Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of hot spot directional signatures measured from space

Identifieur interne : 000E84 ( Istex/Corpus ); précédent : 000E83; suivant : 000E85

Analysis of hot spot directional signatures measured from space

Auteurs : Francois-Marie Bréon ; Fabienne Maignan ; Marc Leroy ; Ian Grant

Source :

RBID : ISTEX:4E99E0D02B9506AEA21F339BF10BE839F8435D81

English descriptors

Abstract

Reflectance measurements from the spaceborne Polarization and Directionality of Earth Reflectances (POLDER) instrument are used to analyze the so‐called hot spot directional signature in the backscattering direction. The hot spot is measured with an angular resolution better than half a degree using the directional capabilities of the radiometer, with some assumptions on the spatial homogeneity of the surface. The analysis yields the first quantitative observation of the hot spot signature of vegetated surfaces, with such angular resolution. The measurements show that the hot spot reflectance is a function of the phase angle ξ rather than a function of a parameter Δ, often used in hot spot modeling, that quantifies the horizontal distance between Sun and view directions. The observed directional signature is very accurately fitted by a linear ratio of the phase angle, as predicted by a simple theory of radiative transfer within the canopy foliage. Most of the measured hot spot half widths are between 1° and 2°. Some dispersion occurs for the cases belonging to the forest and desert International Geosphere‐Biosphere Program (IGBP) classes, in the range 1° to 5°. Theory predicts that the width is independent of wavelength. Our measurements indicate that the widths at 670 and 865 nm are very close, but with a significant scatter in regards to the rather small variability. The distribution of the width as a function of the IGBP surface classification shows a variability within the classes that is larger than between the classes, except for the “evergreen broadleaf” class. The hot spot reflectance amplitude is generally on the order of 0.10–0.20 at 865 nm and 0.03–0.18 at 670 nm, although the full range of values is wider. For thick canopies, it may be interpreted in terms of foliage element (leaf) reflectance. Retrieved values are on the order of 0.4 in the near infrared and in the range 0.05–0.20 at 670 nm. At 440 nm, the amplitude of the signature is very small, as is expected from the small surface reflectance. This confirms that the atmospheric contribution to the reflectance increase at the backscattering direction is negligible.

Url:
DOI: 10.1029/2001JD001094

Links to Exploration step

ISTEX:4E99E0D02B9506AEA21F339BF10BE839F8435D81

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of hot spot directional signatures measured from space</title>
<author>
<name sortKey="Breon, Francois Arie" sort="Breon, Francois Arie" uniqKey="Breon F" first="Francois-Marie" last="Bréon">Francois-Marie Bréon</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Energie Atomique, Gif sur Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maignan, Fabienne" sort="Maignan, Fabienne" uniqKey="Maignan F" first="Fabienne" last="Maignan">Fabienne Maignan</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Energie Atomique, Gif sur Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leroy, Marc" sort="Leroy, Marc" uniqKey="Leroy M" first="Marc" last="Leroy">Marc Leroy</name>
<affiliation>
<mods:affiliation>Centre d'Etudes Spatiales de la Biosphère, Toulouse, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grant, Ian" sort="Grant, Ian" uniqKey="Grant I" first="Ian" last="Grant">Ian Grant</name>
<affiliation>
<mods:affiliation>CSIRO Atmospheric Research, Aspendale, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4E99E0D02B9506AEA21F339BF10BE839F8435D81</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1029/2001JD001094</idno>
<idno type="url">https://api.istex.fr/document/4E99E0D02B9506AEA21F339BF10BE839F8435D81/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E84</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E84</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Analysis of hot spot directional signatures measured from space</title>
<author>
<name sortKey="Breon, Francois Arie" sort="Breon, Francois Arie" uniqKey="Breon F" first="Francois-Marie" last="Bréon">Francois-Marie Bréon</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Energie Atomique, Gif sur Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maignan, Fabienne" sort="Maignan, Fabienne" uniqKey="Maignan F" first="Fabienne" last="Maignan">Fabienne Maignan</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Energie Atomique, Gif sur Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leroy, Marc" sort="Leroy, Marc" uniqKey="Leroy M" first="Marc" last="Leroy">Marc Leroy</name>
<affiliation>
<mods:affiliation>Centre d'Etudes Spatiales de la Biosphère, Toulouse, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grant, Ian" sort="Grant, Ian" uniqKey="Grant I" first="Ian" last="Grant">Ian Grant</name>
<affiliation>
<mods:affiliation>CSIRO Atmospheric Research, Aspendale, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">107</biblScope>
<biblScope unit="issue">D16</biblScope>
<biblScope unit="page" from="AAC1-1">AAC 1-1</biblScope>
<biblScope unit="page" to="AAC1-15">AAC1-15</biblScope>
<biblScope unit="page-count">15</biblScope>
<date type="published" when="2002-08-27">2002-08-27</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amplitude</term>
<term>Angular resolution</term>
<term>Angular width</term>
<term>Atmospheric contribution</term>
<term>Atmospheric effects</term>
<term>Backscatter</term>
<term>Backscattering</term>
<term>Backscattering direction</term>
<term>Backscattering geometry</term>
<term>Better approximation</term>
<term>Bidirectional</term>
<term>Bidirectional reflectance model</term>
<term>Blue channel</term>
<term>Breon</term>
<term>Broad reflectance increase</term>
<term>Broadleaf</term>
<term>Canopy</term>
<term>Canopy depth</term>
<term>Canopy parameters</term>
<term>Coherent backscatter</term>
<term>Constant value</term>
<term>Correlated transmission</term>
