Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coalescing of geostrophic vortices

Identifieur interne : 000162 ( Istex/Corpus ); précédent : 000161; suivant : 000163

Coalescing of geostrophic vortices

Auteurs : R. W. Griffiths ; E. J. Hopfinger

Source :

RBID : ISTEX:0823B203EEA2D754AD6FAFC504D466E6D15272CE

Abstract

Close interactions between pairs of two-dimensional vortices of like sign were investigated in experiments with barotropic vortices and baroclinic vortices. The vortices were generated by sources or sinks in a rotating fluid which, respectively, was homogeneous or contained a two-layer density stratification. For two identical anticyclonic, unstratified vortices there was a critical separation distance beyond which the vortices coalesced to form a single larger anticyclone. The critical distance d *, scaled by the radius R of a core having non-zero relative vorticity, was d*/R = 3.3 ± 0.2. This value is in agreement with results of previous numerical simulations for finite-area vortices in non-rotating flows. The effects on vortex structure of Ekman pumping due to the presence of a rigid boundary caused cyclonic vortices to coalesee from larger distances. Baroclinic vortices in a two-layer stratification were also found to coalesce despite a potential-energy barrier. However, the critical separation distance depended on the internal Rossby radius. When the Rossby radius was large compared with the core radius, vortices coalesced from distances much greater than the critical distance for barotropic vortices. Coalescing of two vortices of equal size and strength led to two symmetric entwined spirals of water, while close interaction of unequal vortices caused the weaker vortex to be wrapped around the outer edge of the stronger. Implications of these results are discussed for ocean eddies and intense atmospheric cyclones.

