Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Time to reach near‐steady state in large aquifers

Identifieur interne : 000235 ( Istex/Checkpoint ); précédent : 000234; suivant : 000236

Time to reach near‐steady state in large aquifers

Auteurs : P. Rousseau-Gueutin [Australie, France] ; A. J. Love [Australie] ; G. Vasseur [France] ; N. I. Robinson [Australie] ; C. T. Simmons [Australie] ; G. De Marsily [France]

Source :

RBID : ISTEX:DE9A22FA815FA669354FF9E2D3943D3A503AAD50

Descripteurs français

English descriptors

Abstract

A new analytical solution of the flow equation has been developed to estimate the time to reach a near‐equilibrium state in mixed aquifers, i.e., having unconfined and confined portions, following a large hydraulic perturbation. Near‐equilibrium is defined as the time for an initial aquifer perturbation to dissipate by an average 95% across the aquifer. The new solution has been obtained by solving the flow system of a simplified conceptual model of a mixed aquifer using Laplace transforms. The conceptual model is based on two assumptions: (1) the groundwater flow can be reduced to a horizontal 1‐D problem and (2) the transmissivity, a function of the saturated thickness, is assumed constant on the unconfined portion. This new solution depends on the storativity of the unconfined portion, the lengths of the unconfined and confined portions and the transmissivity, assumed to be constant and equal in both portions of the mixed aquifer. This solution was then tested and validated against a numerical flow model, where the variations of the saturated thickness and therefore variations of the transmissivity were either ignored, or properly modeled. The agreement between the results from the new solution and those from the numerical model is good, validating the use of this new solution to estimate the time to reach near‐equilibrium in mixed aquifers. This solution for mixed aquifers, as well as the solutions for a fully confined or fully unconfined aquifer, has been used to estimate the time to reach near‐equilibrium in 13 large aquifers in the world. For those different aquifers, the time to reach near‐equilibrium ranges between 0.7 kyr to 2.4 × 107 kyr. These results suggest that the present hydraulic heads in these aquifers are typically a mixture of responses induced from current and past hydrologic conditions and thus climate conditions. For some aquifers, the modern hydraulic heads may in fact depend upon hydrologic conditions resulting from several past climate cycles.

Url:
DOI: 10.1002/wrcr.20534


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:DE9A22FA815FA669354FF9E2D3943D3A503AAD50

