Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans -18:1 acids. Application to the study of seasonal variations in french butters

Identifieur interne : 000084 ( Istex/Corpus ); précédent : 000083; suivant : 000085

Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans -18:1 acids. Application to the study of seasonal variations in french butters

Auteurs : Robert L. Wolff ; Corinne C. Bayard ; Robert J. Fabien

Source :

RBID : ISTEX:044E3885565C596F64F1ACC8F51CD6802C51C76D

English descriptors

Abstract

Abstract: The successive steps of an integrated analytical procedure aimed at the accurate determination of butterfat fatty acid composition, includingtrans-18:1 acid content and profile, have been carefully checked. This sequential procedure includes: dispersion of a portion of butter in hexane/isopropanol (2:1, vol/vol) with anhydrous Na2SO4, filtration of aliquots of the suspension through a microfiltration unit, subsequent preparation of fatty acid isopropyl esters (FAIPE) with H2SO4 as a catalyst, and analysis of total FAIPE by capillary gas-liquid chromatography (GLC). Isolation oftrans-18:1 isomers was by silver-ion thin-layer chromatography (Ag-TLC), followed by extraction from the gel of combined saturated andtrans-monoenoic acids with a biphasic solvent system. Analysis of these fractions by GLC allows the accurate quantitation oftrans-18:1 acids with saturated acids (14:0, 16:0, and 18:0) as internal standards. A partial insight in the distribution oftrans-18:1 isomers can be obtained by GLC on a CP Sil 88 capillary column (Chrompack, Middelburg, The Netherlands). All steps of the procedure are quite reproducible, part of the coefficients of variation (generally less than 3%, mainly limited to butyric and stearic acids) being associated with GLC analysis (injection, integration of peaks) and, to a lesser extent, to FAIPE preparation. FAIPE appear to be of greater practical interest than any other fatty acid esters, including fatty acid methyl esters (FAME), for the quantitation of short-chain fatty acids, because peak area percentages, calculated by the integrator coupled to the flame-ionization detector, are almost equal (theoretically and experimentally) to fatty acid weight percentages and do not require correction factors. With this set of procedures, we have followed in detail the seasonal variations of fatty acids in butterfat, with sixty commercial samples of French butter collected at five different periods of the year. Important variations occur around mid-April, when cows are shifted from forage and concentrates during winters spent in their stalls to fresh grass in pastures. At this period, there is a decrease of 4:0–14:0 acids and of 16:0 (−2 and −6%, respectively), while 18:0 andcis- plustrans-18:1 acids rise suddenly (2 and 5%, respectively). These modifications then progressively disappear until late fall or early winter. Other variations are of minor quantitative importance. Although influenced by the season, the content of 18:2n-6 acid lies in the narrow range of 1.2–1.5%.Trans-18:1 acids, quantitated by GLC after Ag-TLC fractionation, are at their highest level in May–June (4.3% of total fatty acids), and at their lowest level between January and the end of March (2.4%), with a mean annual value of 3.3%. The proportion of vaccenic (trans-11 18:1) acid, relative to totaltrans-18:1 isomers, is higher in spring than in winter, with intermediate decreasing values in summer and fall, which supports the hypothesis that the level of this isomer is linked to the feed of the cattle, and probably to the amount of grass in the feed.

Url:
DOI: 10.1007/BF02577840

Links to Exploration step

ISTEX:044E3885565C596F64F1ACC8F51CD6802C51C76D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans -18:1 acids. Application to the study of seasonal variations in french butters</title>
<author>
<name sortKey="Wolff, Robert L" sort="Wolff, Robert L" uniqKey="Wolff R" first="Robert L." last="Wolff">Robert L. Wolff</name>
<affiliation>
<mods:affiliation>ISTAB, Laboratoire de Lipochimie Alimentaire, Université Bordeau 1, Allée des Facultés, 33405, Talence Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bayard, Corinne C" sort="Bayard, Corinne C" uniqKey="Bayard C" first="Corinne C." last="Bayard">Corinne C. Bayard</name>
<affiliation>
<mods:affiliation>ISTAB, Laboratoire de Lipochimie Alimentaire, Université Bordeau 1, Allée des Facultés, 33405, Talence Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fabien, Robert J" sort="Fabien, Robert J" uniqKey="Fabien R" first="Robert J." last="Fabien">Robert J. Fabien</name>
<affiliation>
<mods:affiliation>Maxwell Chemicals, Botany, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:044E3885565C596F64F1ACC8F51CD6802C51C76D</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1007/BF02577840</idno>
<idno type="url">https://api.istex.fr/document/044E3885565C596F64F1ACC8F51CD6802C51C76D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000084</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000084</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans -18:1 acids. Application to the study of seasonal variations in french butters</title>
<author>
<name sortKey="Wolff, Robert L" sort="Wolff, Robert L" uniqKey="Wolff R" first="Robert L." last="Wolff">Robert L. Wolff</name>
<affiliation>
<mods:affiliation>ISTAB, Laboratoire de Lipochimie Alimentaire, Université Bordeau 1, Allée des Facultés, 33405, Talence Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bayard, Corinne C" sort="Bayard, Corinne C" uniqKey="Bayard C" first="Corinne C." last="Bayard">Corinne C. Bayard</name>
<affiliation>
<mods:affiliation>ISTAB, Laboratoire de Lipochimie Alimentaire, Université Bordeau 1, Allée des Facultés, 33405, Talence Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fabien, Robert J" sort="Fabien, Robert J" uniqKey="Fabien R" first="Robert J." last="Fabien">Robert J. Fabien</name>