<term>Corresponding measurements</term>
<term>Data points</term>
<term>Decorrelation length</term>
<term>Deep canopy</term>
<term>Desert class</term>
<term>Different directions</term>
<term>Directional capabilities</term>
<term>Directional signature</term>
<term>Downwelling paths</term>
<term>Earth reflectances</term>
<term>Environ</term>
<term>Evergreen</term>
<term>Evergreen broadleaf</term>
<term>Evergreen broadleaf case</term>
<term>Exact backscattering direction</term>
<term>Excellent accuracy</term>
<term>Filter wheel</term>
<term>Foliage element</term>
<term>Foliage elements</term>
<term>Full range</term>
<term>Half width</term>
<term>Half widths</term>
<term>Hapke</term>
<term>Homogeneous areas</term>
<term>Horizontal distance</term>
<term>Horizontal plane</term>
<term>Ieee trans</term>
<term>Igbp</term>
<term>Igbp classes</term>
<term>Igbp classification</term>
<term>Igbp surface classification</term>
<term>Joint probability</term>
<term>Jupp</term>
<term>Kuusk</term>
<term>Large dispersion</term>
<term>Large number</term>
<term>Large particles</term>
<term>Leaf reflectance</term>
<term>Leaf size</term>
<term>Leroy</term>
<term>Linear ratio</term>
<term>Major biomes</term>
<term>Measurements show</term>
<term>Modeling</term>
<term>Opposition effect</term>
<term>Other cases</term>
<term>Other classes</term>
<term>Other hand</term>
<term>Overlap function</term>
<term>Particular case</term>
<term>Phase angle</term>
<term>Phase angle increases</term>
<term>Phase function</term>
<term>Pixel</term>
<term>Planar</term>
<term>Planar distribution</term>
<term>Polder</term>
<term>Polder data</term>
<term>Polder images</term>
<term>Polder instrument</term>
<term>Polder measurements</term>
<term>Polder pixels</term>
<term>Polynomial function</term>
<term>Present paper</term>
<term>Principal plane</term>
<term>Radiative transfer</term>
<term>Random orientation</term>
<term>Reflectance</term>
<term>Reflectance increase</term>
<term>Reflectance measurements</term>
<term>Reflectance peak</term>
<term>Reflectance variations</term>
<term>Relevant direction</term>
<term>Remote sens</term>
<term>Right side</term>
<term>Rleaf</term>
<term>Sens</term>
<term>Several models</term>
<term>Sharp increase</term>
<term>Short axis</term>
<term>Shorter wavelength</term>
<term>Signature</term>
<term>Signatures figure</term>
<term>Simple correction</term>
<term>Simple function</term>
<term>Simple modeling</term>
<term>Simple theory</term>
<term>Simulation</term>
<term>Single interaction</term>
<term>Small range</term>
<term>Small variability</term>
<term>Soil grains</term>
<term>Solar zenith angle</term>
<term>Solid circles</term>
<term>Spaceborne</term>
<term>Spaceborne measurements</term>
<term>Spaceborne polarization</term>
<term>Spatial heterogeneity</term>
<term>Spectral bands</term>
<term>Spectral signature</term>
<term>Spherical distribution</term>
<term>Spot amplitude</term>
<term>Spot direction</term>
<term>Spot effect</term>
<term>Spot feature</term>
<term>Spot geometry</term>
<term>Spot half width</term>
<term>Spot measurements</term>
<term>Spot modeling</term>
<term>Spot peak</term>
<term>Spot reflectance</term>
<term>Spot signature</term>
<term>Spot signatures</term>
<term>Spot width</term>
<term>Standard deviation</term>
<term>Statistical analysis</term>
<term>Strahler</term>
<term>Suitable targets</term>
<term>Surface albedo</term>
<term>Surface contribution</term>
<term>Surface reflectance</term>
<term>Surface type</term>
<term>Terrestrial surfaces</term>
<term>Terrestrial vegetation</term>
<term>Theoretical section</term>
<term>Thick canopies</term>
<term>Typical scale</term>
<term>Variability</term>
<term>Vegetation</term>
<term>Vegetation canopies</term>
<term>View angle</term>
<term>View directions</term>
<term>View zenith angle</term>
<term>Wide lens</term>
<term>Zenith angle</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Amplitude</term>
<term>Angular resolution</term>
<term>Angular width</term>
<term>Atmospheric contribution</term>
<term>Atmospheric effects</term>
<term>Backscatter</term>
<term>Backscattering</term>
<term>Backscattering direction</term>
<term>Backscattering geometry</term>
<term>Better approximation</term>
<term>Bidirectional</term>
<term>Bidirectional reflectance model</term>
<term>Blue channel</term>
<term>Breon</term>
<term>Broad reflectance increase</term>
<term>Broadleaf</term>
<term>Canopy</term>
<term>Canopy depth</term>
<term>Canopy parameters</term>
<term>Coherent backscatter</term>
<term>Constant value</term>
<term>Correlated transmission</term>
<term>Corresponding measurements</term>
<term>Data points</term>
<term>Decorrelation length</term>
<term>Deep canopy</term>
<term>Desert class</term>
<term>Different directions</term>
<term>Directional capabilities</term>
<term>Directional signature</term>
<term>Downwelling paths</term>
<term>Earth reflectances</term>
<term>Environ</term>
<term>Evergreen</term>
<term>Evergreen broadleaf</term>
<term>Evergreen broadleaf case</term>
<term>Exact backscattering direction</term>
<term>Excellent accuracy</term>
<term>Filter wheel</term>
<term>Foliage element</term>
<term>Foliage elements</term>
<term>Full range</term>
<term>Half width</term>
<term>Half widths</term>
<term>Hapke</term>
<term>Homogeneous areas</term>
<term>Horizontal distance</term>
<term>Horizontal plane</term>
<term>Ieee trans</term>
<term>Igbp</term>
<term>Igbp classes</term>
<term>Igbp classification</term>
<term>Igbp surface classification</term>
<term>Joint probability</term>
<term>Jupp</term>
<term>Kuusk</term>
<term>Large dispersion</term>
<term>Large number</term>
<term>Large particles</term>
<term>Leaf reflectance</term>
<term>Leaf size</term>
<term>Leroy</term>
<term>Linear ratio</term>
<term>Major biomes</term>
<term>Measurements show</term>
<term>Modeling</term>
<term>Opposition effect</term>
<term>Other cases</term>
<term>Other classes</term>
<term>Other hand</term>
<term>Overlap function</term>
<term>Particular case</term>
<term>Phase angle</term>
<term>Phase angle increases</term>
<term>Phase function</term>
<term>Pixel</term>
<term>Planar</term>
<term>Planar distribution</term>
<term>Polder</term>
<term>Polder data</term>
<term>Polder images</term>
