Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Innate allorecognition.

Identifieur interne : 003884 ( PubMed/Corpus ); précédent : 003883; suivant : 003885

Innate allorecognition.

Auteurs : Martin H. Oberbarnscheidt ; Fadi G. Lakkis

Source :

RBID : pubmed:24517431

English descriptors

Abstract

Vertebrates mount strong adaptive immune responses to transplanted organs (allografts), but the mechanisms by which the innate immune system initiates this response are not completely understood. In anti-microbial immunity, non-self molecules associated with pathogens but not present in the host induce the maturation of innate antigen-presenting cells (APCs) by binding to germ-line-encoded receptors. Mature APCs then initiate the adaptive immune response by presenting microbial antigen and providing costimulatory signals to T cells. How allografts activate APCs, however, is less clear, because allografts are presumably sterile. A widely accepted view is that inflammatory or 'danger' molecules released by dying graft cells at the time of transplantation trigger APC maturation and the T-cell response that follows. Alternatively, it has been proposed that the introduction of microbial products during the surgical procedure could also alert the innate immune system to the presence of the transplanted organ. Here, we review why these hypotheses fail to fully explain how the alloimmune response is initiated after transplantation and summarize evidence that recognition of allogeneic non-self by monocytes is a key event in triggering alloimmunity and graft rejection.