<affiliation>
<mods:affiliation>Maxwell Chemicals, Botany, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of the American Oil Chemists’ Society</title>
<title level="j" type="abbrev">J Am Oil Chem Soc</title>
<idno type="ISSN">0003-021X</idno>
<idno type="eISSN">1558-9331</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1995-12-01">1995-12-01</date>
<biblScope unit="volume">72</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="1471">1471</biblScope>
<biblScope unit="page" to="1483">1483</biblScope>
</imprint>
<idno type="ISSN">0003-021X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0003-021X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absolute values</term>
<term>Accurate determination</term>
<term>Acid</term>
<term>Acid analysis</term>
<term>Acid composition</term>
<term>Acid content</term>
<term>Acid fraction</term>
<term>Acid group</term>
<term>Acid level</term>
<term>Acid peak</term>
<term>Active carbon atoms</term>
<term>Ambient temperature</term>
<term>Annual value</term>
<term>Aqueous solution</term>
<term>Bannon</term>
<term>Beef meat lipids</term>
<term>Beef tallow</term>
<term>Butterfat</term>
<term>Butyric</term>
<term>Butyric acid</term>
<term>Butyric acid content</term>
<term>Capillary chromatography</term>
<term>Capillary column</term>
<term>Carbon atoms</term>
<term>Carlo erba</term>
<term>Chem</term>
<term>Chromatographic conditions</term>
<term>Climatic conditions</term>
<term>Coefficient</term>
<term>Conversion factors</term>
<term>Different operators</term>
<term>Different periods</term>
<term>Distribution profile</term>
<term>Double bonds</term>
<term>Elution steps</term>
<term>Ester</term>
<term>Esterification</term>
<term>Ethylenic bond</term>
<term>Ethylenic bonds</term>
<term>Experimental data</term>
<term>Experimental errors</term>
<term>Experimental methodology</term>
<term>Faipe</term>
<term>Faipe preparation</term>
<term>Faipe solutions</term>
<term>Fall butters</term>
<term>Fatty</term>
<term>Fatty acid</term>
<term>Fatty acid butyl esters</term>
<term>Fatty acid composition</term>
<term>Fatty acid isopropyl esters</term>
<term>Fatty acid methyl esters</term>
<term>Fatty acid weight percentages</term>
<term>Fatty acids</term>
<term>Fractionation</term>
<term>French butters</term>
<term>Goat cheeses</term>
<term>Hexane</term>
<term>High proportion</term>
<term>Hydrogenated oils</term>
<term>Ibid</term>
<term>Individual isomers</term>
<term>Integrator</term>
<term>Internal standards</term>
<term>Isomer</term>
<term>Isomeric acids</term>
<term>Jaocs</term>
<term>Late winter</term>
<term>Lipid</term>
<term>Lowest level</term>
<term>Maximum values</term>
<term>More uniform</term>
<term>Narrow range</term>
<term>Other hand</term>
<term>Other seasons</term>
<term>Palmitic</term>
<term>Palmitic acid</term>
<term>Palmitic acid esters</term>
<term>Partial insight</term>
<term>Peak area percentages</term>
<term>Possible variations</term>
<term>Present study</term>
<term>Previous study</term>
<term>Regional variations</term>
<term>Relative conversion factors</term>
<term>Retention times</term>
<term>Same conditions</term>
<term>Same sample</term>
<term>Seasonal variations</term>
<term>Second time</term>
<term>Several isomers</term>
<term>Several times</term>
<term>Single sample</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Standard mixture</term>
<term>Standard solution</term>
<term>Such variations</term>
<term>Temperature programming</term>
<term>Theoretical response factor</term>
<term>Total acids</term>
<term>Total faipe</term>
<term>Total isomers</term>
<term>Trans</term>
<term>Trans isomers</term>
<term>Transmonoenoic acids</term>
<term>Unpublished results</term>
<term>Upper phase</term>
<term>Vaccenic</term>
<term>Vaccenic acid</term>
<term>Vertical bars</term>
<term>Weight percent</term>
<term>Weight percentage</term>
<term>Weight percentages</term>
<term>Whole procedure</term>
<term>Winter butter</term>
<term>Winter butters</term>
<term>Wolff etal</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absolute values</term>
<term>Accurate determination</term>
<term>Acid</term>
<term>Acid analysis</term>
<term>Acid composition</term>
<term>Acid content</term>
<term>Acid fraction</term>
<term>Acid group</term>
<term>Acid level</term>
<term>Acid peak</term>
<term>Active carbon atoms</term>
<term>Ambient temperature</term>
<term>Annual value</term>
<term>Aqueous solution</term>
<term>Bannon</term>
<term>Beef meat lipids</term>
<term>Beef tallow</term>
<term>Butterfat</term>
<term>Butyric</term>
<term>Butyric acid</term>
<term>Butyric acid content</term>
<term>Capillary chromatography</term>
<term>Capillary column</term>
<term>Carbon atoms</term>
<term>Carlo erba</term>
<term>Chem</term>
<term>Chromatographic conditions</term>
<term>Climatic conditions</term>
<term>Coefficient</term>
<term>Conversion factors</term>
<term>Different operators</term>
<term>Different periods</term>
<term>Distribution profile</term>
<term>Double bonds</term>
<term>Elution steps</term>
<term>Ester</term>
<term>Esterification</term>
<term>Ethylenic bond</term>
<term>Ethylenic bonds</term>
<term>Experimental data</term>
<term>Experimental errors</term>
<term>Experimental methodology</term>
<term>Faipe</term>
<term>Faipe preparation</term>
<term>Faipe solutions</term>
<term>Fall butters</term>
<term>Fatty</term>
<term>Fatty acid</term>
<term>Fatty acid butyl esters</term>
<term>Fatty acid composition</term>
<term>Fatty acid isopropyl esters</term>
<term>Fatty acid methyl esters</term>
<term>Fatty acid weight percentages</term>
<term>Fatty acids</term>
<term>Fractionation</term>
<term>French butters</term>
<term>Goat cheeses</term>
<term>Hexane</term>
<term>High proportion</term>
<term>Hydrogenated oils</term>
<term>Ibid</term>
<term>Individual isomers</term>
<term>Integrator</term>