<term>Polder instrument</term>
<term>Polder measurements</term>
<term>Polder pixels</term>
<term>Polynomial function</term>
<term>Present paper</term>
<term>Principal plane</term>
<term>Radiative transfer</term>
<term>Random orientation</term>
<term>Reflectance</term>
<term>Reflectance increase</term>
<term>Reflectance measurements</term>
<term>Reflectance peak</term>
<term>Reflectance variations</term>
<term>Relevant direction</term>
<term>Remote sens</term>
<term>Right side</term>
<term>Rleaf</term>
<term>Sens</term>
<term>Several models</term>
<term>Sharp increase</term>
<term>Short axis</term>
<term>Shorter wavelength</term>
<term>Signature</term>
<term>Signatures figure</term>
<term>Simple correction</term>
<term>Simple function</term>
<term>Simple modeling</term>
<term>Simple theory</term>
<term>Simulation</term>
<term>Single interaction</term>
<term>Small range</term>
<term>Small variability</term>
<term>Soil grains</term>
<term>Solar zenith angle</term>
<term>Solid circles</term>
<term>Spaceborne</term>
<term>Spaceborne measurements</term>
<term>Spaceborne polarization</term>
<term>Spatial heterogeneity</term>
<term>Spectral bands</term>
<term>Spectral signature</term>
<term>Spherical distribution</term>
<term>Spot amplitude</term>
<term>Spot direction</term>
<term>Spot effect</term>
<term>Spot feature</term>
<term>Spot geometry</term>
<term>Spot half width</term>
<term>Spot measurements</term>
<term>Spot modeling</term>
<term>Spot peak</term>
<term>Spot reflectance</term>
<term>Spot signature</term>
<term>Spot signatures</term>
<term>Spot width</term>
<term>Standard deviation</term>
<term>Statistical analysis</term>
<term>Strahler</term>
<term>Suitable targets</term>
<term>Surface albedo</term>
<term>Surface contribution</term>
<term>Surface reflectance</term>
<term>Surface type</term>
<term>Terrestrial surfaces</term>
<term>Terrestrial vegetation</term>
<term>Theoretical section</term>
<term>Thick canopies</term>
<term>Typical scale</term>
<term>Variability</term>
<term>Vegetation</term>
<term>Vegetation canopies</term>
<term>View angle</term>
<term>View directions</term>
<term>View zenith angle</term>
<term>Wide lens</term>
<term>Zenith angle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Reflectance measurements from the spaceborne Polarization and Directionality of Earth Reflectances (POLDER) instrument are used to analyze the so‐called hot spot directional signature in the backscattering direction. The hot spot is measured with an angular resolution better than half a degree using the directional capabilities of the radiometer, with some assumptions on the spatial homogeneity of the surface. The analysis yields the first quantitative observation of the hot spot signature of vegetated surfaces, with such angular resolution. The measurements show that the hot spot reflectance is a function of the phase angle ξ rather than a function of a parameter Δ, often used in hot spot modeling, that quantifies the horizontal distance between Sun and view directions. The observed directional signature is very accurately fitted by a linear ratio of the phase angle, as predicted by a simple theory of radiative transfer within the canopy foliage. Most of the measured hot spot half widths are between 1° and 2°. Some dispersion occurs for the cases belonging to the forest and desert International Geosphere‐Biosphere Program (IGBP) classes, in the range 1° to 5°. Theory predicts that the width is independent of wavelength. Our measurements indicate that the widths at 670 and 865 nm are very close, but with a significant scatter in regards to the rather small variability. The distribution of the width as a function of the IGBP surface classification shows a variability within the classes that is larger than between the classes, except for the “evergreen broadleaf” class. The hot spot reflectance amplitude is generally on the order of 0.10–0.20 at 865 nm and 0.03–0.18 at 670 nm, although the full range of values is wider. For thick canopies, it may be interpreted in terms of foliage element (leaf) reflectance. Retrieved values are on the order of 0.4 in the near infrared and in the range 0.05–0.20 at 670 nm. At 440 nm, the amplitude of the signature is very small, as is expected from the small surface reflectance. This confirms that the atmospheric contribution to the reflectance increase at the backscattering direction is negligible.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>reflectance</json:string>
<json:string>backscattering</json:string>
<json:string>phase angle</json:string>
<json:string>polder</json:string>
<json:string>pixel</json:string>
<json:string>backscattering direction</json:string>
<json:string>breon</json:string>
<json:string>remote sens</json:string>
<json:string>leaf reflectance</json:string>
<json:string>igbp</json:string>
<json:string>spot signature</json:string>
<json:string>directional signature</json:string>
<json:string>hapke</json:string>
<json:string>broadleaf</json:string>
<json:string>canopy</json:string>
<json:string>other hand</json:string>
<json:string>rleaf</json:string>
<json:string>backscatter</json:string>
<json:string>solar zenith angle</json:string>
<json:string>kuusk</json:string>
<json:string>spot amplitude</json:string>
<json:string>spaceborne</json:string>
<json:string>sens</json:string>
<json:string>environ</json:string>
<json:string>bidirectional</json:string>
<json:string>view directions</json:string>
<json:string>spot signatures</json:string>
<json:string>coherent backscatter</json:string>
<json:string>strahler</json:string>
<json:string>half width</json:string>
<json:string>jupp</json:string>
<json:string>signature</json:string>
<json:string>surface reflectance</json:string>
<json:string>modeling</json:string>
<json:string>linear ratio</json:string>
<json:string>vegetation canopies</json:string>
<json:string>evergreen</json:string>
<json:string>particular case</json:string>
<json:string>angular resolution</json:string>
<json:string>data points</json:string>
<json:string>ieee trans</json:string>
<json:string>spot width</json:string>
<json:string>statistical analysis</json:string>
<json:string>radiative transfer</json:string>
