Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Apparent Size and Distance in an Imaging Display

Identifieur interne : 000F70 ( Istex/Corpus ); précédent : 000F69; suivant : 000F71

Apparent Size and Distance in an Imaging Display

Auteurs : James W. Meehan ; Thomas J. Triggs

Source :

RBID : ISTEX:5354E1B00281BFAF379DE190BE3D6344EDF18E9B

English descriptors

Abstract

The size-distance invariance hypothesis suggests that the perceived size and the perceived distance of objects in a field viewed naturally are closely related. However, this relationship breaks down when scenes are viewed through high-power optical systems. When natural scenes are viewed through an imaging display of unity magnification, there is a reduction in their apparent size. This raises the question of whether the relationship breaks down when scenes are viewed through a low-power imaging display. A single-lens reflex camera was used as an imaging display that enabled subjects to vary the size of imaged real-world scenes. Judgments of size were found to vary with depth information in scenes and between monocular and binocular viewing, consistent with a previous finding, but judgments of distance did not vary significantly across either of these conditions. The results suggest that judgments of size and judgments of distance with imaging displays are not influenced uniformly by environmental and task variables.

Url:
DOI: 10.1177/001872089203400305

Links to Exploration step

ISTEX:5354E1B00281BFAF379DE190BE3D6344EDF18E9B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Apparent Size and Distance in an Imaging Display</title>
<author wicri:is="90%">
<name sortKey="Meehan, James W" sort="Meehan, James W" uniqKey="Meehan J" first="James W." last="Meehan">James W. Meehan</name>
<affiliation>
<mods:affiliation>Centre d'Etudes et de Recherches de Médecine Aérospatiale, Paris, France</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Triggs, Thomas J" sort="Triggs, Thomas J" uniqKey="Triggs T" first="Thomas J." last="Triggs">Thomas J. Triggs</name>
<affiliation>
<mods:affiliation>Monash University, Melbourne, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5354E1B00281BFAF379DE190BE3D6344EDF18E9B</idno>
<date when="1992" year="1992">1992</date>
<idno type="doi">10.1177/001872089203400305</idno>
<idno type="url">https://api.istex.fr/document/5354E1B00281BFAF379DE190BE3D6344EDF18E9B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F70</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F70</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Apparent Size and Distance in an Imaging Display</title>
<author wicri:is="90%">
<name sortKey="Meehan, James W" sort="Meehan, James W" uniqKey="Meehan J" first="James W." last="Meehan">James W. Meehan</name>
<affiliation>
<mods:affiliation>Centre d'Etudes et de Recherches de Médecine Aérospatiale, Paris, France</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Triggs, Thomas J" sort="Triggs, Thomas J" uniqKey="Triggs T" first="Thomas J." last="Triggs">Thomas J. Triggs</name>
<affiliation>
<mods:affiliation>Monash University, Melbourne, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Human factors</title>
<idno type="ISSN">0018-7208</idno>
<idno type="eISSN">1547-8181</idno>
<imprint>
<publisher>SAGE Publications</publisher>
<pubPlace>Sage CA: Los Angeles, CA</pubPlace>
<date type="published" when="1992-06">1992-06</date>
<biblScope unit="volume">34</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="303">303</biblScope>
<biblScope unit="page" to="311">311</biblScope>
</imprint>
<idno type="ISSN">0018-7208</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0018-7208</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accommodation</term>
<term>American journal</term>
<term>Apparent distance</term>
<term>Apparent minification</term>
<term>Apparent size</term>
<term>Binocular</term>
<term>Binocular disparity</term>
<term>Binocular judgments</term>
<term>Binocular vision</term>
<term>British journal</term>
<term>Camera viewfinder</term>
<term>Cue</term>
<term>Depth information</term>
<term>Direct view</term>
<term>Direct view scene</term>
<term>Display magnification scores</term>
<term>Distance judgments</term>
<term>Distance scores</term>
<term>Environmental variables</term>
<term>Experimental scenes</term>
<term>Field experiment</term>
<term>Focal length</term>
<term>Human factors</term>
<term>Imaging</term>
<term>Imaging display</term>
<term>Imaging displays</term>
<term>Imaging system</term>
<term>Invariance</term>
<term>Invariance hypothesis</term>
<term>Lavecchia</term>
<term>Lens barrel</term>
<term>Main effect</term>
<term>Meehan</term>
<term>Millimeter scale</term>
<term>Minification</term>
<term>Monash university</term>
<term>Monocular</term>
<term>Moon illusion</term>
<term>Optical power</term>
<term>Other cues</term>
<term>Other words</term>
<term>Phenomenal regression</term>
<term>Power functions</term>
<term>Psychological review</term>
<term>Real object</term>
<term>Relationship breaks</term>
<term>Relative abundance</term>
<term>Roscoe</term>
<term>Scene content</term>
<term>Significant interaction</term>
<term>Size constancy</term>
<term>Size scores</term>
<term>Sizedistance invariance hypothesis</term>
<term>Standard deviations</term>
<term>Standard scene</term>
<term>Stimulus conditions</term>
<term>Thouless</term>
<term>Triggs</term>
<term>Triggs experiment</term>
<term>Unity magnification</term>
<term>Viewfinder</term>
<term>Viewfinder image</term>
<term>Visual angle</term>
<term>Visual space</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Accommodation</term>
<term>American journal</term>
<term>Apparent distance</term>
<term>Apparent minification</term>
<term>Apparent size</term>
<term>Binocular</term>
<term>Binocular disparity</term>
<term>Binocular judgments</term>
<term>Binocular vision</term>
<term>British journal</term>
<term>Camera viewfinder</term>
<term>Cue</term>
<term>Depth information</term>
<term>Direct view</term>
<term>Direct view scene</term>
<term>Display magnification scores</term>
<term>Distance judgments</term>
<term>Distance scores</term>
<term>Environmental variables</term>
<term>Experimental scenes</term>
<term>Field experiment</term>
<term>Focal length</term>
<term>Human factors</term>
<term>Imaging</term>
<term>Imaging display</term>
<term>Imaging displays</term>
<term>Imaging system</term>
<term>Invariance</term>
<term>Invariance hypothesis</term>
<term>Lavecchia</term>
<term>Lens barrel</term>
<term>Main effect</term>
<term>Meehan</term>
<term>Millimeter scale</term>
<term>Minification</term>
<term>Monash university</term>
<term>Monocular</term>
<term>Moon illusion</term>
<term>Optical power</term>
<term>Other cues</term>
<term>Other words</term>
<term>Phenomenal regression</term>
<term>Power functions</term>
<term>Psychological review</term>
<term>Real object</term>
<term>Relationship breaks</term>
<term>Relative abundance</term>
<term>Roscoe</term>
<term>Scene content</term>
<term>Significant interaction</term>
<term>Size constancy</term>
<term>Size scores</term>
<term>Sizedistance invariance hypothesis</term>
<term>Standard deviations</term>
<term>Standard scene</term>
<term>Stimulus conditions</term>
<term>Thouless</term>
<term>Triggs</term>
<term>Triggs experiment</term>
<term>Unity magnification</term>
<term>Viewfinder</term>
<term>Viewfinder image</term>
<term>Visual angle</term>