<term>Internal standards</term>
<term>Isomer</term>
<term>Isomeric acids</term>
<term>Jaocs</term>
<term>Late winter</term>
<term>Lipid</term>
<term>Lowest level</term>
<term>Maximum values</term>
<term>More uniform</term>
<term>Narrow range</term>
<term>Other hand</term>
<term>Other seasons</term>
<term>Palmitic</term>
<term>Palmitic acid</term>
<term>Palmitic acid esters</term>
<term>Partial insight</term>
<term>Peak area percentages</term>
<term>Possible variations</term>
<term>Present study</term>
<term>Previous study</term>
<term>Regional variations</term>
<term>Relative conversion factors</term>
<term>Retention times</term>
<term>Same conditions</term>
<term>Same sample</term>
<term>Seasonal variations</term>
<term>Second time</term>
<term>Several isomers</term>
<term>Several times</term>
<term>Single sample</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Standard mixture</term>
<term>Standard solution</term>
<term>Such variations</term>
<term>Temperature programming</term>
<term>Theoretical response factor</term>
<term>Total acids</term>
<term>Total faipe</term>
<term>Total isomers</term>
<term>Trans</term>
<term>Trans isomers</term>
<term>Transmonoenoic acids</term>
<term>Unpublished results</term>
<term>Upper phase</term>
<term>Vaccenic</term>
<term>Vaccenic acid</term>
<term>Vertical bars</term>
<term>Weight percent</term>
<term>Weight percentage</term>
<term>Weight percentages</term>
<term>Whole procedure</term>
<term>Winter butter</term>
<term>Winter butters</term>
<term>Wolff etal</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The successive steps of an integrated analytical procedure aimed at the accurate determination of butterfat fatty acid composition, includingtrans-18:1 acid content and profile, have been carefully checked. This sequential procedure includes: dispersion of a portion of butter in hexane/isopropanol (2:1, vol/vol) with anhydrous Na2SO4, filtration of aliquots of the suspension through a microfiltration unit, subsequent preparation of fatty acid isopropyl esters (FAIPE) with H2SO4 as a catalyst, and analysis of total FAIPE by capillary gas-liquid chromatography (GLC). Isolation oftrans-18:1 isomers was by silver-ion thin-layer chromatography (Ag-TLC), followed by extraction from the gel of combined saturated andtrans-monoenoic acids with a biphasic solvent system. Analysis of these fractions by GLC allows the accurate quantitation oftrans-18:1 acids with saturated acids (14:0, 16:0, and 18:0) as internal standards. A partial insight in the distribution oftrans-18:1 isomers can be obtained by GLC on a CP Sil 88 capillary column (Chrompack, Middelburg, The Netherlands). All steps of the procedure are quite reproducible, part of the coefficients of variation (generally less than 3%, mainly limited to butyric and stearic acids) being associated with GLC analysis (injection, integration of peaks) and, to a lesser extent, to FAIPE preparation. FAIPE appear to be of greater practical interest than any other fatty acid esters, including fatty acid methyl esters (FAME), for the quantitation of short-chain fatty acids, because peak area percentages, calculated by the integrator coupled to the flame-ionization detector, are almost equal (theoretically and experimentally) to fatty acid weight percentages and do not require correction factors. With this set of procedures, we have followed in detail the seasonal variations of fatty acids in butterfat, with sixty commercial samples of French butter collected at five different periods of the year. Important variations occur around mid-April, when cows are shifted from forage and concentrates during winters spent in their stalls to fresh grass in pastures. At this period, there is a decrease of 4:0–14:0 acids and of 16:0 (−2 and −6%, respectively), while 18:0 andcis- plustrans-18:1 acids rise suddenly (2 and 5%, respectively). These modifications then progressively disappear until late fall or early winter. Other variations are of minor quantitative importance. Although influenced by the season, the content of 18:2n-6 acid lies in the narrow range of 1.2–1.5%.Trans-18:1 acids, quantitated by GLC after Ag-TLC fractionation, are at their highest level in May–June (4.3% of total fatty acids), and at their lowest level between January and the end of March (2.4%), with a mean annual value of 3.3%. The proportion of vaccenic (trans-11 18:1) acid, relative to totaltrans-18:1 isomers, is higher in spring than in winter, with intermediate decreasing values in summer and fall, which supports the hypothesis that the level of this isomer is linked to the feed of the cattle, and probably to the amount of grass in the feed.</div>
</front>
</TEI>
<istex>
<corpusName>springer</corpusName>
<keywords>
<teeft>
<json:string>isomer</json:string>
<json:string>faipe</json:string>
<json:string>ester</json:string>
<json:string>fatty acids</json:string>
<json:string>butterfat</json:string>
<json:string>trans</json:string>
<json:string>seasonal variations</json:string>
<json:string>butyric</json:string>
<json:string>integrator</json:string>
<json:string>jaocs</json:string>
<json:string>acid</json:string>
<json:string>fatty acid composition</json:string>
<json:string>other hand</json:string>
<json:string>vaccenic</json:string>
<json:string>carbon atoms</json:string>
<json:string>lipid</json:string>
<json:string>vaccenic acid</json:string>
<json:string>other seasons</json:string>
<json:string>bannon</json:string>
<json:string>acid content</json:string>
<json:string>palmitic</json:string>
<json:string>chem</json:string>
<json:string>esterification</json:string>
<json:string>hexane</json:string>
<json:string>ibid</json:string>
<json:string>whole procedure</json:string>
<json:string>conversion factors</json:string>
<json:string>acid fraction</json:string>
<json:string>butyric acid</json:string>
<json:string>wolff etal</json:string>
