, Lindfield, NSW, Australia and Institute for Advanced Studies, Australian National University, P.O. Box 4, Canberra, ACT 2601, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1995</dateIssued>
<dateModified encoding="w3cdtf">1994-12-22</dateModified>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: An analytical experimental technique is described which permits depth profiles of the fundamental molecule fullerene, C60, to be determined in solids for low molecular concentrations. The method combines a procedure for the simultaneous marking and immobilizing of fullerene in organic solids, by means of lithium salt formation, with “neutron depth profiling” — a highly sensitive approach in determining specific depth distributions of 6Li. The new technique — fullerene tracer profiling (FTP) — is described in some detail, and results of the first experiments are discussed. Fullerene solutions have been introduced into both pristine and ion-irradiated samples of the polymer polyimide (PI). The C60 depth distributions were then measured using fullerene tracer profiling. From the shapes of the depth distributions conclusions are drawn concerning the uptake of fullerene solutions by polymers and the mobility of fullerene. Fullerene does not penetrate unirradiated PI, but it does readily fill up latent tracks of energetic ions in this polymer. Depending on the specific ion track density, some 104 to 107 C60 molecules can be identified as being present in a single track. The diffusion coefficient for C60 is estimated to be at least 2 × 10−12 to 2 × 10−13 cm2s−1, much higher than expected. This may be ascribed in part to the remarkable elastic deformability of the fullerene molecule in both kinetic and dynamic motion, and to the near perfect spherical geometry accompanying elimination of dangling bonds in simultaneously minimising the surface energy.</abstract>
<subject>
<genre>article-category</genre>
<topic>Ion beam modification of materials</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Nuclear Inst. and Methods in Physics Research, B</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>NIMB</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">19950501</dateIssued>
</originInfo>
<identifier type="ISSN">0168-583X</identifier>
<identifier type="PII">S0168-583X(00)X0032-8</identifier>
<part>
<date>19950501</date>
<detail type="volume">
<number>100</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>207</end>
</extent>
<extent unit="pages">
<start>69</start>
<end>79</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">5751C59775EDE55E08611907AF63A71BB926E44F</identifier>
<identifier type="ark">ark:/67375/6H6-H1P1WX18-H</identifier>
<identifier type="DOI">10.1016/0168-583X(95)00185-9</identifier>
<identifier type="PII">0168-583X(95)00185-9</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/5751C59775EDE55E08611907AF63A71BB926E44F/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001041 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001041 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:5751C59775EDE55E08611907AF63A71BB926E44F
   |texte=   Depth profiles of fullerene in ion irradiated polyimide
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024