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Time to reach near‐steady state in large aquifers</title>
<author>
<name sortKey="Rousseau Ueutin, P" sort="Rousseau Ueutin, P" uniqKey="Rousseau Ueutin P" first="P." last="Rousseau-Gueutin">P. Rousseau-Gueutin</name>
</author>
<author>
<name sortKey="Love, A J" sort="Love, A J" uniqKey="Love A" first="A. J." last="Love">A. J. Love</name>
</author>
<author>
<name sortKey="Vasseur, G" sort="Vasseur, G" uniqKey="Vasseur G" first="G." last="Vasseur">G. Vasseur</name>
</author>
<author>
<name sortKey="Robinson, N I" sort="Robinson, N I" uniqKey="Robinson N" first="N. I." last="Robinson">N. I. Robinson</name>
</author>
<author>
<name sortKey="Simmons, C T" sort="Simmons, C T" uniqKey="Simmons C" first="C. T." last="Simmons">C. T. Simmons</name>
</author>
<author>
<name sortKey="De Marsily, G" sort="De Marsily, G" uniqKey="De Marsily G" first="G." last="De Marsily">G. De Marsily</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DE9A22FA815FA669354FF9E2D3943D3A503AAD50</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/wrcr.20534</idno>
<idno type="url">https://api.istex.fr/document/DE9A22FA815FA669354FF9E2D3943D3A503AAD50/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002962</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002962</idno>
<idno type="wicri:Area/Istex/Curation">002962</idno>
<idno type="wicri:Area/Istex/Checkpoint">000235</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000235</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Time to reach near‐steady state in large aquifers</title>
<author>
<name sortKey="Rousseau Ueutin, P" sort="Rousseau Ueutin, P" uniqKey="Rousseau Ueutin P" first="P." last="Rousseau-Gueutin">P. Rousseau-Gueutin</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of the Environment, Flinders University, Adelaide, South Australia</wicri:regionArea>
<wicri:noRegion>South Australia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>École des Hautes Études en Santé Publique, Avenue du Professeur Léon Bernard, Rennes</wicri:regionArea>
<placeName>
<region type="region">Région Bretagne</region>
<region type="old region">Région Bretagne</region>
<settlement type="city">Rennes</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
<author>
<name sortKey="Love, A J" sort="Love, A J" uniqKey="Love A" first="A. J." last="Love">A. J. Love</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of the Environment, Flinders University, Adelaide, South Australia</wicri:regionArea>
<wicri:noRegion>South Australia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>National Centre for Groundwater Research and Training, Flinders University, South Australia, Adelaide</wicri:regionArea>
<wicri:noRegion>Adelaide</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vasseur, G" sort="Vasseur, G" uniqKey="Vasseur G" first="G." last="Vasseur">G. Vasseur</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Pierre et Marie Curie, Paris 6, UMR‐7619 SISYPHE, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
<settlement type="city">Paris</settlement>
</placeName>
<orgName type="university">Université Pierre-et-Marie-Curie</orgName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, UMR‐7619 SISYPHE, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Robinson, N I" sort="Robinson, N I" uniqKey="Robinson N" first="N. I." last="Robinson">N. I. Robinson</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of the Environment, Flinders University, South Australia, Adelaide</wicri:regionArea>
<wicri:noRegion>Adelaide</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Simmons, C T" sort="Simmons, C T" uniqKey="Simmons C" first="C. T." last="Simmons">C. T. Simmons</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of the Environment, Flinders University, Adelaide, South Australia</wicri:regionArea>
<wicri:noRegion>South Australia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>National Centre for Groundwater Research and Training, Flinders University, South Australia, Adelaide</wicri:regionArea>
<wicri:noRegion>Adelaide</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Marsily, G" sort="De Marsily, G" uniqKey="De Marsily G" first="G." last="De Marsily">G. De Marsily</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Pierre et Marie Curie, Paris 6, UMR‐7619 SISYPHE, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
<settlement type="city">Paris</settlement>
</placeName>
<orgName type="university">Université Pierre-et-Marie-Curie</orgName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, UMR‐7619 SISYPHE, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Water Resources Research</title>
<title level="j" type="alt">WATER RESOURCES RESEARCH</title>
<idno type="ISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<imprint>
<biblScope unit="vol">49</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="6893">6893</biblScope>
<biblScope unit="page" to="6908">6908</biblScope>
<biblScope unit="page-count">16</biblScope>
<date type="published" when="2013-10">2013-10</date>
</imprint>
<idno type="ISSN">0043-1397</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0043-1397</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytical solution</term>
<term>Aquifer</term>
<term>Aquitaine basin</term>
<term>Artesian</term>
<term>Boundary conditions</term>
<term>Conceptual model</term>
<term>Cosh</term>
<term>Diffusivity</term>
<term>Discharge area</term>
<term>Domenico</term>
<term>Geol</term>
<term>Great artesian basin</term>
<term>Groundwater</term>
<term>Harbaugh</term>
<term>Hungarian aquifer</term>
<term>Hydraulic</term>
<term>Hydraulic head</term>
<term>Hydraulic heads</term>
<term>Hydraulic perturbation</term>
<term>Hydrodynamic</term>
<term>Initial conditions</term>
<term>Jost</term>
<term>Laplace</term>
<term>Large aquifers</term>