<json:string>fatty acid weight percentages</json:string>
<json:string>fatty acid isopropyl esters</json:string>
<json:string>present study</json:string>
<json:string>weight percent</json:string>
<json:string>capillary column</json:string>
<json:string>total isomers</json:string>
<json:string>experimental errors</json:string>
<json:string>palmitic acid</json:string>
<json:string>weight percentages</json:string>
<json:string>several isomers</json:string>
<json:string>french butters</json:string>
<json:string>hydrogenated oils</json:string>
<json:string>single sample</json:string>
<json:string>faipe preparation</json:string>
<json:string>peak area percentages</json:string>
<json:string>individual isomers</json:string>
<json:string>fatty acid methyl esters</json:string>
<json:string>acid analysis</json:string>
<json:string>total faipe</json:string>
<json:string>theoretical response factor</json:string>
<json:string>coefficient</json:string>
<json:string>fatty</json:string>
<json:string>winter butters</json:string>
<json:string>lowest level</json:string>
<json:string>acid composition</json:string>
<json:string>standard mixture</json:string>
<json:string>standard solution</json:string>
<json:string>ethylenic bonds</json:string>
<json:string>distribution profile</json:string>
<json:string>same sample</json:string>
<json:string>butyric acid content</json:string>
<json:string>regional variations</json:string>
<json:string>experimental data</json:string>
<json:string>previous study</json:string>
<json:string>different periods</json:string>
<json:string>fractionation</json:string>
<json:string>isomeric acids</json:string>
<json:string>temperature programming</json:string>
<json:string>annual value</json:string>
<json:string>retention times</json:string>
<json:string>acid peak</json:string>
<json:string>narrow range</json:string>
<json:string>possible variations</json:string>
<json:string>second time</json:string>
<json:string>weight percentage</json:string>
<json:string>active carbon atoms</json:string>
<json:string>partial insight</json:string>
<json:string>aqueous solution</json:string>
<json:string>upper phase</json:string>
<json:string>late winter</json:string>
<json:string>fatty acid</json:string>
<json:string>fall butters</json:string>
<json:string>faipe solutions</json:string>
<json:string>relative conversion factors</json:string>
<json:string>palmitic acid esters</json:string>
<json:string>several times</json:string>
<json:string>transmonoenoic acids</json:string>
<json:string>carlo erba</json:string>
<json:string>ambient temperature</json:string>
<json:string>vertical bars</json:string>
<json:string>standard deviations</json:string>
<json:string>internal standards</json:string>
<json:string>standard deviation</json:string>
<json:string>different operators</json:string>
<json:string>fatty acid butyl esters</json:string>
<json:string>goat cheeses</json:string>
<json:string>double bonds</json:string>
<json:string>accurate determination</json:string>
<json:string>experimental methodology</json:string>
<json:string>more uniform</json:string>
<json:string>winter butter</json:string>
<json:string>elution steps</json:string>
<json:string>high proportion</json:string>
<json:string>chromatographic conditions</json:string>
<json:string>capillary chromatography</json:string>
<json:string>trans isomers</json:string>
<json:string>absolute values</json:string>
<json:string>acid level</json:string>
<json:string>maximum values</json:string>
<json:string>climatic conditions</json:string>
<json:string>total acids</json:string>
<json:string>beef meat lipids</json:string>
<json:string>unpublished results</json:string>
<json:string>such variations</json:string>
<json:string>ethylenic bond</json:string>
<json:string>beef tallow</json:string>
<json:string>acid group</json:string>
<json:string>same conditions</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Robert L. Wolff</name>
<affiliations>
<json:string>ISTAB, Laboratoire de Lipochimie Alimentaire, Université Bordeau 1, Allée des Facultés, 33405, Talence Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Corinne C. Bayard</name>
<affiliations>
<json:string>ISTAB, Laboratoire de Lipochimie Alimentaire, Université Bordeau 1, Allée des Facultés, 33405, Talence Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert J. Fabien</name>
<affiliations>
<json:string>Maxwell Chemicals, Botany, Australia</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BF02577840</json:string>
<json:string>Art12</json:string>
</articleId>
<arkIstex>ark:/67375/1BB-26VZJ2RP-7</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: The successive steps of an integrated analytical procedure aimed at the accurate determination of butterfat fatty acid composition, includingtrans-18:1 acid content and profile, have been carefully checked. This sequential procedure includes: dispersion of a portion of butter in hexane/isopropanol (2:1, vol/vol) with anhydrous Na2SO4, filtration of aliquots of the suspension through a microfiltration unit, subsequent preparation of fatty acid isopropyl esters (FAIPE) with H2SO4 as a catalyst, and analysis of total FAIPE by capillary gas-liquid chromatography (GLC). Isolation oftrans-18:1 isomers was by silver-ion thin-layer chromatography (Ag-TLC), followed by extraction from the gel of combined saturated andtrans-monoenoic acids with a biphasic solvent system. Analysis of these fractions by GLC allows the accurate quantitation oftrans-18:1 acids with saturated acids (14:0, 16:0, and 18:0) as internal standards. A partial insight in the distribution oftrans-18:1 isomers can be obtained by GLC on a CP Sil 88 capillary column (Chrompack, Middelburg, The Netherlands). All steps of the procedure are quite reproducible, part of the coefficients of variation (generally less than 3%, mainly limited to butyric and stearic acids) being associated