<term>Visual space</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The size-distance invariance hypothesis suggests that the perceived size and the perceived distance of objects in a field viewed naturally are closely related. However, this relationship breaks down when scenes are viewed through high-power optical systems. When natural scenes are viewed through an imaging display of unity magnification, there is a reduction in their apparent size. This raises the question of whether the relationship breaks down when scenes are viewed through a low-power imaging display. A single-lens reflex camera was used as an imaging display that enabled subjects to vary the size of imaged real-world scenes. Judgments of size were found to vary with depth information in scenes and between monocular and binocular viewing, consistent with a previous finding, but judgments of distance did not vary significantly across either of these conditions. The results suggest that judgments of size and judgments of distance with imaging displays are not influenced uniformly by environmental and task variables.</div>
</front>
</TEI>
<istex>
<corpusName>sage</corpusName>
<keywords>
<teeft>
<json:string>apparent size</json:string>
<json:string>binocular</json:string>
<json:string>monocular</json:string>
<json:string>roscoe</json:string>
<json:string>apparent distance</json:string>
<json:string>cue</json:string>
<json:string>triggs</json:string>
<json:string>minification</json:string>
<json:string>invariance</json:string>
<json:string>thouless</json:string>
<json:string>human factors</json:string>
<json:string>invariance hypothesis</json:string>
<json:string>apparent minification</json:string>
<json:string>viewfinder</json:string>
<json:string>meehan</json:string>
<json:string>lavecchia</json:string>
<json:string>imaging displays</json:string>
<json:string>imaging display</json:string>
<json:string>accommodation</json:string>
<json:string>distance judgments</json:string>
<json:string>imaging</json:string>
<json:string>focal length</json:string>
<json:string>distance scores</json:string>
<json:string>moon illusion</json:string>
<json:string>other cues</json:string>
<json:string>american journal</json:string>
<json:string>significant interaction</json:string>
<json:string>monash university</json:string>
<json:string>size constancy</json:string>
<json:string>phenomenal regression</json:string>
<json:string>triggs experiment</json:string>
<json:string>viewfinder image</json:string>
<json:string>direct view</json:string>
<json:string>scene content</json:string>
<json:string>display magnification scores</json:string>
<json:string>standard deviations</json:string>
<json:string>visual angle</json:string>
<json:string>depth information</json:string>
<json:string>binocular judgments</json:string>
<json:string>other words</json:string>
<json:string>relationship breaks</json:string>
<json:string>field experiment</json:string>
<json:string>imaging system</json:string>
<json:string>british journal</json:string>
<json:string>lens barrel</json:string>
<json:string>millimeter scale</json:string>
<json:string>experimental scenes</json:string>
<json:string>standard scene</json:string>
<json:string>camera viewfinder</json:string>
<json:string>unity magnification</json:string>
<json:string>real object</json:string>
<json:string>stimulus conditions</json:string>
<json:string>direct view scene</json:string>
<json:string>main effect</json:string>
<json:string>power functions</json:string>
<json:string>sizedistance invariance hypothesis</json:string>
<json:string>size scores</json:string>
<json:string>relative abundance</json:string>
<json:string>optical power</json:string>
<json:string>environmental variables</json:string>
<json:string>visual space</json:string>
<json:string>psychological review</json:string>
<json:string>binocular disparity</json:string>
<json:string>binocular vision</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>James W. Meehan</name>
<affiliations>
<json:string>Centre d'Etudes et de Recherches de Médecine Aérospatiale, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Thomas J. Triggs</name>
<affiliations>
<json:string>Monash University, Melbourne, Australia</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>10.1177_001872089203400305</json:string>
</articleId>
<arkIstex>ark:/67375/M70-TW0R9S62-1</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The size-distance invariance hypothesis suggests that the perceived size and the perceived distance of objects in a field viewed naturally are closely related. However, this relationship breaks down when scenes are viewed through high-power optical systems. When natural scenes are viewed through an imaging display of unity magnification, there is a reduction in their apparent size. This raises the question of whether the relationship breaks down when scenes are viewed through a low-power imaging display. A single-lens reflex camera was used as an imaging display that enabled subjects to vary the size of imaged real-world scenes. Judgments of size were found to vary with depth information in scenes and between monocular and binocular viewing, consistent with a previous finding, but judgments of distance did not vary significantly across either of these conditions. The results suggest that judgments of size and judgments of distance with imaging displays are not influenced uniformly by environmental and task variables.</abstract>
<qualityIndicators>
<score>7.64</score>
<pdfWordCount>3780</pdfWordCount>
<pdfCharCount>24304</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>10</pdfPageCount>
<pdfPageSize>467 x 675 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>155</abstractWordCount>
<abstractCharCount>1032</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Apparent Size and Distance in an Imaging Display</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Human factors</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0018-7208</json:string>
</issn>
<eissn>
<json:string>1547-8181</json:string>
</eissn>
<publisherId>
<json:string>HFS</json:string>
</publisherId>
<volume>34</volume>
<issue>3</issue>
<pages>
<first>303</first>
<last>311</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1992</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Monash University</json:string>
<json:string>Department of Psychology, Monash University</json:string>
<json:string>The Human Factors Society, Inc.</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>R. H. Day</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>France</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Roscoe, Olzak, and Randle, 1976</json:string>
<json:string>Higashiyama and Ueyama, 1988</json:string>
<json:string>Meehan and Triggs (1988)</json:string>
<json:string>Gogel, Wist, and Harker, 1963</json:string>
<json:string>Kiinnapas, 1960</json:string>
<json:string>Kilpatrick and Ittleson (1953)</json:string>
<json:string>Leibowitz and Owens, 1975</json:string>
<json:string>Gruber, 1954</json:string>
<json:string>see Day and Parks, 1989</json:string>
<json:string>Thouless (1968)</json:string>
<json:string>Roscoe, Hasler, and Dougherty, 1966</json:string>
<json:string>Hartman, 1964</json:string>
<json:string>Kilpatrick and Ittleson, 1953</json:string>
<json:string>Day and Parks (1989)</json:string>
<json:string>see Meehan and Triggs, 1988</json:string>
<json:string>Ogle, 1964</json:string>
<json:string>Roscoe, 1984</json:string>
<json:string>Meehan and Triggs, 1988</json:string>
<json:string>Gilinsky, 1951</json:string>
<json:string>Baird and Biersdorf (1967)</json:string>
<json:string>see Hochberg, 1972</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/M70-TW0R9S62-1</json:string>
</ark>
<categories>
<wos>
<json:string>1 - social science</json:string>
<json:string>2 - psychology, applied</json:string>
<json:string>2 - ergonomics</json:string>
<json:string>1 - science</json:string>
<json:string>2 - psychology</json:string>
<json:string>2 - engineering, industrial</json:string>
<json:string>2 - behavioral sciences</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - psychology & cognitive sciences</json:string>
<json:string>3 - human factors</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Neuroscience</json:string>
<json:string>3 - Behavioral Neuroscience</json:string>
<json:string>1 - Social Sciences</json:string>