<json:string>igbp classification</json:string>
<json:string>igbp classes</json:string>
<json:string>sharp increase</json:string>
<json:string>large number</json:string>
<json:string>standard deviation</json:string>
<json:string>signatures figure</json:string>
<json:string>overlap function</json:string>
<json:string>surface type</json:string>
<json:string>foliage elements</json:string>
<json:string>typical scale</json:string>
<json:string>reflectance peak</json:string>
<json:string>evergreen broadleaf</json:string>
<json:string>simple theory</json:string>
<json:string>spot half width</json:string>
<json:string>spot effect</json:string>
<json:string>polder data</json:string>
<json:string>igbp surface classification</json:string>
<json:string>horizontal distance</json:string>
<json:string>spot feature</json:string>
<json:string>zenith angle</json:string>
<json:string>exact backscattering direction</json:string>
<json:string>polder pixels</json:string>
<json:string>view zenith angle</json:string>
<json:string>simple correction</json:string>
<json:string>random orientation</json:string>
<json:string>measurements show</json:string>
<json:string>horizontal plane</json:string>
<json:string>principal plane</json:string>
<json:string>spot modeling</json:string>
<json:string>opposition effect</json:string>
<json:string>different directions</json:string>
<json:string>downwelling paths</json:string>
<json:string>reflectance increase</json:string>
<json:string>spherical distribution</json:string>
<json:string>planar distribution</json:string>
<json:string>foliage element</json:string>
<json:string>simple modeling</json:string>
<json:string>other classes</json:string>
<json:string>angular width</json:string>
<json:string>vegetation</json:string>
<json:string>variability</json:string>
<json:string>planar</json:string>
<json:string>amplitude</json:string>
<json:string>simulation</json:string>
<json:string>leroy</json:string>
<json:string>view angle</json:string>
<json:string>spectral bands</json:string>
<json:string>spot direction</json:string>
<json:string>polder measurements</json:string>
<json:string>polder instrument</json:string>
<json:string>homogeneous areas</json:string>
<json:string>small variability</json:string>
<json:string>directional capabilities</json:string>
<json:string>backscattering geometry</json:string>
<json:string>soil grains</json:string>
<json:string>terrestrial vegetation</json:string>
<json:string>reflectance variations</json:string>
<json:string>surface contribution</json:string>
<json:string>simple function</json:string>
<json:string>theoretical section</json:string>
<json:string>right side</json:string>
<json:string>broad reflectance increase</json:string>
<json:string>canopy depth</json:string>
<json:string>leaf size</json:string>
<json:string>polder images</json:string>
<json:string>spot peak</json:string>
<json:string>canopy parameters</json:string>
<json:string>atmospheric effects</json:string>
<json:string>spot reflectance</json:string>
<json:string>atmospheric contribution</json:string>
<json:string>terrestrial surfaces</json:string>
<json:string>spot measurements</json:string>
<json:string>short axis</json:string>
<json:string>excellent accuracy</json:string>
<json:string>polynomial function</json:string>
<json:string>earth reflectances</json:string>
<json:string>solid circles</json:string>
<json:string>other cases</json:string>
<json:string>several models</json:string>
<json:string>spaceborne polarization</json:string>
<json:string>spot geometry</json:string>
<json:string>decorrelation length</json:string>
<json:string>single interaction</json:string>
<json:string>phase angle increases</json:string>
<json:string>corresponding measurements</json:string>
<json:string>better approximation</json:string>
<json:string>thick canopies</json:string>
<json:string>suitable targets</json:string>
<json:string>desert class</json:string>
<json:string>blue channel</json:string>
<json:string>half widths</json:string>
<json:string>evergreen broadleaf case</json:string>
<json:string>large dispersion</json:string>
<json:string>deep canopy</json:string>
<json:string>phase function</json:string>
<json:string>large particles</json:string>
<json:string>shorter wavelength</json:string>
<json:string>surface albedo</json:string>
<json:string>spectral signature</json:string>
<json:string>present paper</json:string>
<json:string>spaceborne measurements</json:string>
<json:string>major biomes</json:string>
<json:string>small range</json:string>
<json:string>wide lens</json:string>
<json:string>constant value</json:string>
<json:string>joint probability</json:string>
<json:string>spatial heterogeneity</json:string>
<json:string>relevant direction</json:string>
<json:string>full range</json:string>
<json:string>reflectance measurements</json:string>
<json:string>filter wheel</json:string>
<json:string>bidirectional reflectance model</json:string>
<json:string>correlated transmission</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Francois‐Marie Bréon</name>
<affiliations>
<json:string>Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Energie Atomique, Gif sur Yvette, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Fabienne Maignan</name>
<affiliations>
<json:string>Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Energie Atomique, Gif sur Yvette, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marc Leroy</name>
<affiliations>
<json:string>Centre d'Etudes Spatiales de la Biosphère, Toulouse, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ian Grant</name>
<affiliations>
<json:string>CSIRO Atmospheric Research, Aspendale, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hot spot</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>POLDER</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>backscattering</value>
</json:item>
</subject>
<articleId>