with GLC analysis (injection, integration of peaks) and, to a lesser extent, to FAIPE preparation. FAIPE appear to be of greater practical interest than any other fatty acid esters, including fatty acid methyl esters (FAME), for the quantitation of short-chain fatty acids, because peak area percentages, calculated by the integrator coupled to the flame-ionization detector, are almost equal (theoretically and experimentally) to fatty acid weight percentages and do not require correction factors. With this set of procedures, we have followed in detail the seasonal variations of fatty acids in butterfat, with sixty commercial samples of French butter collected at five different periods of the year. Important variations occur around mid-April, when cows are shifted from forage and concentrates during winters spent in their stalls to fresh grass in pastures. At this period, there is a decrease of 4:0–14:0 acids and of 16:0 (−2 and −6%, respectively), while 18:0 andcis- plustrans-18:1 acids rise suddenly (2 and 5%, respectively). These modifications then progressively disappear until late fall or early winter. Other variations are of minor quantitative importance. Although influenced by the season, the content of 18:2n-6 acid lies in the narrow range of 1.2–1.5%.Trans-18:1 acids, quantitated by GLC after Ag-TLC fractionation, are at their highest level in May–June (4.3% of total fatty acids), and at their lowest level between January and the end of March (2.4%), with a mean annual value of 3.3%. The proportion of vaccenic (trans-11 18:1) acid, relative to totaltrans-18:1 isomers, is higher in spring than in winter, with intermediate decreasing values in summer and fall, which supports the hypothesis that the level of this isomer is linked to the feed of the cattle, and probably to the amount of grass in the feed.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>9858</pdfWordCount>
<pdfCharCount>54486</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>13</pdfPageCount>
<pdfPageSize>576 x 774 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>461</abstractWordCount>
<abstractCharCount>3106</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans -18:1 acids. Application to the study of seasonal variations in french butters</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of the American Oil Chemists’ Society</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<issn>
<json:string>0003-021X</json:string>
</issn>
<eissn>
<json:string>1558-9331</json:string>
</eissn>
<journalId>
<json:string>11746</json:string>
</journalId>
<volume>72</volume>
<issue>12</issue>
<pages>
<first>1471</first>
<last>1483</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Chemistry/Food Science, general</value>
</json:item>
<json:item>
<value>Analytical Chemistry</value>
</json:item>
<json:item>
<value>Biotechnology</value>
</json:item>
<json:item>
<value>Industrial Chemistry/Chemical Engineering</value>
</json:item>
<json:item>
<value>Biomaterials</value>
</json:item>
<json:item>
<value>Agriculture</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>July-August 1994</json:string>
<json:string>1982</json:string>
<json:string>1960</json:string>
<json:string>1995-03-31</json:string>
<json:string>1995</json:string>
</date>
<geogName></geogName>
<orgName></orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>The</json:string>
<json:string>Carlo Erba</json:string>
<json:string>May-June July</json:string>
<json:string>French</json:string>
<json:string>Winter Butter</json:string>
</persName>
<placeName>
<json:string>Switzerland</json:string>
<json:string>Germany</json:string>
<json:string>United States</json:string>
<json:string>Bordeaux</json:string>
<json:string>Darmstadt</json:string>
<json:string>San Jose</json:string>
<json:string>CA</json:string>
<json:string>Stockholm</json:string>
<json:string>France</json:string>
<json:string>Italy</json:string>
<json:string>Sweden</json:string>
<json:string>Netherlands</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[4]</json:string>
<json:string>Patton et al.</json:string>
<json:string>Bannon et al.</json:string>
<json:string>Gallacier et aL</json:string>
<json:string>Boatman et al.</json:string>
<json:string>[5]</json:string>
<json:string>[7]</json:string>
<json:string>May-June 1993</json:string>
<json:string>October-November 1992</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/1BB-26VZJ2RP-7</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - food science & technology</json:string>
<json:string>2 - chemistry, applied</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - nutrition & dietetics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Organic Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemical Engineering</json:string>
<json:string>3 - General Chemical Engineering</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - productions animales</json:string>
</inist>
</categories>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1007/BF02577840</json:string>
</doi>
<id>044E3885565C596F64F1ACC8F51CD6802C51C76D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/044E3885565C596F64F1ACC8F51CD6802C51C76D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/044E3885565C596F64F1ACC8F51CD6802C51C76D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/044E3885565C596F64F1ACC8F51CD6802C51C76D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans -18:1 acids. Application to the study of seasonal variations in french butters</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<availability>
<licence>
<p>AOCS Press, 1995</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</p>
</availability>
<date>1995-03-31</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note>Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans -18:1 acids. Application to the study of seasonal variations in french butters</title>