<json:string>2 - Psychology</json:string>
<json:string>3 - Applied Psychology</json:string>
<json:string>1 - Social Sciences</json:string>
<json:string>2 - Social Sciences</json:string>
<json:string>3 - Human Factors and Ergonomics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - psychologie. psychophysiologie</json:string>
</inist>
</categories>
<publicationDate>1992</publicationDate>
<copyrightDate>1992</copyrightDate>
<doi>
<json:string>10.1177/001872089203400305</json:string>
</doi>
<id>5354E1B00281BFAF379DE190BE3D6344EDF18E9B</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/5354E1B00281BFAF379DE190BE3D6344EDF18E9B/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/5354E1B00281BFAF379DE190BE3D6344EDF18E9B/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/5354E1B00281BFAF379DE190BE3D6344EDF18E9B/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Apparent Size and Distance in an Imaging Display</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">SAGE Publications</publisher>
<pubPlace>Sage CA: Los Angeles, CA</pubPlace>
<availability>
<licence>
<p>sage</p>
</licence>
</availability>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-0J1N7DQT-B"></p>
<date>1992</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Apparent Size and Distance in an Imaging Display</title>
<author xml:id="author-0000">
<persName>
<forename type="first">James W.</forename>
<surname>Meehan</surname>
</persName>
<affiliation>Centre d'Etudes et de Recherches de Médecine Aérospatiale, Paris, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Thomas J.</forename>
<surname>Triggs</surname>
</persName>
<affiliation>Monash University, Melbourne, Australia</affiliation>
</author>
<idno type="istex">5354E1B00281BFAF379DE190BE3D6344EDF18E9B</idno>
<idno type="ark">ark:/67375/M70-TW0R9S62-1</idno>
<idno type="DOI">10.1177/001872089203400305</idno>
<idno type="article-id">10.1177_001872089203400305</idno>
</analytic>
<monogr>
<title level="j">Human factors</title>
<idno type="pISSN">0018-7208</idno>
<idno type="eISSN">1547-8181</idno>
<idno type="publisher-id">HFS</idno>
<idno type="PublisherID-hwp">sphfs</idno>
<imprint>
<publisher>SAGE Publications</publisher>
<pubPlace>Sage CA: Los Angeles, CA</pubPlace>
<date type="published" when="1992-06"></date>
<biblScope unit="volume">34</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="303">303</biblScope>
<biblScope unit="page" to="311">311</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1992</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The size-distance invariance hypothesis suggests that the perceived size and the perceived distance of objects in a field viewed naturally are closely related. However, this relationship breaks down when scenes are viewed through high-power optical systems. When natural scenes are viewed through an imaging display of unity magnification, there is a reduction in their apparent size. This raises the question of whether the relationship breaks down when scenes are viewed through a low-power imaging display. A single-lens reflex camera was used as an imaging display that enabled subjects to vary the size of imaged real-world scenes. Judgments of size were found to vary with depth information in scenes and between monocular and binocular viewing, consistent with a previous finding, but judgments of distance did not vary significantly across either of these conditions. The results suggest that judgments of size and judgments of distance with imaging displays are not influenced uniformly by environmental and task variables.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1992-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/5354E1B00281BFAF379DE190BE3D6344EDF18E9B/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus sage not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" dtd-version="2.3" xml:lang="EN">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">sphfs</journal-id>
<journal-id journal-id-type="publisher-id">HFS</journal-id>
<journal-title>Human Factors: The Journal of Human Factors and Ergonomics Society</journal-title>
<issn pub-type="ppub">0018-7208</issn>
<publisher>
<publisher-name>SAGE Publications</publisher-name>
<publisher-loc>Sage CA: Los Angeles, CA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1177/001872089203400305</article-id>
<article-id pub-id-type="publisher-id">10.1177_001872089203400305</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Apparent Size and Distance in an Imaging Display</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Meehan</surname>
<given-names>James W.</given-names>
</name>
<aff>Centre d'Etudes et de Recherches de Médecine Aérospatiale, Paris, France</aff>
</contrib>
</contrib-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Triggs</surname>
<given-names>Thomas J.</given-names>
</name>
<aff>Monash University, Melbourne, Australia</aff>
</contrib>
</contrib-group>
<pub-date pub-type="ppub">
<month>6</month>
<year>1992</year>
</pub-date>
<volume>34</volume>
<issue>3</issue>
<fpage>303</fpage>
<lpage>311</lpage>
<abstract>
<p>The size-distance invariance hypothesis suggests that the perceived size and the perceived distance of objects in a field viewed naturally are closely related. However, this relationship breaks down when scenes are viewed through high-power optical systems. When natural scenes are viewed through an imaging display of unity magnification, there is a reduction in their apparent size. This raises the question of whether the relationship breaks down when scenes are viewed through a low-power imaging display. A single-lens reflex camera was used as an imaging display that enabled subjects to vary the size of imaged real-world scenes. Judgments of size were found to vary with depth information in scenes and between monocular and binocular viewing, consistent with a previous finding, but judgments of distance did not vary significantly across either of these conditions. The results suggest that judgments of size and judgments of distance with imaging displays are not influenced uniformly by environmental and task variables.</p>
</abstract>
<custom-meta-wrap>
<custom-meta xlink:type="simple">
<meta-name>sagemeta-type</meta-name>
<meta-value>Journal Article</meta-value>
</custom-meta>
<custom-meta xlink:type="simple">
<meta-name>search-text</meta-name>
<meta-value>HUMAN FACTORS, 1992,34(3), 303-311 Apparent Size and Distance in an Imaging Display JAMES W. MEEHAN,I Centre d'Etudes et de Recherches de Medecine Aerospatiale, Paris, France, and THOMAS J. TRIGGS, Monash University, Melbourne, Australia The size-distanee invarianee hypothesss suggests that the perceived size and the perceived distance of objects in a field viewed naturally are closely related. However, this relationship breaks down when scenes are viewed through high-power optical systems. When natural scenes are viewed through an imaging display of unity magnification, there is a reduciion in their apparent size. This raises the question of whether the relationship breaks down when scenes are viewed through a low-power imaging display. A single-lens reflex camera was used as an imaging display that enabled subjects to vary the size of imaged real-world scenes. Judgments of size were found to vary with depth informaiion in scenes and between monocular and binocular viewing, consistent with a previous finding, but judgments of distance did not vary significanlly across either of these condition.. The results suggest that judgmenss of size and judgmenss of distance with imaging displays are not influenced uniformly by environmental and task variables. INTRODUCTION Roscoe (1984) has shown that when real-world scenes are presented in an imaging display, such as a projeciion periscope, the scenes appear slightly minified, so that magnification is necessary for distance judgmenss based on the display to appear veridica.. He argued that this