<json:string>2001JD001094</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-7GP6G47F-R</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Reflectance measurements from the spaceborne Polarization and Directionality of Earth Reflectances (POLDER) instrument are used to analyze the so‐called hot spot directional signature in the backscattering direction. The hot spot is measured with an angular resolution better than half a degree using the directional capabilities of the radiometer, with some assumptions on the spatial homogeneity of the surface. The analysis yields the first quantitative observation of the hot spot signature of vegetated surfaces, with such angular resolution. The measurements show that the hot spot reflectance is a function of the phase angle ξ rather than a function of a parameter Δ, often used in hot spot modeling, that quantifies the horizontal distance between Sun and view directions. The observed directional signature is very accurately fitted by a linear ratio of the phase angle, as predicted by a simple theory of radiative transfer within the canopy foliage. Most of the measured hot spot half widths are between 1° and 2°. Some dispersion occurs for the cases belonging to the forest and desert International Geosphere‐Biosphere Program (IGBP) classes, in the range 1° to 5°. Theory predicts that the width is independent of wavelength. Our measurements indicate that the widths at 670 and 865 nm are very close, but with a significant scatter in regards to the rather small variability. The distribution of the width as a function of the IGBP surface classification shows a variability within the classes that is larger than between the classes, except for the “evergreen broadleaf” class. The hot spot reflectance amplitude is generally on the order of 0.10–0.20 at 865 nm and 0.03–0.18 at 670 nm, although the full range of values is wider. For thick canopies, it may be interpreted in terms of foliage element (leaf) reflectance. Retrieved values are on the order of 0.4 in the near infrared and in the range 0.05–0.20 at 670 nm. At 440 nm, the amplitude of the signature is very small, as is expected from the small surface reflectance. This confirms that the atmospheric contribution to the reflectance increase at the backscattering direction is negligible.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>10081</pdfWordCount>
<pdfCharCount>56645</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>15</pdfPageCount>
<pdfPageSize>592 x 807 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>346</abstractWordCount>
<abstractCharCount>2168</abstractCharCount>
<keywordCount>3</keywordCount>
</qualityIndicators>
<title>Analysis of hot spot directional signatures measured from space</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Atmospheres</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202d</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRD</json:string>
</publisherId>
<volume>107</volume>
<issue>D16</issue>
<pages>
<first>AAC 1-1</first>
<last>AAC 1-15</last>
<total>15</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Aerosol and Clouds</value>
</json:item>
<json:item>
<value>ELECTROMAGNETICS</value>
</json:item>
<json:item>
<value>Random media and rough surfaces</value>
</json:item>
<json:item>
<value>Optics</value>
</json:item>
<json:item>
<value>EXPLORATION GEOPHYSICS</value>
</json:item>
<json:item>
<value>Remote sensing</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: GENERAL</value>
</json:item>
<json:item>
<value>Ocean optics</value>
</json:item>
<json:item>
<value>Aerosol and Clouds</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1997</json:string>
<json:string>2002</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Atmospheric Research, Aspendale, Australia Received</json:string>
<json:string>American Geophysical Union</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Ian Grant</json:string>
<json:string>Á. Note</json:string>
<json:string>Sun Copyright</json:string>
<json:string>The</json:string>
<json:string>Fabienne Maignan</json:string>
</persName>
<placeName>
<json:string>Toulouse</json:string>
<json:string>France</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[50]</json:string>
<json:string>Powers and Gerstl, 1988</json:string>
<json:string>[56]</json:string>
<json:string>[1997]</json:string>
<json:string>Roujean et al., 1992</json:string>
<json:string>Deschamps et al., 1994</json:string>
<json:string>[55]</json:string>
<json:string>Woessner and Hapke, 1987</json:string>
<json:string>[8]</json:string>
<json:string>Chen and Leblanc, 1997</json:string>
<json:string>[39]</json:string>
<json:string>Qin and Goel, 1995</json:string>
<json:string>[1985]</json:string>
<json:string>Verstraete et al.</json:string>
<json:string>Jupp and Strahler, 1991</json:string>
<json:string>Hapke et al., 1996</json:string>
<json:string>Breon and Colzy, 1999</json:string>
<json:string>[54]</json:string>
<json:string>[1991]</json:string>
<json:string>Verstraete et al. [1990]</json:string>
<json:string>[53]</json:string>
<json:string>Loveland and Belward, 1997</json:string>
<json:string>Verstraete et al., 1990</json:string>
<json:string>[37]</json:string>
<json:string>Grant et al. [2002]</json:string>
<json:string>[1988]</json:string>
<json:string>[63]</json:string>
<json:string>[47]</json:string>
<json:string>February 2002</json:string>
<json:string>Breon et al., 1997</json:string>
<json:string>Hautecoeur and Leroy, 1998</json:string>
<json:string>Qin et al., 1996</json:string>
<json:string>[40]</json:string>
<json:string>Kuga and Ishimaru, 1984</json:string>
<json:string>Hapke et al., 1993</json:string>
<json:string>August 1996</json:string>
<json:string>[2]</json:string>
<json:string>[57]</json:string>
<json:string>Jacquemoud and Baret, 1990</json:string>
<json:string>Vermote et al., 1997</json:string>
<json:string>Bicheron and Leroy, 2000</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-7GP6G47F-R</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - meteorology & atmospheric sciences</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Palaeontology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth and Planetary Sciences (miscellaneous)</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Atmospheric Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth-Surface Processes</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Soil Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Water Science and Technology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Ecology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Aquatic Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Forestry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Oceanography</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geophysics</json:string>