Url:
DOI: 10.1017/S0022112087001125

Links to Exploration step

ISTEX:0823B203EEA2D754AD6FAFC504D466E6D15272CE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coalescing of geostrophic vortices</title>
<author>
<name sortKey="Griffiths, R W" sort="Griffiths, R W" uniqKey="Griffiths R" first="R. W." last="Griffiths">R. W. Griffiths</name>
<affiliation>
<mods:affiliation>Research School of Earth Sciences, Australian National University, GPO Box 4, Canberra, A.C.T. 2601, Australia.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hopfinger, E J" sort="Hopfinger, E J" uniqKey="Hopfinger E" first="E. J." last="Hopfinger">E. J. Hopfinger</name>
<affiliation>
<mods:affiliation>Institut de Mecanique, Laboratoire Associé au C.N.R.S., Université de Grenoble, B.P. 68, 38402 St. Martin d'Heres, France.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0823B203EEA2D754AD6FAFC504D466E6D15272CE</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1017/S0022112087001125</idno>
<idno type="url">https://api.istex.fr/document/0823B203EEA2D754AD6FAFC504D466E6D15272CE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000162</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000162</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Coalescing of geostrophic vortices</title>
<author>
<name sortKey="Griffiths, R W" sort="Griffiths, R W" uniqKey="Griffiths R" first="R. W." last="Griffiths">R. W. Griffiths</name>
<affiliation>
<mods:affiliation>Research School of Earth Sciences, Australian National University, GPO Box 4, Canberra, A.C.T. 2601, Australia.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hopfinger, E J" sort="Hopfinger, E J" uniqKey="Hopfinger E" first="E. J." last="Hopfinger">E. J. Hopfinger</name>
<affiliation>
<mods:affiliation>Institut de Mecanique, Laboratoire Associé au C.N.R.S., Université de Grenoble, B.P. 68, 38402 St. Martin d'Heres, France.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Fluid Mechanics</title>
<idno type="ISSN">0022-1120</idno>
<idno type="eISSN">1469-7645</idno>
<imprint>
<publisher>Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<date type="published" when="1987-05">1987-05</date>
<biblScope unit="volume">178</biblScope>
<biblScope unit="page" from="73">73</biblScope>
<biblScope unit="page" to="97">97</biblScope>
</imprint>
<idno type="ISSN">0022-1120</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Close interactions between pairs of two-dimensional vortices of like sign were investigated in experiments with barotropic vortices and baroclinic vortices. The vortices were generated by sources or sinks in a rotating fluid which, respectively, was homogeneous or contained a two-layer density stratification. For two identical anticyclonic, unstratified vortices there was a critical separation distance beyond which the vortices coalesced to form a single larger anticyclone. The critical distance d *, scaled by the radius R of a core having non-zero relative vorticity, was d*/R = 3.3 ± 0.2. This value is in agreement with results of previous numerical simulations for finite-area vortices in non-rotating flows. The effects on vortex structure of Ekman pumping due to the presence of a rigid boundary caused cyclonic vortices to coalesee from larger distances. Baroclinic vortices in a two-layer stratification were also found to coalesce despite a potential-energy barrier. However, the critical separation distance depended on the internal Rossby radius. When the Rossby radius was large compared with the core radius, vortices coalesced from distances much greater than the critical distance for barotropic vortices. Coalescing of two vortices of equal size and strength led to two symmetric entwined spirals of water, while close interaction of unequal vortices caused the weaker vortex to be wrapped around the outer edge of the stronger. Implications of these results are discussed for ocean eddies and intense atmospheric cyclones.</div>
</front>
</TEI>
<istex>
<corpusName>cambridge</corpusName>
<author>
<json:item>
<name>R. W. Griffiths</name>
<affiliations>
<json:string>Research School of Earth Sciences, Australian National University, GPO Box 4, Canberra, A.C.T. 2601, Australia.</json:string>
</affiliations>
</json:item>
<json:item>
<name>E. J. Hopfinger</name>
<affiliations>
<json:string>Institut de Mecanique, Laboratoire Associé au C.N.R.S., Université de Grenoble, B.P. 68, 38402 St. Martin d'Heres, France.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6GQ-TS0NJ2DB-R</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Close interactions between pairs of two-dimensional vortices of like sign were investigated in experiments with barotropic vortices and baroclinic vortices. The vortices were generated by sources or sinks in a rotating fluid which, respectively, was homogeneous or contained a two-layer density stratification. For two identical anticyclonic, unstratified vortices there was a critical separation distance beyond which the vortices coalesced to form a single larger anticyclone. The critical distance d *, scaled by the radius R of a core having non-zero relative vorticity, was d*/R = 3.3 ± 0.2. This value is in agreement with results of previous numerical simulations for finite-area vortices in non-rotating flows. The effects on vortex structure of Ekman pumping due to the presence of a rigid boundary caused cyclonic vortices to coalesee from larger distances. Baroclinic vortices in a two-layer stratification were also found to coalesce despite a potential-energy barrier. However, the critical separation distance depended on the internal Rossby radius. When the Rossby radius was large compared with the core radius, vortices coalesced from distances much greater than the critical distance for barotropic vortices. Coalescing of two vortices of equal size and strength led to two symmetric entwined spirals of water, while close interaction of unequal vortices caused the weaker vortex to be wrapped around the outer edge of the stronger. Implications of these results are discussed for ocean eddies and intense atmospheric cyclones.</abstract>
<qualityIndicators>
<score>9.748</score>
<pdfWordCount>10713</pdfWordCount>