apparent minification is caused by accommodation micropsia, a phenomenll reduciion in the size of objects associated with an inward shift in accommodation (Ogle, 1964) and induced largely by the proximtty of the display to the viewer. Meehan and Triggs (1988) reported apparent minification of scenes viewed through the I Requests for reprints should be sent to James W. Meehan, CERMA, Base d'Essais en Vol, 91228 Bretigny-sur-OrgeCedex, France. imaging system of a single-lens reflex (SLR) camera; they showed that factors such as pictorial cues to distance also influence the extent of apparent minification. In genera,, scenes that were relatively rich in textural and other cues to depth sustained significantly less apparent minificaiion in the display than did scenes that were relatively poor in depth informaiion. As with imaging displays in genera,, and as described by Roscoe (1985), features and objects displayed with unity magnification appear smaller and farther away. Roscoe's experiments involved estimates of distanee (Roscoe, 1984) or performanee of a task that required estimates of distance (Roscoe, Hasler, and Dougherty, 1966), with the implication that a relationship exists between apparent size and apparent distance. Percep- © 1992, The Human Factors Society, Inc. All rights reserved. 304-June 1992 tions of size and of distanee are in some degree interdependent in that they usually involve common cues (see Day and Parks, 1989). However, the relationship between apparent size and apparent distance is not exactly symmetrical, as the size-distanee in-variance hypothesss (Kilpatrick and Ittleson, 1953) suggests. Although there are numerous reports of experimenss concerned with this relationship both in the laboratory and outdoors (e.g., Gilinsky, 1951; Gruber, 1954; Hi-gashiyama and Ueyama, 1988; Kunnapa,, 1960), the relationship between judgmenss of size and judgmenss of distance with imaging displays has not been investigated. The purpose of this experiment was to do so. Imaging Display Experimenss A close relationship between apparent size and apparent distance is implicit in Roscoe's (1979) analysis of apparent minificaiion in a periscopic imaging display. Furthe,, in his field experiment (Roscoe, 1984) display magnification was an independent variable and apparent distance the dependent variable. Roscoe's theoreiical treatment assumed the relationship between apparent size and apparent distance to be as represented in the size-distance invariance hypothesis. According to this hypothesis, as summarized by Kilpatrick and Ittleson (1953), there is a direct relationship between apparent size and apparent distance of objects subtending a given visual angle. This suggests that a change in any factor that affects apparent size will also affect apparent distance, and vice versa. The distance judgmenss reported by Roscoe (1984) are consistent with the data reported by Meehan and Triggs (1988); in both studies the imaging display had to be magnified in order for the objects and features depicted to appear the same as in direct view. In the former study this judgment was based on apparent distance, and in the latter on apparent size. An important difference is that only HUMNN FACTORS one scene was involved in Roscoe's experi-ment, whereas in the Meehan and Triggs experiment several scenes were used. This limits the comparisons that can be drawn between these reports. For this reason we conducted an experiment to compare size matches and distance matches directly. Apparent Size and Distance Although the size-distance invarianee hypothesis has found some support from time to time (e.g., Hartman, 1964), the relationship between apparent size and apparent distance as described by the size-distance invarianee hypothesss has been shown to break down under certann conditions (Gogel, Wist, and Harker, 1963). Kilpatrick and Ittleson (1953) also reported data that called its validity into question. However, we believe that it is more appropriate and potentially more useful to focus atteniion on constancy of perceived size and distance and their determinants than to pursue the question of the validity of the size-distance invariance hypothesis. As we will argue, this resolves what appear to be discrepancies or paradoxes (Gruber, 1954) that arise when the size-distance invariance hypothesss is considered. One such discrepanyy is the so-called paradox of the moon illusion (lavec-chia, lavecchia, and Roscoe, 1983; see also Hershenson, 1989; Meehan, 1990). Size Constancy Although size constanyy can be demonstrated under most normal conditions of viewing-that is, binocular vision in good light with no restriction on head movement (Holway and Boring, 1941}-Thouless (1931) pointed out that usually a tendency to size constancy is demonstrated, not complete or perfect constancy. Thouless named this tendency to veridical percepiion phenomenal regression to the real object. We propose that examinaiion of the characteristics of stimulus conditions that give rise to departures from APPARENT SIZE AND DISTANCE June 1992-305 this tendency is likely to reveal the nature of the relationship between apparent size and apparent distance (see Day and Parks, 1989). Baird and Biersdorf (1967) also noted that perfect size constancy seldom occurs. They showed that with normal vision, and except for relatively short distances (less than about 1 m), size judgmenss usually exhibit overcon-staney and distance judgments, undercon-stancy. These can be plotted as power functions of physccal distance, and several experimenss have been reported in which the exponent of the function was determined (e.g.,Gilinsky, 1951; Kunnapa,, 1960). In general the exponent varies with the distance at which the stimuii are presented. This bears closely on the problem given that the displays referred to earlier are used to image distant outdoor scenes relatively near. Baird and Biersdorf (1967) made the point that apparent size does not depend only on apparent distance, and vice versa. They found, for example, that the angle to the observer's line of sight of an object lying flat is an important variable. This is equivalent to the angular size of the stimulus, which, as shown by Holway and Boring (1941), becomes more effective when other cues are removed. In terms of the multiple-cue hypothesis (see Meehan, 1990), the salience of visual angle as a cue for size and distance increases when the availability of other cues is reduced. Baird and Biersdorf (1967) made the further point that the exponent of the power functions we referred to earlier can be influenced by a number of factors, such as experimental method and stimulus condition.. Again, this is explicable in terms of the multiple-cue hypothesis. Changes in these conditions would be likely to influence the availability and salience of cues for both the size and distance of features; furthermore, cues for size and distance can vary independently. In this case the outcome is a loss of constancy; in Thouless's (1931) terms, it is the opposite of phenomenll regression to the real object-that is, regression toward the visual angle expectaiion for the object. Size and Distance Anomalies Once the size-distance nexus is broken, anomalies can be viewed in a different light. An interesiing and relevant example is the change in apparent size and distance that occurs with high-magnification lenses. Thou-less (1968) found that objects viewed through 8x binoculars appear to be nearer but do not appear larger, as would be predicted by the size-distance invariance hypothes.s. Rather, they appear slightly smaller than in direct view. This is not surprising when one considers the numerous ways in which binoculars can change viewing condition.. One is the change in visual angle of the stimulus that occurs with magnification. Another is the elimination of foreground information: the higher