<author xml:id="author-0000" corresp="yes">
<persName>
<forename type="first">Robert</forename>
<surname>Wolff</surname>
</persName>
<affiliation>ISTAB, Laboratoire de Lipochimie Alimentaire, Université Bordeau 1, Allée des Facultés, 33405, Talence Cedex, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Corinne</forename>
<surname>Bayard</surname>
</persName>
<affiliation>ISTAB, Laboratoire de Lipochimie Alimentaire, Université Bordeau 1, Allée des Facultés, 33405, Talence Cedex, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Robert</forename>
<surname>Fabien</surname>
</persName>
<affiliation>Maxwell Chemicals, Botany, Australia</affiliation>
</author>
<idno type="istex">044E3885565C596F64F1ACC8F51CD6802C51C76D</idno>
<idno type="ark">ark:/67375/1BB-26VZJ2RP-7</idno>
<idno type="DOI">10.1007/BF02577840</idno>
<idno type="article-id">BF02577840</idno>
<idno type="article-id">Art12</idno>
</analytic>
<monogr>
<title level="j">Journal of the American Oil Chemists’ Society</title>
<title level="j" type="abbrev">J Am Oil Chem Soc</title>
<idno type="pISSN">0003-021X</idno>
<idno type="eISSN">1558-9331</idno>
<idno type="journal-ID">true</idno>
<idno type="issue-article-count">34</idno>
<idno type="volume-issue-count">12</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1995-12-01"></date>
<biblScope unit="volume">72</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="1471">1471</biblScope>
<biblScope unit="page" to="1483">1483</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1995-03-31</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: The successive steps of an integrated analytical procedure aimed at the accurate determination of butterfat fatty acid composition, includingtrans-18:1 acid content and profile, have been carefully checked. This sequential procedure includes: dispersion of a portion of butter in hexane/isopropanol (2:1, vol/vol) with anhydrous Na2SO4, filtration of aliquots of the suspension through a microfiltration unit, subsequent preparation of fatty acid isopropyl esters (FAIPE) with H2SO4 as a catalyst, and analysis of total FAIPE by capillary gas-liquid chromatography (GLC). Isolation oftrans-18:1 isomers was by silver-ion thin-layer chromatography (Ag-TLC), followed by extraction from the gel of combined saturated andtrans-monoenoic acids with a biphasic solvent system. Analysis of these fractions by GLC allows the accurate quantitation oftrans-18:1 acids with saturated acids (14:0, 16:0, and 18:0) as internal standards. A partial insight in the distribution oftrans-18:1 isomers can be obtained by GLC on a CP Sil 88 capillary column (Chrompack, Middelburg, The Netherlands). All steps of the procedure are quite reproducible, part of the coefficients of variation (generally less than 3%, mainly limited to butyric and stearic acids) being associated with GLC analysis (injection, integration of peaks) and, to a lesser extent, to FAIPE preparation. FAIPE appear to be of greater practical interest than any other fatty acid esters, including fatty acid methyl esters (FAME), for the quantitation of short-chain fatty acids, because peak area percentages, calculated by the integrator coupled to the flame-ionization detector, are almost equal (theoretically and experimentally) to fatty acid weight percentages and do not require correction factors. With this set of procedures, we have followed in detail the seasonal variations of fatty acids in butterfat, with sixty commercial samples of French butter collected at five different periods of the year. Important variations occur around mid-April, when cows are shifted from forage and concentrates during winters spent in their stalls to fresh grass in pastures. At this period, there is a decrease of 4:0–14:0 acids and of 16:0 (−2 and −6%, respectively), while 18:0 andcis- plustrans-18:1 acids rise suddenly (2 and 5%, respectively). These modifications then progressively disappear until late fall or early winter. Other variations are of minor quantitative importance. Although influenced by the season, the content of 18:2n-6 acid lies in the narrow range of 1.2–1.5%.Trans-18:1 acids, quantitated by GLC after Ag-TLC fractionation, are at their highest level in May–June (4.3% of total fatty acids), and at their lowest level between January and the end of March (2.4%), with a mean annual value of 3.3%. The proportion of vaccenic (trans-11 18:1) acid, relative to totaltrans-18:1 isomers, is higher in spring than in winter, with intermediate decreasing values in summer and fall, which supports the hypothesis that the level of this isomer is linked to the feed of the cattle, and probably to the amount of grass in the feed.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Chemistry</head>
<item>
<term>Chemistry/Food Science, general</term>
</item>
<item>
<term>Analytical Chemistry</term>
</item>
<item>
<term>Biotechnology</term>
</item>
<item>
<term>Industrial Chemistry/Chemical Engineering</term>
</item>
<item>
<term>Biomaterials</term>
</item>
<item>
<term>Agriculture</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1995-03-31">Created</change>
<change when="1995-12-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-10-2">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/044E3885565C596F64F1ACC8F51CD6802C51C76D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Springer, Publisher found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer-Verlag</PublisherName>
<PublisherLocation>Berlin/Heidelberg</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>11746</JournalID>
<JournalPrintISSN>0003-021X</JournalPrintISSN>
<JournalElectronicISSN>1558-9331</JournalElectronicISSN>
<JournalTitle>Journal of the American Oil Chemists’ Society</JournalTitle>
<JournalAbbreviatedTitle>J Am Oil Chem Soc</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Chemistry</JournalSubject>