<pdfCharCount>59239</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>27</pdfPageCount>
<pdfPageSize>486 x 702 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>229</abstractWordCount>
<abstractCharCount>1545</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Coalescing of geostrophic vortices</title>
<pii>
<json:string>S0022112087001125</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Fluid Mechanics</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0022-1120</json:string>
</issn>
<eissn>
<json:string>1469-7645</json:string>
</eissn>
<publisherId>
<json:string>FLM</json:string>
</publisherId>
<volume>178</volume>
<pages>
<first>73</first>
<last>97</last>
<total>25</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/6GQ-TS0NJ2DB-R</json:string>
</ark>
<publicationDate>1987</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1017/S0022112087001125</json:string>
</doi>
<id>0823B203EEA2D754AD6FAFC504D466E6D15272CE</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0823B203EEA2D754AD6FAFC504D466E6D15272CE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0823B203EEA2D754AD6FAFC504D466E6D15272CE/fulltext/zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0823B203EEA2D754AD6FAFC504D466E6D15272CE/fulltext/txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0823B203EEA2D754AD6FAFC504D466E6D15272CE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Coalescing of geostrophic vortices</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<availability>
<licence>
<p>© 1987 Cambridge University Press</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-G3RCRD03-V">cambridge</p>
</availability>
<date>2006-04-21</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Coalescing of geostrophic vortices</title>
<author xml:id="author-0000">
<persName>
<forename type="first">R. W.</forename>
<surname>Griffiths</surname>
</persName>
<affiliation>Research School of Earth Sciences, Australian National University, GPO Box 4, Canberra, A.C.T. 2601, Australia.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">E. J.</forename>
<surname>Hopfinger</surname>
</persName>
<affiliation>Institut de Mecanique, Laboratoire Associé au C.N.R.S., Université de Grenoble, B.P. 68, 38402 St. Martin d'Heres, France.</affiliation>
</author>
<idno type="istex">0823B203EEA2D754AD6FAFC504D466E6D15272CE</idno>
<idno type="ark">ark:/67375/6GQ-TS0NJ2DB-R</idno>
<idno type="DOI">10.1017/S0022112087001125</idno>
<idno type="PII">S0022112087001125</idno>
</analytic>
<monogr>
<title level="j">Journal of Fluid Mechanics</title>
<idno type="pISSN">0022-1120</idno>
<idno type="eISSN">1469-7645</idno>
<idno type="publisher-id">FLM</idno>
<imprint>
<publisher>Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<date type="published" when="1987-05"></date>
<biblScope unit="volume">178</biblScope>
<biblScope unit="page" from="73">73</biblScope>
<biblScope unit="page" to="97">97</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006-04-21</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en" style="normal">
<p>Close interactions between pairs of two-dimensional vortices of like sign were investigated in experiments with barotropic vortices and baroclinic vortices. The vortices were generated by sources or sinks in a rotating fluid which, respectively, was homogeneous or contained a two-layer density stratification. For two identical anticyclonic, unstratified vortices there was a critical separation distance beyond which the vortices coalesced to form a single larger anticyclone. The critical distance d *, scaled by the radius R of a core having non-zero relative vorticity, was d*/R = 3.3 ± 0.2. This value is in agreement with results of previous numerical simulations for finite-area vortices in non-rotating flows. The effects on vortex structure of Ekman pumping due to the presence of a rigid boundary caused cyclonic vortices to coalesee from larger distances. Baroclinic vortices in a two-layer stratification were also found to coalesce despite a potential-energy barrier. However, the critical separation distance depended on the internal Rossby radius. When the Rossby radius was large compared with the core radius, vortices coalesced from distances much greater than the critical distance for barotropic vortices. Coalescing of two vortices of equal size and strength led to two symmetric entwined spirals of water, while close interaction of unequal vortices caused the weaker vortex to be wrapped around the outer edge of the stronger. Implications of these results are discussed for ocean eddies and intense atmospheric cyclones.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2006-04-21">Created</change>
<change when="1987-05">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-09-5">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus cambridge not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.0 20120330//EN" URI="journalpublishing1.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article dtd-version="1.0" article-type="research-article" xml:lang="en">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">FLM</journal-id>
<journal-title-group>
<journal-title>Journal of Fluid Mechanics</journal-title>
<abbrev-journal-title>J. Fluid Mech.</abbrev-journal-title>
</journal-title-group>
<issn pub-type="epub">1469-7645</issn>
<issn pub-type="ppub">0022-1120</issn>
<publisher>
<publisher-name>Cambridge University Press</publisher-name>
<publisher-loc>Cambridge, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pii">S0022112087001125</article-id>
<article-id pub-id-type="doi">10.1017/S0022112087001125</article-id>
<title-group>
<article-title>Coalescing of geostrophic vortices</article-title>
</title-group>
<contrib-group>
<contrib>
<name>
<surname>Griffiths </surname>
<given-names>R. W. </given-names>
</name>
<aff>Research School of Earth Sciences,
<institution>Australian National University</institution>
, GPO Box 4, Canberra, A.C.T. 2601,
<country>Australia</country>
.</aff>
</contrib>
<contrib>
<name>
<surname>Hopfinger </surname>
<given-names>E. J. </given-names>
</name>
<aff>Institut de Mecanique, Laboratoire Associé au C.N.R.S.,