the power of the viewing system, the more the foreground is eliminated. There is a more subtle change: with porro-prssm binoculars, which employ an optical design that is particularly suited to high-power optics, the in-terocular separation of the objectives is greater than that of the oculars. In effect, this increases the distance between the eyes and thus enhances binocular disparity. This is the basis of the optical range finder in the Leica and other range-finder cameras and in field range finders (see Hochberg, 1972). It is possible that an increase in binocular disparity could affect apparent size and distance differentially. For example, although binoculars alter the informaiion for distance, they do not seem to influence to the same extent some informaiion for size, such as object familiarity. In other words, size constancy seems to be affected to a lesser degree than distance constancy. Commenting on the asymmetry between apparent size and apparent distance when 306-June 1992 retinal angle is greatly increased, Thouless (1968) raised the question of how this relationship might be affected using optical media of lower power. The answer to this question was sought in the experiment reported here. As far as we know, there have been no reports of systematic comparssons of size and distance under this condition. Furthermore, the effect of monocular and binocular viewing and of scene content on judgmenss of size and distance when using an optical system is another question that does not seem to have been investigated experimenta.ly. As we noted earlier, Roscoe's (1984) field experiment involved only one scene, and apparent distance was the dependent variable. The present experiment included three scenes, monocular and binocular viewing, and judgments of both size and distance. METHOD Subjects There were 22 female and 26 male subjects, each of whom was assigned randomly to one of two experimental groups of 24. They were recrutted from within Monash University and paid for their participation. Subjects were tested for normal visual acuity by means of a letter char.. Correction by contact lenses was accepte,, but spectacee wearess were excluded to avoid introducing an addiiionll lens into the system and because of the possibility that spectacle frames might interfere with a clear view when subjects used the apparatus. Apparatus Subjects viewed three scenes through the viewfinder of an Olympus OM1 35-mm SLR camera fitted with a clear focusing screen (Olympus 1-12) and a Tamron zoom lens of parfocll design (see Meehan and Triggs, 1988), the focal length of which was variable HUMNN FACTORS continuously from 35 mm to 135 mm. This enabled them to vary the size of the view-finder image by varying the focal length of the lens. The camera body was mounted on a tripod, which was adjusted to a comfortabee viewing height for each subject, and a rubber eyecup was used to standardize the distance between viewfinder and eye. The lens barrel was calibrated with a millimerer scale mounted coincident with the focal length scale, which enabled the viewfinder magnificaiion or minification factor to be calculated for all focal lengths between 35 mm and 135 mm. For experimental scenes, we selected three locations around the campus that provided varying amounss of depth information. The scenes, which were photographed from the subjectss viewing position with a standadd 50-mm lens, are reproduced in Figure I, approximating the way each scene looked when viewed naturally by the subject. Scene 1, a covered walkway, contained the most information, including converging lines, texture, converging planes, and constricted periphery. Scene 2, a lawn, included some of the same type of informaiion, but the perspective informaiion-for example, in the form of converging lines-is less well defined. For Scene 3, a playing field, grass in the foreground provided some textural gradient similar to that in Scene 2, but otherwsse the scene provided little foregroudd depth information. The three scenes were selected to represent three levels of informaiion content in terms of cues for depth. Procedure Subjecss viewed a standard real-world scene directly and then through the camera viewfinder, adjusting the focal length of the lens to achieve a match with the real-world scene. After initial praciice with the apparatus, subjects made 6 monocular and 6 binocular judgmenss at each of the three scenes, APPARENT SIZE AND DISTANCE June 1992-307 Figure I. Experimental scenes as viewed by subjects. making a total of 36 judgmenss for each subject. In the monocular condition an eyepatch was worn over the left eye during both direct and viewfinder viewing. In the binocular condition only the direct view was binocular, given that the camera viewfinder permttted only monocular viewing (see Meehan, 1990; Meehan and Triggs, 1988). The blocks of monocular and binocular judgmenss were ran- domly ordered, and the presentation order of each scene was counterbalanced across subjects. Each group of subjects was given a different set of instructions. In one group, subjects were requested to view the standard experimental scene and then adjust the size of the viewfindrr image to match the standard scene. In the other group, subjects were given identical instructions, except that they were asked to make their judgment based on the apparent distance of objects in the scene, rather than on apparent size. Subjects were encouraged to use as many features in the scene as they wished for matching and were permitted as many comparisons between the viewfinder image and the natural view as they desired for each trial. The experimenter then recorded the focal length selected from the calibrated millimeter scale on the lens barre.. These values were later translated into equivalent magnification values for analysis. Each experimental session lasted about 35 min. RESULTS The mean scores presented in Table 1 show that apparent minificaiion was less for monocular viewing and for scenes relatively more abundant in cues. In Tables 2 and 3 this pattern is evident only in the size-match group. A three-way analysis of variance was conducted to evaluate the effect of task (size or distance matching,, scene, and viewing mode (monoc- TABLE 1 Mean Display Magnification Scores (and Standard Deviations) for Monocular and Binocular Viewing of Three Scenes, Relative to Direct View Scene 1 Scene 2 Scene 3 Monocular 1.07 1.12 1.12 (0.13) (0.16) (0.15) Binocular 1.09 1.13 1.14 (0.13) (0.16) (0.15) 308-June 1992 HUMN N FACTORS TABLE 2 Mean Display Magnification Scores (and Standard Scene 1 Scene 2 Scene3 Size Distance 1.09 1.14 (0.11) (0.15) 1.08 1.12 (0.15) (0.18) 1.17 (0.15) 1.09 (0.15) ular or binocular), with repeated measures on the latter two factors and task the between-subjecss variable. The main effect for scene was significant, F(2,92) = 6.89, P < 0.01, as was the main effect for viewing mode, F(1,46) = 7.42, P < 0.01. There was no significatt interaction between scene and viewing mode, F(2,92)<1. Although there was no significatt main effect for task, F(l,46) = 1.46, P > 0.05, there was a signfficant interaction betwenn task and scene, F(2,92) = 3.27, P < 0.05 (Table 2). An analysis of simple effects showed Scene 3 to be the source of this effect, F(1,92) = 35.03, P < 0.001. There was also a significatt interaction betwenn task and viewngg mode, F(1,46) = 4.34,p < 0.05 (Table 3). The three-way interaction among task, scene, and viewing mode was not significant, F(2,92) = 1.46, p > 0.05. Single-sample t tests showed that apparent minffication was significatt for all conditions (Table 4). TABLE 3 Mean Display Magnification Scores (and Standard Deviations) for Size and Distance, Using Monocular and Binocular Viewing Monocular Binocular Size Distance 1.11 (0.14) 1.09 (0.16) 1.15 (0.14) 1.10 (0.16) DISCUSSION The mean magnification values selected for