<JournalSubject Type="Secondary">Chemistry/Food Science, general</JournalSubject>
<JournalSubject Type="Secondary">Analytical Chemistry</JournalSubject>
<JournalSubject Type="Secondary">Biotechnology</JournalSubject>
<JournalSubject Type="Secondary">Industrial Chemistry/Chemical Engineering</JournalSubject>
<JournalSubject Type="Secondary">Biomaterials</JournalSubject>
<JournalSubject Type="Secondary">Agriculture</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo TocLevels="0" VolumeType="Regular">
<VolumeIDStart>72</VolumeIDStart>
<VolumeIDEnd>72</VolumeIDEnd>
<VolumeIssueCount>12</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>12</IssueIDStart>
<IssueIDEnd>12</IssueIDEnd>
<IssueArticleCount>34</IssueArticleCount>
<IssueHistory>
<CoverDate>
<Year>1995</Year>
<Month>12</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>AOCS Press</CopyrightHolderName>
<CopyrightYear>1995</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art12">
<ArticleInfo ArticleType="OriginalPaper" ContainsESM="No" Language="En" NumberingStyle="Unnumbered" TocLevels="0">
<ArticleID>BF02577840</ArticleID>
<ArticleDOI>10.1007/BF02577840</ArticleDOI>
<ArticleSequenceNumber>12</ArticleSequenceNumber>
<ArticleTitle Language="En">Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on
<Emphasis Type="Italic">trans</Emphasis>
-18:1 acids. Application to the study of seasonal variations in french butters</ArticleTitle>
<ArticleCategory>Article</ArticleCategory>
<ArticleFirstPage>1471</ArticleFirstPage>
<ArticleLastPage>1483</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2007</Year>
<Month>2</Month>
<Day>13</Day>
</RegistrationDate>
<Received>
<Year>1995</Year>
<Month>3</Month>
<Day>31</Day>
</Received>
<Accepted>
<Year>1995</Year>
<Month>8</Month>
<Day>31</Day>
</Accepted>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>AOCS Press</CopyrightHolderName>
<CopyrightYear>1995</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>11746</JournalID>
<VolumeIDStart>72</VolumeIDStart>
<VolumeIDEnd>72</VolumeIDEnd>
<IssueIDStart>12</IssueIDStart>
<IssueIDEnd>12</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1" CorrespondingAffiliationID="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Robert</GivenName>
<GivenName>L.</GivenName>
<FamilyName>Wolff</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Corinne</GivenName>
<GivenName>C.</GivenName>
<FamilyName>Bayard</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>Robert</GivenName>
<GivenName>J.</GivenName>
<FamilyName>Fabien</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff2">
<OrgName>Maxwell Chemicals</OrgName>
<OrgAddress>
<City>Botany</City>
<Country>Australia</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff1">
<OrgDivision>ISTAB, Laboratoire de Lipochimie Alimentaire</OrgDivision>
<OrgName>Université Bordeau 1</OrgName>
<OrgAddress>
<Street>Allée des Facultés</Street>
<Postcode>33405</Postcode>
<City>Talence Cedex</City>
<Country>France</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>The successive steps of an integrated analytical procedure aimed at the accurate determination of butterfat fatty acid composition, including
<Emphasis Type="Italic">trans</Emphasis>
-18:1 acid content and profile, have been carefully checked. This sequential procedure includes: dispersion of a portion of butter in hexane/isopropanol (2:1, vol/vol) with anhydrous Na
<Subscript>2</Subscript>
SO
<Subscript>4</Subscript>
, filtration of aliquots of the suspension through a microfiltration unit, subsequent preparation of fatty acid isopropyl esters (FAIPE) with H
<Subscript>2</Subscript>
SO
<Subscript>4</Subscript>
as a catalyst, and analysis of total FAIPE by capillary gas-liquid chromatography (GLC). Isolation of
<Emphasis Type="Italic">trans</Emphasis>
-18:1 isomers was by silver-ion thin-layer chromatography (Ag-TLC), followed by extraction from the gel of combined saturated and
<Emphasis Type="Italic">trans</Emphasis>
-monoenoic acids with a biphasic solvent system. Analysis of these fractions by GLC allows the accurate quantitation of
<Emphasis Type="Italic">trans</Emphasis>
-18:1 acids with saturated acids (14:0, 16:0, and 18:0) as internal standards. A partial insight in the distribution of
<Emphasis Type="Italic">trans</Emphasis>
-18:1 isomers can be obtained by GLC on a CP Sil 88 capillary column (Chrompack, Middelburg, The Netherlands). All steps of the procedure are quite reproducible, part of the coefficients of variation (generally less than 3%, mainly limited to butyric and stearic acids) being associated with GLC analysis (injection, integration of peaks) and, to a lesser extent, to FAIPE preparation. FAIPE appear to be of greater practical interest than any other fatty acid esters, including fatty acid methyl esters (FAME), for the quantitation of short-chain fatty acids, because peak area percentages, calculated by the integrator coupled to the flame-ionization detector, are almost equal (theoretically and experimentally) to fatty acid weight percentages and do not require correction factors. With this set of procedures, we have followed in detail the seasonal variations of fatty acids in butterfat, with sixty commercial samples of French butter collected at five different periods of the year. Important variations occur around mid-April, when cows are shifted from forage and concentrates during winters spent in their stalls to fresh grass in pastures. At this period, there is a decrease of 4:0–14:0 acids and of 16:0 (−2 and −6%, respectively), while 18:0 and
<Emphasis Type="Italic">cis</Emphasis>
- plus
<Emphasis Type="Italic">trans</Emphasis>
-18:1 acids rise suddenly (2 and 5%, respectively). These modifications then progressively disappear until late fall or early winter. Other variations are of minor quantitative importance. Although influenced by the season, the content of 18:2n-6 acid lies in the narrow range of 1.2–1.5%.