</scopus>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1029/2001JD001094</json:string>
</doi>
<id>4E99E0D02B9506AEA21F339BF10BE839F8435D81</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/4E99E0D02B9506AEA21F339BF10BE839F8435D81/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/4E99E0D02B9506AEA21F339BF10BE839F8435D81/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/4E99E0D02B9506AEA21F339BF10BE839F8435D81/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Analysis of hot spot directional signatures measured from space</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>Copyright 2002 by the American Geophysical Union.</licence>
</availability>
<date type="published" when="2002-08-27"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Analysis of hot spot directional signatures measured from space</title>
<title level="a" type="short">HOT SPOT DIRECTIONAL SIGNATURES</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Francois‐Marie</forename>
<surname>Bréon</surname>
</persName>
<affiliation>
<orgName>Laboratoire des Sciences du Climat et de l'Environnement</orgName>
<orgName>Commissariat à l'Energie Atomique</orgName>
<address>
<settlement type="city">Gif sur Yvette</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Fabienne</forename>
<surname>Maignan</surname>
</persName>
<affiliation>
<orgName>Laboratoire des Sciences du Climat et de l'Environnement</orgName>
<orgName>Commissariat à l'Energie Atomique</orgName>
<address>
<settlement type="city">Gif sur Yvette</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Marc</forename>
<surname>Leroy</surname>
</persName>
<affiliation>
<orgName>Centre d'Etudes Spatiales de la Biosphère</orgName>
<address>
<settlement type="city">Toulouse</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Ian</forename>
<surname>Grant</surname>
</persName>
<affiliation>
<orgName>CSIRO Atmospheric Research</orgName>
<address>
<settlement type="city">Aspendale</settlement>
<country key="AU">Australia</country>
</address>
</affiliation>
</author>
<idno type="istex">4E99E0D02B9506AEA21F339BF10BE839F8435D81</idno>
<idno type="ark">ark:/67375/WNG-7GP6G47F-R</idno>
<idno type="DOI">10.1029/2001JD001094</idno>
<idno type="editorialOffice">2001JD001094</idno>
<idno type="unit">JGRD9222</idno>
<idno type="toTypesetVersion">file:JGRD.JGRD9222.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="book-DOI">10.1002/(ISSN)2156-2202d</idno>
<idno type="book-part-DOI">10.1002/jgrd.v107.D16</idno>
<idno type="product">JGRD</idno>
<idno type="coden">JGREA2</idno>
<imprint>
<biblScope unit="vol">107</biblScope>
<biblScope unit="issue">D16</biblScope>
<biblScope unit="page" from="AAC1-1">AAC 1-1</biblScope>
<biblScope unit="page" to="AAC1-15">AAC1-15</biblScope>
<biblScope unit="page-count">15</biblScope>
<date type="published" when="2002-08-27"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="jgrd9222-para-0001">Reflectance measurements from the spaceborne Polarization and Directionality of Earth Reflectances (POLDER) instrument are used to analyze the so‐called hot spot directional signature in the backscattering direction. The hot spot is measured with an angular resolution better than half a degree using the directional capabilities of the radiometer, with some assumptions on the spatial homogeneity of the surface. The analysis yields the first quantitative observation of the hot spot signature of vegetated surfaces, with such angular resolution. The measurements show that the hot spot reflectance is a function of the phase angle ξ rather than a function of a parameter Δ, often used in hot spot modeling, that quantifies the horizontal distance between Sun and view directions. The observed directional signature is very accurately fitted by a linear ratio of the phase angle, as predicted by a simple theory of radiative transfer within the canopy foliage. Most of the measured hot spot half widths are between 1° and 2°. Some dispersion occurs for the cases belonging to the forest and desert International Geosphere‐Biosphere Program (IGBP) classes, in the range 1° to 5°. Theory predicts that the width is independent of wavelength. Our measurements indicate that the widths at 670 and 865 nm are very close, but with a significant scatter in regards to the rather small variability. The distribution of the width as a function of the IGBP surface classification shows a variability within the classes that is larger than between the classes, except for the “evergreen broadleaf” class. The hot spot reflectance amplitude is generally on the order of 0.10–0.20 at 865 nm and 0.03–0.18 at 670 nm, although the full range of values is wider. For thick canopies, it may be interpreted in terms of foliage element (leaf) reflectance. Retrieved values are on the order of 0.4 in the near infrared and in the range 0.05–0.20 at 670 nm. At 440 nm, the amplitude of the signature is very small, as is expected from the small surface reflectance. This confirms that the atmospheric contribution to the reflectance increase at the backscattering direction is negligible.</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jgrd9222-kwd-0001">hot spot</term>
<term xml:id="jgrd9222-kwd-0002">POLDER</term>
<term xml:id="jgrd9222-kwd-0003">backscattering</term>
</keywords>
<classCode scheme="http://psi.agu.org/subset/AAC">Aerosol and Clouds</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0600">ELECTROMAGNETICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</classCode>
<keywords rend="articleCategory">
<term>Aerosol and Clouds</term>
</keywords>
<keywords rend="tocHeading1">
<term>Aerosol and Clouds</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/4E99E0D02B9506AEA21F339BF10BE839F8435D81/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrd9222">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202d</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRD"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES">Journal of Geophysical Research: Atmospheres</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="160">