equivalence, as summarized in Tables I, 2, and 3, varied between 1.07 and 1.17. This range of values is close to that obtained in an earlier study using a similar apparatus, but of different manufacture (Meehan and Triggs, 1988), confirming that imaging displays in general appear slighlly minfiied. This finding is also consistent with the pattern of data obtained by Roscoe (1984) in his ground-based experiment with an optical periscop.. Meehan and Triggs (1988) found that as the veridical cues to depth based on the content of scenes were increased, apparent minifi cation decreased. Thus having more depth cues availabee in the scene resulted in a shift in perceived size in the direction of the actual size. Those earlier findings are confirmdd by the results obtained here, whereby scenes with relatively more depth information produced smaller levels of apparent minification. The significant main effect obtanned for monocular versus binocular viewing is consistent with the argument that inappropriate accommodation may play a role. Under most circumstances objecss look smaller to people with normal binocular vision when viewed monocularly. Roscoe (1984) has explained this effect in the following way: occluding one eye will cause that eye to regress toward resting focus. Because accommodation in each eye is not independent, the seeing eye will also tend to move toward the resting accommodation position (Roscoe, Olzak, and Ran-dle, 1976), and the actual state of accommdation will be a compromise betwenn the stimulus distanee and resting accommodation distanee (Leibowitz and Owens, 1975). According to this explanation, when subjecss viewed the distatt natural scene directly with one eye occlude,, it appeared smaller than when the same scene was viewed binoc- APPARENT SIZE AND DISTANCE June 1992-309 TABLE 4 Tests for Signfficance of Apparent Minification Scene t(23) Value p Level Mcnoc. 1 2 3 Size 2.99 3.95 4.76 <0.01 <0.001 <0.001 Sinoc. 1 2 3 4.73 4.99 6.00 <0.001 <0.001 <0.001 Mcnoc. 1 2 3 Distance 2.47 3.17 3.06 <0.05 <0.01 <0.01 Sinoc. 1 2 3 2.55 3.10 3.00 <0.05 <0.01 <0.01 ularly (Roscoe, 1984). Therefoee a smaller magnification of the synthesized image would be required for a size match under the monocular viewing condition. This difference between monocular and binocular judgmenss is consistent with that reported by Holway and Boring (1941), by Meehan and Triggs (1988), and by Roscoe (1984). Size-Distance interactions Although there was no significant main effect for task, there were significant interactions with the other factors. The main finding of this experiment involves these interations. Distance scores were similar under both monocular and binocular viewing. In contrast, size scores showed significantly smaller apparent minification with monocular viewing. This difference between monocular and binocular viewing with the size group is consistent with the findings of Meehan and Triggs (1988), but distance scores depart from the general pattenn of data obtained with monocular and binocular viewing. Of considerabee interest is the significant interaction between task and scene. Size scores were also similar to those obtained in the Meehan and Triggs experimen,, in which apparent minification increased significantly and progressively as the relative abundanee of cues for distance in scenes was reduced. However, the distance scores did not vary across scenes. Again, it is distance scores that depart from the generally observed pattern, showing relative insensitivity to variaiions in the relative abundanee of cues in scenes. The size-distance invaraance hypothesis does not predict such interactions; judgmenss of distance and size are considered to be affected in a similar way by the one set of variables. The significantly different pattern of scores for matching size and distance across scene and across viewing mode is therefore not in accord with the size-distanee invariance hypothesis. It is also interesting to compare these findings with those of Thouless (1968), who summarized his results as follows: "the use [effect] of such a magnifyigg instrument as telescope or binoculars is to decrease the apparent distance of an observed object and not to increase its apparent size" (p. 116). In dis- 310-June 1992 HUMNN FACTOR: cussing the observed asymmetry, Thouless raised the question of how the relationship between apparent size and apparent distance would be affected in a low-power system. The difference in the pattern of responses between size and distance judgmenss reported here was by no means as great as that reported by Thouless (1968). This suggests that the optical power of the system may not be responsble for size-distanee asymmetry; rather, the magnttude of asymmetry may itself be influenced by optical power. More specifically, cues for distance seem to be affected more than those for size when the power of the imaging system is increased. In Thouless's terms, there is a stronger tendency for phenomenal regression to the real object's size than to its distance. Conclusions In the Meehan and Triggs experiment (1988), environmental variables such as characteristics of scenes were shown to produce variaiions in performance; this was also the case in the experiment reported here. Haber (1987) has drawn attention to the importanee in operaiionll condiiions of scene characteristics such as ground texture, particularly in low-altitude flight, where the possibility of accidenss caused by controlled flight into the ground is a consideration. lavecchia, lavec-chia, and Roscoe (1988) also referred to this type of accident with head-up displays in aircraft and noted the importanee of environmental variables in providing adequaee stimuli for accommodation. The data showing an interaction between judgments of size and distanee and other variables indicate that, as argued in an earlier paper (Meehan and Triggs, 1988), the nature of the perceptual task also appeass to influence apparent minification. These interactions cannot be explained in terms of the size-distanee invarianee hypothesis. An alternative is the multiple-cue hypothesis. This was expressed in terms of the relationship between apparent size and apparent distance by Day and Parks (1989), who said, perceived size, like perceived distance, is determined by numerous cues. Distance might serve as one cue to size and, similarly, size might serve as one cue to distance. Depending on the conditions of viewing, other cues for both these dimensions might come into play. (P. 349) From this viewpoin,, cues for size and cues for distance are regarded as independent but overlapping, and theee is no assumption that apparent size and apparent distance are in a fixed relationship. In other words, the relationship between perceived size and perceived distance can vary with viewing conditions. In the example from Thouless (1968), the optical magnification system has a markedly different effect on apparent size and apparent distance. The experiment reported here indicates that designers of imaging displays could usefully consider the task, the scene conten,, and the mode of viewing in order to determine appropriate design characteristics to optimize performance. ACKNOWLEDGMENTS The experiment reported in this paper is part of the first REFERENCES Baird, J. C, and Biersdorf, W. R. (1967). Quantitative functions for size and distance judgments. Perception and Psychophysics, 2, 161-166. Day, R.H., and Parks, T. E. (1989). To exorcise a ghost from the perceptual machine. In M. Hershenson (Ed.), The moon illusion (PP. 343-350.. Hillsdale, NJ: Erl-baum. Gilinsky, A. S. (1951). Perceived size and distance in visual space. Psychological Review, 58, 460-482. Gogel, W. C, Wist, E. R., and Harker, G. S. (1963). A test of the invariance of the ratio of perceived size to perceived distance. American Journal of Psychology, 76, 