<Emphasis Type="Italic">Trans</Emphasis>
-18:1 acids, quantitated by GLC after Ag-TLC fractionation, are at their highest level in May–June (4.3% of total fatty acids), and at their lowest level between January and the end of March (2.4%), with a mean annual value of 3.3%. The proportion of vaccenic (
<Emphasis Type="Italic">trans</Emphasis>
-11 18:1) acid, relative to total
<Emphasis Type="Italic">trans</Emphasis>
-18:1 isomers, is higher in spring than in winter, with intermediate decreasing values in summer and fall, which supports the hypothesis that the level of this isomer is linked to the feed of the cattle, and probably to the amount of grass in the feed.</Para>
</Abstract>
<KeywordGroup Language="En">
<Heading>Key words</Heading>
<Keyword>Butterfat</Keyword>
<Keyword>capillary column</Keyword>
<Keyword>fat extraction</Keyword>
<Keyword>fatty acid composition</Keyword>
<Keyword>fatty acid isopropyl esters</Keyword>
<Keyword>fatty acid methyl esters</Keyword>
<Keyword>flame-ionization detector</Keyword>
<Keyword>gas-liquid chromatography</Keyword>
<Keyword>response factor</Keyword>
<Keyword>seasonal variations</Keyword>
<Keyword>silver-ion thin-layer chromatography</Keyword>
<Keyword>
<Emphasis Type="Italic">trans</Emphasis>
-octadecenoic acids</Keyword>
<Keyword>vaccenic acid</Keyword>
</KeywordGroup>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans -18:1 acids. Application to the study of seasonal variations in french butters</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis ontrans-18:1 acids. Application to the study of seasonal variations in french butters</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">Robert</namePart>
<namePart type="given">L.</namePart>
<namePart type="family">Wolff</namePart>
<affiliation>ISTAB, Laboratoire de Lipochimie Alimentaire, Université Bordeau 1, Allée des Facultés, 33405, Talence Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Corinne</namePart>
<namePart type="given">C.</namePart>
<namePart type="family">Bayard</namePart>
<affiliation>ISTAB, Laboratoire de Lipochimie Alimentaire, Université Bordeau 1, Allée des Facultés, 33405, Talence Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="given">J.</namePart>
<namePart type="family">Fabien</namePart>
<affiliation>Maxwell Chemicals, Botany, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Springer-Verlag</publisher>
<place>
<placeTerm type="text">Berlin/Heidelberg</placeTerm>
</place>
<dateCreated encoding="w3cdtf">1995-03-31</dateCreated>
<dateIssued encoding="w3cdtf">1995-12-01</dateIssued>
<dateIssued encoding="w3cdtf">1995</dateIssued>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: The successive steps of an integrated analytical procedure aimed at the accurate determination of butterfat fatty acid composition, includingtrans-18:1 acid content and profile, have been carefully checked. This sequential procedure includes: dispersion of a portion of butter in hexane/isopropanol (2:1, vol/vol) with anhydrous Na2SO4, filtration of aliquots of the suspension through a microfiltration unit, subsequent preparation of fatty acid isopropyl esters (FAIPE) with H2SO4 as a catalyst, and analysis of total FAIPE by capillary gas-liquid chromatography (GLC). Isolation oftrans-18:1 isomers was by silver-ion thin-layer chromatography (Ag-TLC), followed by extraction from the gel of combined saturated andtrans-monoenoic acids with a biphasic solvent system. Analysis of these fractions by GLC allows the accurate quantitation oftrans-18:1 acids with saturated acids (14:0, 16:0, and 18:0) as internal standards. A partial insight in the distribution oftrans-18:1 isomers can be obtained by GLC on a CP Sil 88 capillary column (Chrompack, Middelburg, The Netherlands). All steps of the procedure are quite reproducible, part of the coefficients of variation (generally less than 3%, mainly limited to butyric and stearic acids) being associated with GLC analysis (injection, integration of peaks) and, to a lesser extent, to FAIPE preparation. FAIPE appear to be of greater practical interest than any other fatty acid esters, including fatty acid methyl esters (FAME), for the quantitation of short-chain fatty acids, because peak area percentages, calculated by the integrator coupled to the flame-ionization detector, are almost equal (theoretically and experimentally) to fatty acid weight percentages and do not require correction factors. With this set of procedures, we have followed in detail the seasonal variations of fatty acids in butterfat, with sixty commercial samples of French butter collected at five different periods of the year. Important variations occur around mid-April, when cows are shifted from forage and concentrates during winters spent in their stalls to fresh grass in pastures. At this period, there is a decrease of 4:0–14:0 acids and of 16:0 (−2 and −6%, respectively), while 18:0 andcis- plustrans-18:1 acids rise suddenly (2 and 5%, respectively). These modifications then progressively disappear until late fall or early winter. Other variations are of minor quantitative importance. Although influenced by the season, the content of 18:2n-6 acid lies in the narrow range of 1.2–1.5%.Trans-18:1 acids, quantitated by GLC after Ag-TLC fractionation, are at their highest level in May–June (4.3% of total fatty acids), and at their lowest level between January and the end of March (2.4%), with a mean annual value of 3.3%. The proportion of vaccenic (trans-11 18:1) acid, relative to totaltrans-18:1 isomers, is higher in spring than in winter, with intermediate decreasing values in summer and fall, which supports the hypothesis that the level of this isomer is linked to the feed of the cattle, and probably to the amount of grass in the feed.</abstract>
<note>Article</note>
<relatedItem type="host">
<titleInfo>
<title>Journal of the American Oil Chemists’ Society</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J Am Oil Chem Soc</title>
</titleInfo>
<genre type="journal" displayLabel="Archive Journal" authority="ISTEX" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>Springer</publisher>
<dateIssued encoding="w3cdtf">1995-12-01</dateIssued>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<subject>
<genre>Chemistry</genre>
<topic>Chemistry/Food Science, general</topic>
<topic>Analytical Chemistry</topic>
<topic>Biotechnology</topic>
<topic>Industrial Chemistry/Chemical Engineering</topic>
<topic>Biomaterials</topic>
<topic>Agriculture</topic>
</subject>
<identifier type="ISSN">0003-021X</identifier>
<identifier type="eISSN">1558-9331</identifier>
<identifier type="JournalID">11746</identifier>
<identifier type="IssueArticleCount">34</identifier>
<identifier type="VolumeIssueCount">12</identifier>
<part>
<date>1995</date>
<detail type="volume">
<number>72</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>12</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>1471</start>
<end>1483</end>
</extent>
</part>
<recordInfo>
<recordOrigin>AOCS Press, 1995</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">044E3885565C596F64F1ACC8F51CD6802C51C76D</identifier>
<identifier type="ark">ark:/67375/1BB-26VZJ2RP-7</identifier>
<identifier type="DOI">10.1007/BF02577840</identifier>
<identifier type="ArticleID">BF02577840</identifier>
<identifier type="ArticleID">Art12</identifier>
<accessCondition type="use and reproduction" contentType="copyright">AOCS Press, 1995</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</recordContentSource>
<recordOrigin>AOCS Press, 1995</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/044E3885565C596F64F1ACC8F51CD6802C51C76D/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000084 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000084 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:044E3885565C596F64F1ACC8F51CD6802C51C76D
   |texte=   Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans -18:1 acids. Application to the study of seasonal variations in french butters
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024