<doi>10.1002/jgrd.v107.D16</doi>
<idGroup>
<id type="focusSection" value="4"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Atmospheres</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="107">107</numbering>
<numbering type="journalIssue">D16</numbering>
</numberingGroup>
<coverDate startDate="2002-08-27">27 August 2002</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="20" type="article" status="forIssue">
<doi>10.1029/2001JD001094</doi>
<idGroup>
<id type="editorialOffice" value="2001JD001094"></id>
<id type="unit" value="JGRD9222"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="15"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Aerosol and Clouds</title>
<title type="tocHeading1">Aerosol and Clouds</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2002 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2001-07-16"></event>
<event type="manuscriptRevised" date="2001-10-15"></event>
<event type="manuscriptAccepted" date="2001-12-17"></event>
<event type="firstOnline" date="2002-08-22"></event>
<event type="publishedOnlineFinalForm" date="2002-08-22"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.2_TO_WileyML3Gv1.0.3 version:1.1; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2013-02-21"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">AAC 1-1</numbering>
<numbering type="pageLast">AAC 1-15</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/AAC">Aerosol and Clouds</subject>
<subject href="http://psi.agu.org/taxonomy5/0600">ELECTROMAGNETICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0659">Random media and rough surfaces</subject>
<subject href="http://psi.agu.org/taxonomy5/0649">Optics</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0933">Remote sensing</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4264">Ocean optics</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrd9222-cit-0000" type="self">
<author>
<familyName>Bréon</familyName>
,
<givenNames>F.‐M.</givenNames>
</author>
,
<author>
<givenNames>F.</givenNames>
<familyName>Maignan</familyName>
</author>
,
<author>
<givenNames>M.</givenNames>
<familyName>Leroy</familyName>
</author>
, and
<author>
<givenNames>I.</givenNames>
<familyName>Grant</familyName>
</author>
,
<articleTitle>Analysis of hot spot directional signatures measured from space</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>107</vol>
(
<issue>D16</issue>
), doi:
<accessionId ref="info:doi/10.1029/2001JD001094">10.1029/2001JD001094</accessionId>
,
<pubYear year="2002">2002</pubYear>
.</citation>
</selfCitationGroup>
<objectNameGroup>
<objectName elementName="appendix">Appendix</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRD.JGRD9222.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="15"></count>
</countGroup>
<titleGroup>
<title type="main">Analysis of hot spot directional signatures measured from space</title>
<title type="short">HOT SPOT DIRECTIONAL SIGNATURES</title>
<title type="shortAuthors">Bréon
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrd9222-cr-0001" affiliationRef="#jgrd9222-aff-0001">
<personName>
<givenNames>Francois‐Marie</givenNames>
<familyName>Bréon</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd9222-cr-0002" affiliationRef="#jgrd9222-aff-0001">
<personName>
<givenNames>Fabienne</givenNames>
<familyName>Maignan</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd9222-cr-0003" affiliationRef="#jgrd9222-aff-0002">
<personName>
<givenNames>Marc</givenNames>
<familyName>Leroy</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd9222-cr-0004" affiliationRef="#jgrd9222-aff-0003">
<personName>
<givenNames>Ian</givenNames>
<familyName>Grant</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FR" type="organization" xml:id="jgrd9222-aff-0001">
<orgDiv>Laboratoire des Sciences du Climat et de l'Environnement</orgDiv>
<orgName>Commissariat à l'Energie Atomique</orgName>
<address>
<city>Gif sur Yvette</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="jgrd9222-aff-0002">
<orgName>Centre d'Etudes Spatiales de la Biosphère</orgName>
<address>
<city>Toulouse</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="AU" type="organization" xml:id="jgrd9222-aff-0003">
<orgName>CSIRO Atmospheric Research</orgName>
<address>
<city>Aspendale</city>
<country>Australia</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrd9222-kwd-0001">hot spot</keyword>
<keyword xml:id="jgrd9222-kwd-0002">POLDER</keyword>
<keyword xml:id="jgrd9222-kwd-0003">backscattering</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrd9222-para-0001" label="1">Reflectance measurements from the spaceborne Polarization and Directionality of Earth Reflectances (POLDER) instrument are used to analyze the so‐called hot spot directional signature in the backscattering direction. The hot spot is measured with an angular resolution better than half a degree using the directional capabilities of the radiometer, with some assumptions on the spatial homogeneity of the surface. The analysis yields the first quantitative observation of the hot spot signature of vegetated surfaces, with such angular resolution. The measurements show that the hot spot reflectance is a function of the phase angle ξ rather than a function of a parameter Δ, often used in hot spot modeling, that quantifies the horizontal distance between Sun and view directions. The observed directional signature is very accurately fitted by a linear ratio of the phase angle, as predicted by a simple theory of radiative transfer within the canopy foliage. Most of the measured hot spot half widths are between 1° and 2°. Some dispersion occurs for the cases belonging to the forest and desert International Geosphere‐Biosphere Program (IGBP) classes, in the range 1° to 5°. Theory predicts that the width is independent of wavelength. Our measurements indicate that the widths at 670 and 865 nm are very close, but with a significant scatter in regards to the rather small variability. The distribution of the width as a function of the IGBP surface classification shows a variability within the classes that is larger than between the classes, except for the “evergreen broadleaf” class. The hot spot reflectance amplitude is generally on the order of 0.10–0.20 at 865 nm and 0.03–0.18 at 670 nm, although the full range of values is wider. For thick canopies, it may be interpreted in terms of foliage element (leaf) reflectance. Retrieved values are on the order of 0.4 in the near infrared and in the range 0.05–0.20 at 670 nm. At 440 nm, the amplitude of the signature is very small, as is expected from the small surface reflectance. This confirms that the atmospheric contribution to the reflectance increase at the backscattering direction is negligible.