537-553. Gruber, H. E. (I954). The relation of perceived size to perceived distance in visual space. American Journal of Psychology, 67, 411-426. APPARENT SIZE AND DISTANCE June 1992-311 Haber, R. N. (1987). Why low-Hying fighter planes crash: Perceptual and atteniionll factors in collisions with the ground. Human Factors, 29, 519-532. Hartma,, A. M. (1964). Effect of reduciion on the relationship between apparent size and distance. American Journal of Psychology, 77, 353-366. Hershenson, M. (Ed.). (1989). The moon illusion. Hillsdale. NJ: Erlbaum. Higashiyam,, A., and Ueyama, E. (1988). The percepiion of vertical and horizontal distances in indoor settings. Perception and Psychophysics, 44,151-156. Hochberg, J. (1972). Perception II: Space and movemen.. In J. W. Kling and L. A. Riggs (Eds.), Woodworth and Schlosberg's experimental psychology (pp. 475-550.. London: Methuen. Holway, A. H" and Boring, E. G. (1941). Determinants of apparent visual size. American Journal of Psychology, 54,21-37. lavecchia, J. P., lavecchia, H. P., and Roscoe, S. N. (1983). The moon illusion revisited. Aviation, Space and Environmental Medicine, 54, 39 6. lavecchia, 1. P., lavecchia, H. P., and Roscoe, S. N. (1988). Eye accommodation to virtual head-up images. Human Factors, 30, 689-702. Kilpatrick, F. P., and Ittleson, W. H. (1953). The size-distance invariance hypothesis. Psychological Review, (50,223-231. Kunnapa,, T.M. (1960). Scales for subjeciive distance. Scandinavian Journal of Psychology, 1, 187-192. Leibowitz, H. W" and Owens, D. A. (1975). Anomalous myopias and the intermediate dark focus of accommodation. Science, 189, 646-648. Meehan, J. W. (1990). Apparent minification in an imaging display. Unpublished doctoral dissertation, Monash University, Melbourne, Australia. Meehan, J. W., and Triggs, T.J. (1988). Magnificaiion effects with imaging displays depend on scene content and viewing condition. Human Factors, 30, 487-494. Ogle, K. N. (1964). Researches in binocular vision. New York: Hafner. Roscoe, S.N. (1979). When day is done and shadows fal , we miss the airport most of all. Human Factors, 21, 721-731. Roscoe, S. N. (1984), Judgmenss of size and distance with imaging displays. Human Factors, 26, 617-629. Roscoe, S. N. (1985). Bigness is in the eye of the beholder. Human Factors, 27, 6]5-636. Roscoe, S. N., Hasler, S. G" and Dougherty, D.J. (1966). Flight by periscope: Making takeoffs and landings; the influence of image magnification, practice, and various conditions of flight. Human Factors, 8, ]3-40. Roscoe, S.N., Olzak, L.A., and Randle, R.J. (1976). Ground-referenced visual orientation with imaging displays: Monocular versus binocular accommodation and judgmenss of relative size. In AGARD Conference Proceedings No. 201 (pp. A5-I-AS-9). Neuilly-sur-Seine, France: NATO, Advisory Group for Aerospace Research and Developmen.. Thouless, R. H. (1931). Phenomenal regression to the real object. British Journal of Psychology, 21, 339-359. Thouless, R.H. (1968). Apparent size and distance in vision through a magnifying system. British Journal of Psychology 59, ]11-]18 </meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<back>
<ref-list>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Baird, J. C.</surname>
</name>
, and
<name name-style="western">
<surname>Biersdorf, W. R.</surname>
</name>
(
<year>1967</year>
).
<article-title>Quantitative functions for size and distance judgments</article-title>
.
<source>Perception and Psychophysics</source>
,
<volume>2</volume>
,
<fpage>161</fpage>
<lpage>166</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Day, R. H.</surname>
</name>
, and
<name name-style="western">
<surname>Parks, T. E.</surname>
</name>
(
<year>1989</year>
).
<article-title>To exorcise a ghost from the perceptual machine</article-title>
. In
<name name-style="western">
<surname>M. Hershenson</surname>
</name>
(Ed.),
<source>The moon illusion</source>
(pp.
<fpage>343</fpage>
<lpage>350</lpage>
).
<publisher-loc>Hillsdale, NJ</publisher-loc>
:
<publisher-name>Erlbaum</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gilinsky, A. S.</surname>
</name>
(
<year>1951</year>
).
<article-title>Perceived size and distance in visual space</article-title>
.
<source>Psychological Review</source>
,
<volume>58</volume>
,
<fpage>460</fpage>
<lpage>482</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gogel, W. C.</surname>
</name>
,
<name name-style="western">
<surname>Wist, E. R.</surname>
</name>
, and
<name name-style="western">
<surname>Harker, G. S.</surname>
</name>
(
<year>1963</year>
).
<article-title>A test of the invariance of the ratio of perceived size to perceived distance</article-title>
.
<source>American Journal of Psychology</source>
,
<volume>76</volume>
,
<fpage>537</fpage>
<lpage>553</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gruber, H. E.</surname>
</name>
(
<year>1954</year>
).
<article-title>The relation of perceived size to perceived distance in visual space</article-title>
.
<source>American Journal of Psychology</source>
,
<volume>67</volume>
,
<fpage>411</fpage>
<lpage>426</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Haber, R. N.</surname>
</name>
(
<year>1987</year>
).
<article-title>Why low-flying fighter planes crash: Perceptual and attentional factors in collisions with the ground</article-title>
.
<source>Human Factors</source>
,
<volume>29</volume>
,
<fpage>519</fpage>
<lpage>532</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hartman, A. M.</surname>
</name>
(
<year>1964</year>
).
<article-title>Effect of reduction on the relationship between apparent size and distance</article-title>
.
<source>American Journal of Psychology</source>
,
<volume>77</volume>
,
<fpage>353</fpage>
<lpage>366</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Hershenson, M</surname>
</name>
. (Ed.). (
<year>1989</year>
).
<source>The moon illusion</source>
.
<publisher-loc>Hillsdale, NJ</publisher-loc>
:
<publisher-name>Erlbaum</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Higashiyama, A.</surname>
</name>
, and
<name name-style="western">
<surname>Ueyama, E.</surname>
</name>
(
<year>1988</year>
).
<article-title>The perception of vertical and horizontal distances in indoor settings</article-title>
.
<source>Perception and Psychophysics</source>
,
<volume>44</volume>
,
<fpage>151</fpage>
<lpage>156</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Hochberg, J.</surname>
</name>
(
<year>1972</year>
).
<article-title>Perception II: Space and movement</article-title>
. In
<name name-style="western">
<surname>J. W. Kling</surname>
</name>
and
<name name-style="western">
<surname>L. A. Riggs</surname>
</name>
(Eds.),
<source>Woodworth and Schlosberg's experimental psychology</source>
(pp.
<fpage>475</fpage>
<lpage>550</lpage>
).
<publisher-loc>London</publisher-loc>
:
<publisher-name>Methuen</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Holway, A. H.</surname>
</name>
, and
<name name-style="western">
<surname>Boring, E. G.</surname>
</name>
(
<year>1941</year>
).
<article-title>Determinants of apparent visual size</article-title>
.
<source>American Journal of Psychology</source>
,
<volume>54</volume>
,
<fpage>21</fpage>
<lpage>37</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>lavecchia, J. P.</surname>
</name>
,
<name name-style="western">
<surname>lavecchia, H. P.</surname>
</name>
, and
<name name-style="western">
<surname>Roscoe, S. N.</surname>
</name>
(
<year>1983</year>
).
<article-title>The moon illusion revisited</article-title>
.
<source>Aviation, Space and Environmental Medicine</source>
,
<volume>54</volume>
,
<fpage>39</fpage>
<lpage>46</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>lavecchia, J. P.</surname>
</name>
,
<name name-style="western">
<surname>lavecchia, H. P.</surname>
</name>
, and
<name name-style="western">
<surname>Roscoe, S. N.</surname>
</name>
(
<year>1988</year>
).