<term>Marsily</term>
<term>Mcdonald</term>
<term>Neuzil</term>
<term>Numerical model</term>
<term>Paris basin</term>
<term>Perturbation</term>
<term>Recharge</term>
<term>Sinh</term>
<term>Solution formula</term>
<term>Steady state</term>
<term>Storativity</term>
<term>Transient</term>
<term>Transient behavior</term>
<term>Transient behaviors</term>
<term>Transmissivity</term>
<term>Water resour</term>
<term>Western siberia basin</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Analytical solution</term>
<term>Aquifer</term>
<term>Aquitaine basin</term>
<term>Artesian</term>
<term>Boundary conditions</term>
<term>Conceptual model</term>
<term>Cosh</term>
<term>Diffusivity</term>
<term>Discharge area</term>
<term>Domenico</term>
<term>Geol</term>
<term>Great artesian basin</term>
<term>Groundwater</term>
<term>Harbaugh</term>
<term>Hungarian aquifer</term>
<term>Hydraulic</term>
<term>Hydraulic head</term>
<term>Hydraulic heads</term>
<term>Hydraulic perturbation</term>
<term>Hydrodynamic</term>
<term>Initial conditions</term>
<term>Jost</term>
<term>Laplace</term>
<term>Large aquifers</term>
<term>Marsily</term>
<term>Mcdonald</term>
<term>Neuzil</term>
<term>Numerical model</term>
<term>Paris basin</term>
<term>Perturbation</term>
<term>Recharge</term>
<term>Sinh</term>
<term>Solution formula</term>
<term>Steady state</term>
<term>Storativity</term>
<term>Transient</term>
<term>Transient behavior</term>
<term>Transient behaviors</term>
<term>Transmissivity</term>
<term>Water resour</term>
<term>Western siberia basin</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Eau souterraine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A new analytical solution of the flow equation has been developed to estimate the time to reach a near‐equilibrium state in mixed aquifers, i.e., having unconfined and confined portions, following a large hydraulic perturbation. Near‐equilibrium is defined as the time for an initial aquifer perturbation to dissipate by an average 95% across the aquifer. The new solution has been obtained by solving the flow system of a simplified conceptual model of a mixed aquifer using Laplace transforms. The conceptual model is based on two assumptions: (1) the groundwater flow can be reduced to a horizontal 1‐D problem and (2) the transmissivity, a function of the saturated thickness, is assumed constant on the unconfined portion. This new solution depends on the storativity of the unconfined portion, the lengths of the unconfined and confined portions and the transmissivity, assumed to be constant and equal in both portions of the mixed aquifer. This solution was then tested and validated against a numerical flow model, where the variations of the saturated thickness and therefore variations of the transmissivity were either ignored, or properly modeled. The agreement between the results from the new solution and those from the numerical model is good, validating the use of this new solution to estimate the time to reach near‐equilibrium in mixed aquifers. This solution for mixed aquifers, as well as the solutions for a fully confined or fully unconfined aquifer, has been used to estimate the time to reach near‐equilibrium in 13 large aquifers in the world. For those different aquifers, the time to reach near‐equilibrium ranges between 0.7 kyr to 2.4 × 107 kyr. These results suggest that the present hydraulic heads in these aquifers are typically a mixture of responses induced from current and past hydrologic conditions and thus climate conditions. For some aquifers, the modern hydraulic heads may in fact depend upon hydrologic conditions resulting from several past climate cycles.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Région Bretagne</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
<li>Rennes</li>
</settlement>
<orgName>
<li>Université Pierre-et-Marie-Curie</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Rousseau Ueutin, P" sort="Rousseau Ueutin, P" uniqKey="Rousseau Ueutin P" first="P." last="Rousseau-Gueutin">P. Rousseau-Gueutin</name>
</noRegion>
<name sortKey="Love, A J" sort="Love, A J" uniqKey="Love A" first="A. J." last="Love">A. J. Love</name>
<name sortKey="Love, A J" sort="Love, A J" uniqKey="Love A" first="A. J." last="Love">A. J. Love</name>
<name sortKey="Robinson, N I" sort="Robinson, N I" uniqKey="Robinson N" first="N. I." last="Robinson">N. I. Robinson</name>
<name sortKey="Simmons, C T" sort="Simmons, C T" uniqKey="Simmons C" first="C. T." last="Simmons">C. T. Simmons</name>
<name sortKey="Simmons, C T" sort="Simmons, C T" uniqKey="Simmons C" first="C. T." last="Simmons">C. T. Simmons</name>
</country>
<country name="France">
<region name="Région Bretagne">
<name sortKey="Rousseau Ueutin, P" sort="Rousseau Ueutin, P" uniqKey="Rousseau Ueutin P" first="P." last="Rousseau-Gueutin">P. Rousseau-Gueutin</name>
</region>
<name sortKey="De Marsily, G" sort="De Marsily, G" uniqKey="De Marsily G" first="G." last="De Marsily">G. De Marsily</name>
<name sortKey="De Marsily, G" sort="De Marsily, G" uniqKey="De Marsily G" first="G." last="De Marsily">G. De Marsily</name>
<name sortKey="Rousseau Ueutin, P" sort="Rousseau Ueutin, P" uniqKey="Rousseau Ueutin P" first="P." last="Rousseau-Gueutin">P. Rousseau-Gueutin</name>
<name sortKey="Vasseur, G" sort="Vasseur, G" uniqKey="Vasseur G" first="G." last="Vasseur">G. Vasseur</name>
<name sortKey="Vasseur, G" sort="Vasseur, G" uniqKey="Vasseur G" first="G." last="Vasseur">G. Vasseur</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000235 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 000235 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:DE9A22FA815FA669354FF9E2D3943D3A503AAD50
   |texte=   Time to reach near‐steady state in large aquifers
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024