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Analysis of hot spot directional signatures measured from space</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>HOT SPOT DIRECTIONAL SIGNATURES</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Analysis of hot spot directional signatures measured from space</title>
</titleInfo>
<name type="personal">
<namePart type="given">Francois‐Marie</namePart>
<namePart type="family">Bréon</namePart>
<affiliation>Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Energie Atomique, Gif sur Yvette, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabienne</namePart>
<namePart type="family">Maignan</namePart>
<affiliation>Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Energie Atomique, Gif sur Yvette, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Leroy</namePart>
<affiliation>Centre d'Etudes Spatiales de la Biosphère, Toulouse, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ian</namePart>
<namePart type="family">Grant</namePart>
<affiliation>CSIRO Atmospheric Research, Aspendale, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2002-08-27</dateIssued>
<dateCaptured encoding="w3cdtf">2001-07-16</dateCaptured>
<dateValid encoding="w3cdtf">2001-12-17</dateValid>
<edition>Bréon, F.‐M., F. Maignan, M. Leroy, and I. Grant, Analysis of hot spot directional signatures measured from space, J. Geophys. Res., 107(D16), doi:10.1029/2001JD001094, 2002.</edition>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">15</extent>
</physicalDescription>
<abstract>Reflectance measurements from the spaceborne Polarization and Directionality of Earth Reflectances (POLDER) instrument are used to analyze the so‐called hot spot directional signature in the backscattering direction. The hot spot is measured with an angular resolution better than half a degree using the directional capabilities of the radiometer, with some assumptions on the spatial homogeneity of the surface. The analysis yields the first quantitative observation of the hot spot signature of vegetated surfaces, with such angular resolution. The measurements show that the hot spot reflectance is a function of the phase angle ξ rather than a function of a parameter Δ, often used in hot spot modeling, that quantifies the horizontal distance between Sun and view directions. The observed directional signature is very accurately fitted by a linear ratio of the phase angle, as predicted by a simple theory of radiative transfer within the canopy foliage. Most of the measured hot spot half widths are between 1° and 2°. Some dispersion occurs for the cases belonging to the forest and desert International Geosphere‐Biosphere Program (IGBP) classes, in the range 1° to 5°. Theory predicts that the width is independent of wavelength. Our measurements indicate that the widths at 670 and 865 nm are very close, but with a significant scatter in regards to the rather small variability. The distribution of the width as a function of the IGBP surface classification shows a variability within the classes that is larger than between the classes, except for the “evergreen broadleaf” class. The hot spot reflectance amplitude is generally on the order of 0.10–0.20 at 865 nm and 0.03–0.18 at 670 nm, although the full range of values is wider. For thick canopies, it may be interpreted in terms of foliage element (leaf) reflectance. Retrieved values are on the order of 0.4 in the near infrared and in the range 0.05–0.20 at 670 nm. At 440 nm, the amplitude of the signature is very small, as is expected from the small surface reflectance. This confirms that the atmospheric contribution to the reflectance increase at the backscattering direction is negligible.</abstract>
<subject>
<genre>keywords</genre>
<topic>hot spot</topic>
<topic>POLDER</topic>
<topic>backscattering</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Atmospheres</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/AAC">Aerosol and Clouds</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0600">ELECTROMAGNETICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0659">Random media and rough surfaces</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0649">Optics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0933">Remote sensing</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4264">Ocean optics</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Aerosol and Clouds</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202d</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRD</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>107</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>D16</number>
</detail>
<extent unit="pages">
<start>AAC 1-1</start>
<end>AAC 1-15</end>
<total>15</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">4E99E0D02B9506AEA21F339BF10BE839F8435D81</identifier>
<identifier type="ark">ark:/67375/WNG-7GP6G47F-R</identifier>
<identifier type="DOI">10.1029/2001JD001094</identifier>
<identifier type="ArticleID">2001JD001094</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2002 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/4E99E0D02B9506AEA21F339BF10BE839F8435D81/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E84 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E84 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4E99E0D02B9506AEA21F339BF10BE839F8435D81
   |texte=   Analysis of hot spot directional signatures measured from space
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024