<article-title>Eye accommodation to virtual head-up images</article-title>
.
<source>Human Factors</source>
,
<volume>30</volume>
,
<fpage>689</fpage>
<lpage>702</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kilpatrick, F. P.</surname>
</name>
, and
<name name-style="western">
<surname>Ittleson, W. H.</surname>
</name>
(
<year>1953</year>
).
<article-title>The size distance invariance hypothesis</article-title>
.
<source>Psychological Review</source>
,
<volume>60</volume>
,
<fpage>223</fpage>
<lpage>231</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Künnapas, T. M.</surname>
</name>
(
<year>1960</year>
).
<article-title>Scales for subjective distance</article-title>
.
<source>Scandinavian Journal of Psychology</source>
,
<volume>1</volume>
,
<fpage>187</fpage>
<lpage>192</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Leibowitz, H. W.</surname>
</name>
, and
<name name-style="western">
<surname>Owens, D. A.</surname>
</name>
(
<year>1975</year>
).
<article-title>Anomalous myopias and the intermediate dark focus of accommodation</article-title>
.
<source>Science</source>
,
<volume>189</volume>
,
<fpage>646</fpage>
<lpage>648</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Meehan, J. W.</surname>
</name>
(
<year>1990</year>
).
<source>Apparent minification in an imaging display</source>
. Unpublished doctoral dissertation,
<publisher-name>Monash University</publisher-name>
,
<publisher-loc>Melbourne, Australia</publisher-loc>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Meehan, J. W.</surname>
</name>
, and
<name name-style="western">
<surname>Triggs, T. J.</surname>
</name>
(
<year>1988</year>
).
<article-title>Magnification effects with imaging displays depend on scene content and viewing condition</article-title>
.
<source>Human Factors</source>
,
<volume>30</volume>
,
<fpage>487</fpage>
<lpage>494</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Ogle, K. N.</surname>
</name>
(
<year>1964</year>
).
<source>Researches in binocular vision</source>
.
<publisher-loc>New York</publisher-loc>
:
<publisher-name>Hafner</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Roscoe, S. N.</surname>
</name>
(
<year>1979</year>
).
<article-title>When day is done and shadows fall, we miss the airport most of all</article-title>
.
<source>Human Factors</source>
,
<volume>21</volume>
,
<fpage>721</fpage>
<lpage>731</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Roscoe, S. N.</surname>
</name>
(
<year>1984</year>
),
<article-title>Judgments of size and distance with imaging displays</article-title>
.
<source>Human Factors</source>
,
<volume>26</volume>
,
<fpage>617</fpage>
<lpage>629</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Roscoe, S. N.</surname>
</name>
(
<year>1985</year>
).
<article-title>Bigness is in the eye of the beholder</article-title>
.
<source>Human Factors</source>
,
<volume>27</volume>
,
<fpage>615</fpage>
<lpage>636</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Roscoe, S. N.</surname>
</name>
,
<name name-style="western">
<surname>Hasler, S. G.</surname>
</name>
, and
<name name-style="western">
<surname>Dougherty, D. J.</surname>
</name>
(
<year>1966</year>
).
<article-title>Flight by periscope: Making takeoffs and landings; the influence of image magnification, practice, and various conditions of flight</article-title>
.
<source>Human Factors</source>
,
<volume>8</volume>
,
<fpage>13</fpage>
<lpage>40</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Roscoe, S. N.</surname>
</name>
,
<name name-style="western">
<surname>Olzak, L. A.</surname>
</name>
, and
<name name-style="western">
<surname>Randle, R. J.</surname>
</name>
(
<year>1976</year>
).
<source>Ground-referenced visual orientation with imaging displays: Monocular versus binocular accommodation and judgments of relative size</source>
. In AGARD Conference Proceedings No. 201 (pp.
<fpage>A5-1-A5</fpage>
<lpage>9</lpage>
).
<publisher-loc>Neuilly-sur-Seine, France</publisher-loc>
:
<publisher-name>NATO, Advisory Group for Aerospace Research and Development</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Thouless, R. H.</surname>
</name>
(
<year>1931</year>
).
<article-title>Phenomenal regression to the real object</article-title>
.
<source>British Journal of Psychology</source>
,
<volume>21</volume>
,
<fpage>339</fpage>
<lpage>359</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Thouless, R. H.</surname>
</name>
(
<year>1968</year>
).
<article-title>Apparent size and distance in vision through a magnifying system</article-title>
.
<source>British Journal of Psychology</source>
,
<volume>59</volume>
,
<fpage>111</fpage>
<lpage>118</lpage>
.</citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Apparent Size and Distance in an Imaging Display</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Apparent Size and Distance in an Imaging Display</title>
</titleInfo>
<name type="personal">
<namePart type="given">James W.</namePart>
<namePart type="family">Meehan</namePart>
<affiliation>Centre d'Etudes et de Recherches de Médecine Aérospatiale, Paris, France</affiliation>
</name>
<name type="personal">
<namePart type="given">Thomas J.</namePart>
<namePart type="family">Triggs</namePart>
<affiliation>Monash University, Melbourne, Australia</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>SAGE Publications</publisher>
<place>
<placeTerm type="text">Sage CA: Los Angeles, CA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1992-06</dateIssued>
<copyrightDate encoding="w3cdtf">1992</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">The size-distance invariance hypothesis suggests that the perceived size and the perceived distance of objects in a field viewed naturally are closely related. However, this relationship breaks down when scenes are viewed through high-power optical systems. When natural scenes are viewed through an imaging display of unity magnification, there is a reduction in their apparent size. This raises the question of whether the relationship breaks down when scenes are viewed through a low-power imaging display. A single-lens reflex camera was used as an imaging display that enabled subjects to vary the size of imaged real-world scenes. Judgments of size were found to vary with depth information in scenes and between monocular and binocular viewing, consistent with a previous finding, but judgments of distance did not vary significantly across either of these conditions. The results suggest that judgments of size and judgments of distance with imaging displays are not influenced uniformly by environmental and task variables.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Human factors</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0018-7208</identifier>
<identifier type="eISSN">1547-8181</identifier>
<identifier type="PublisherID">HFS</identifier>
<identifier type="PublisherID-hwp">sphfs</identifier>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>303</start>
<end>311</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">5354E1B00281BFAF379DE190BE3D6344EDF18E9B</identifier>
<identifier type="ark">ark:/67375/M70-TW0R9S62-1</identifier>
<identifier type="DOI">10.1177/001872089203400305</identifier>
<identifier type="ArticleID">10.1177_001872089203400305</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-0J1N7DQT-B">sage</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/5354E1B00281BFAF379DE190BE3D6344EDF18E9B/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000F70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:5354E1B00281BFAF379DE190BE3D6344EDF18E9B
   |texte=   Apparent Size and Distance in an Imaging Display
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024