<institution>Université de Grenoble</institution>
, B.P. 68, 38402 St. Martin d'Heres,
<country>France</country>
.</aff>
</contrib>
</contrib-group>
<pub-date pub-type="epub">
<day>21</day>
<month>4</month>
<year>2006</year>
</pub-date>
<pub-date pub-type="ppub">
<month>5</month>
<year>1987</year>
</pub-date>
<volume>178</volume>
<fpage>73</fpage>
<lpage>97</lpage>
<permissions>
<copyright-statement>© 1987 Cambridge University Press</copyright-statement>
</permissions>
<abstract abstract-type="normal">
<p>Close interactions between pairs of two-dimensional vortices of like sign were investigated in experiments with barotropic vortices and baroclinic vortices. The vortices were generated by sources or sinks in a rotating fluid which, respectively, was homogeneous or contained a two-layer density stratification. For two identical anticyclonic, unstratified vortices there was a critical separation distance beyond which the vortices coalesced to form a single larger anticyclone. The critical distance
<italic>d</italic>
<sub>*</sub>
, scaled by the radius
<italic>R</italic>
of a core having non-zero relative vorticity, was
<italic>d</italic>
*/
<italic>R</italic>
= 3.3 ± 0.2. This value is in agreement with results of previous numerical simulations for finite-area vortices in non-rotating flows. The effects on vortex structure of Ekman pumping due to the presence of a rigid boundary caused cyclonic vortices to coalesee from larger distances. Baroclinic vortices in a two-layer stratification were also found to coalesce despite a potential-energy barrier. However, the critical separation distance depended on the internal Rossby radius. When the Rossby radius was large compared with the core radius, vortices coalesced from distances much greater than the critical distance for barotropic vortices. Coalescing of two vortices of equal size and strength led to two symmetric entwined spirals of water, while close interaction of unequal vortices caused the weaker vortex to be wrapped around the outer edge of the stronger. Implications of these results are discussed for ocean eddies and intense atmospheric cyclones.</p>
</abstract>
<counts>
<page-count count="25"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>pdf</meta-name>
<meta-value>S0022112087001125a.pdf</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Coalescing of geostrophic vortices</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Coalescing of geostrophic vortices</title>
</titleInfo>
<name type="personal">
<namePart type="given">R. W.</namePart>
<namePart type="family">Griffiths</namePart>
<affiliation>Research School of Earth Sciences, Australian National University, GPO Box 4, Canberra, A.C.T. 2601, Australia.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E. J.</namePart>
<namePart type="family">Hopfinger</namePart>
<affiliation>Institut de Mecanique, Laboratoire Associé au C.N.R.S., Université de Grenoble, B.P. 68, 38402 St. Martin d'Heres, France.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Cambridge University Press</publisher>
<place>
<placeTerm type="text">Cambridge, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1987-05</dateIssued>
<dateCreated encoding="w3cdtf">2006-04-21</dateCreated>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract type="normal" lang="en">Close interactions between pairs of two-dimensional vortices of like sign were investigated in experiments with barotropic vortices and baroclinic vortices. The vortices were generated by sources or sinks in a rotating fluid which, respectively, was homogeneous or contained a two-layer density stratification. For two identical anticyclonic, unstratified vortices there was a critical separation distance beyond which the vortices coalesced to form a single larger anticyclone. The critical distance d *, scaled by the radius R of a core having non-zero relative vorticity, was d*/R = 3.3 ± 0.2. This value is in agreement with results of previous numerical simulations for finite-area vortices in non-rotating flows. The effects on vortex structure of Ekman pumping due to the presence of a rigid boundary caused cyclonic vortices to coalesee from larger distances. Baroclinic vortices in a two-layer stratification were also found to coalesce despite a potential-energy barrier. However, the critical separation distance depended on the internal Rossby radius. When the Rossby radius was large compared with the core radius, vortices coalesced from distances much greater than the critical distance for barotropic vortices. Coalescing of two vortices of equal size and strength led to two symmetric entwined spirals of water, while close interaction of unequal vortices caused the weaker vortex to be wrapped around the outer edge of the stronger. Implications of these results are discussed for ocean eddies and intense atmospheric cyclones.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Fluid Mechanics</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0022-1120</identifier>
<identifier type="eISSN">1469-7645</identifier>
<identifier type="PublisherID">FLM</identifier>
<part>
<date>1987</date>
<detail type="volume">
<caption>vol.</caption>
<number>178</number>
</detail>
<extent unit="pages">
<start>73</start>
<end>97</end>
<total>25</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0823B203EEA2D754AD6FAFC504D466E6D15272CE</identifier>
<identifier type="ark">ark:/67375/6GQ-TS0NJ2DB-R</identifier>
<identifier type="DOI">10.1017/S0022112087001125</identifier>
<identifier type="PII">S0022112087001125</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 1987 Cambridge University Press</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-G3RCRD03-V">cambridge</recordContentSource>
<recordOrigin>© 1987 Cambridge University Press</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/0823B203EEA2D754AD6FAFC504D466E6D15272CE/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000162 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000162 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0823B203EEA2D754AD6FAFC504D466E6D15272CE
   |texte=   Coalescing of geostrophic vortices
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024