DOI: 10.1111/imr.12153
PubMed: 24517431

Links to Exploration step

pubmed:24517431

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Innate allorecognition.</title>
<author>
<name sortKey="Oberbarnscheidt, Martin H" sort="Oberbarnscheidt, Martin H" uniqKey="Oberbarnscheidt M" first="Martin H" last="Oberbarnscheidt">Martin H. Oberbarnscheidt</name>
<affiliation>
<nlm:affiliation>Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine & University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh School of Medicine & University of Pittsburgh Medical Center, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lakkis, Fadi G" sort="Lakkis, Fadi G" uniqKey="Lakkis F" first="Fadi G" last="Lakkis">Fadi G. Lakkis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24517431</idno>
<idno type="pmid">24517431</idno>
<idno type="doi">10.1111/imr.12153</idno>
<idno type="wicri:Area/PubMed/Corpus">003884</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003884</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Innate allorecognition.</title>
<author>
<name sortKey="Oberbarnscheidt, Martin H" sort="Oberbarnscheidt, Martin H" uniqKey="Oberbarnscheidt M" first="Martin H" last="Oberbarnscheidt">Martin H. Oberbarnscheidt</name>
<affiliation>
<nlm:affiliation>Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine & University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh School of Medicine & University of Pittsburgh Medical Center, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lakkis, Fadi G" sort="Lakkis, Fadi G" uniqKey="Lakkis F" first="Fadi G" last="Lakkis">Fadi G. Lakkis</name>
</author>
</analytic>
<series>
<title level="j">Immunological reviews</title>
<idno type="eISSN">1600-065X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allografts</term>
<term>Animals</term>
<term>Antigen-Presenting Cells (immunology)</term>
<term>Graft Rejection (immunology)</term>
<term>Graft Rejection (prevention & control)</term>
<term>Graft Survival</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Molecular Sequence Data</term>
<term>Organ Transplantation (adverse effects)</term>
<term>Transplantation Tolerance</term>
<term>Treatment Outcome</term>
</keywords>
<keywords scheme="MESH" qualifier="adverse effects" xml:lang="en">
<term>Organ Transplantation</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Antigen-Presenting Cells</term>
<term>Graft Rejection</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Graft Rejection</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Allografts</term>
<term>Animals</term>
<term>Graft Survival</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Molecular Sequence Data</term>
<term>Transplantation Tolerance</term>
<term>Treatment Outcome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vertebrates mount strong adaptive immune responses to transplanted organs (allografts), but the mechanisms by which the innate immune system initiates this response are not completely understood. In anti-microbial immunity, non-self molecules associated with pathogens but not present in the host induce the maturation of innate antigen-presenting cells (APCs) by binding to germ-line-encoded receptors. Mature APCs then initiate the adaptive immune response by presenting microbial antigen and providing costimulatory signals to T cells. How allografts activate APCs, however, is less clear, because allografts are presumably sterile. A widely accepted view is that inflammatory or 'danger' molecules released by dying graft cells at the time of transplantation trigger APC maturation and the T-cell response that follows. Alternatively, it has been proposed that the introduction of microbial products during the surgical procedure could also alert the innate immune system to the presence of the transplanted organ. Here, we review why these hypotheses fail to fully explain how the alloimmune response is initiated after transplantation and summarize evidence that recognition of allogeneic non-self by monocytes is a key event in triggering alloimmunity and graft rejection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24517431</PMID>
<DateCreated>
<Year>2014</Year>
<Month>02</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1600-065X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>258</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Immunological reviews</Title>
<ISOAbbreviation>Immunol. Rev.</ISOAbbreviation>
</Journal>
<ArticleTitle>Innate allorecognition.</ArticleTitle>
<Pagination>
<MedlinePgn>145-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/imr.12153</ELocationID>
<Abstract>
<AbstractText>Vertebrates mount strong adaptive immune responses to transplanted organs (allografts), but the mechanisms by which the innate immune system initiates this response are not completely understood. In anti-microbial immunity, non-self molecules associated with pathogens but not present in the host induce the maturation of innate antigen-presenting cells (APCs) by binding to germ-line-encoded receptors. Mature APCs then initiate the adaptive immune response by presenting microbial antigen and providing costimulatory signals to T cells. How allografts activate APCs, however, is less clear, because allografts are presumably sterile. A widely accepted view is that inflammatory or 'danger' molecules released by dying graft cells at the time of transplantation trigger APC maturation and the T-cell response that follows. Alternatively, it has been proposed that the introduction of microbial products during the surgical procedure could also alert the innate immune system to the presence of the transplanted organ. Here, we review why these hypotheses fail to fully explain how the alloimmune response is initiated after transplantation and summarize evidence that recognition of allogeneic non-self by monocytes is a key event in triggering alloimmunity and graft rejection.</AbstractText>
<CopyrightInformation>© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Oberbarnscheidt</LastName>
<ForeName>Martin H</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine & University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh School of Medicine & University of Pittsburgh Medical Center, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lakkis</LastName>
<ForeName>Fadi G</ForeName>
<Initials>FG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AI099465</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI099465</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI099465</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Immunol Rev</MedlineTA>
<NlmUniqueID>7702118</NlmUniqueID>
<ISSNLinking>0105-2896</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Immunol Rev. 2011 Sep;243(1):191-205</RefSource>
<PMID Version="1">21884177</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2012 Mar 15;188(6):2703-11</RefSource>
<PMID Version="1">22327074</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1998 Dec 11;282(5396):2085-8</RefSource>
<PMID Version="1">9851930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Immunol. 2010;28:367-88</RefSource>
<PMID Version="1">20192808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2006 Feb 1;176(3):1561-70</RefSource>
<PMID Version="1">16424185</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2006 Aug 7;203(8):2021-31</RefSource>
<PMID Version="1">16880259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Transplant. 2010 Jul;10(7):1524-33</RefSource>
<PMID Version="1">20642679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2007 Dec;8(12):1313-23</RefSource>
<PMID Version="1">17982459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2012 Dec 15;189(12):5572-81</RefSource>
<PMID Version="1">23136200</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1971 Jul 23;232(5308):230-5</RefSource>
<PMID Version="1">4937075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Mar 9;440(7081):237-41</RefSource>
<PMID Version="1">16407889</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2003 May;111(10):1571-8</RefSource>
<PMID Version="1">12750407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2006 Oct 15;177(8):5307-16</RefSource>
<PMID Version="1">17015716</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2006 Aug 11;126(3):477-87</RefSource>
<PMID Version="1">16901782</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2010 Apr 1;184(7):3401-7</RefSource>
<PMID Version="1">20208011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Immunol. 2013 Jul;34(7):329-35</RefSource>
<PMID Version="1">23608152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Immunol. 2013 Aug;13(8):551-65</RefSource>
<PMID Version="1">23846113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2010 Jun 15;184(12):6649-57</RefSource>
<PMID Version="1">20483732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Immunol. 2012;30:759-95</RefSource>
<PMID Version="1">22224764</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20388-93</RefSource>
<PMID Version="1">19918053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1997 Jul 24;388(6640):394-7</RefSource>
<PMID Version="1">9237759</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2007 Apr;8(4):388-97</RefSource>
<PMID Version="1">17322886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2007 Nov 26;204(12):2913-23</RefSource>
<PMID Version="1">17984303</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Transplant. 2004 Sep;4(9):1429-39</RefSource>
<PMID Version="1">15307830</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Transplant. 2010 Jan;10(1):162-7</RefSource>
<PMID Version="1">19951284</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2009 Dec 15;183(12):7810-6</RefSource>
<PMID Version="1">19923456</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Immunol. 2006 Aug;36(8):1994-2002</RefSource>
<PMID Version="1">16874736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Transplantation. 2009 Nov 15;88(9):1075-80</RefSource>
<PMID Version="1">19898202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Transplant. 2007 Apr;7(4):799-808</RefSource>
<PMID Version="1">17331117</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Feb 2;439(7076):549</RefSource>
<PMID Version="1">16452970</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 1997 Jan 1;158(1):40-7</RefSource>
<PMID Version="1">8977173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Direct. 2007 Apr 16;2:10</RefSource>
<PMID Version="1">17437644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2006 Apr 1;176(7):3905-8</RefSource>
<PMID Version="1">16547223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2007 Jul;13(7):851-6</RefSource>
<PMID Version="1">17572686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2003 Oct 2;425(6957):516-21</RefSource>
<PMID Version="1">14520412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2011 Jan 1;186(1):230-41</RefSource>
<PMID Version="1">21098219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Crit Rev Immunol. 2008;28(3):229-48</RefSource>
<PMID Version="1">19024347</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2001 Jan;7(1):80-7</RefSource>
<PMID Version="1">11135620</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2001 Mar 15;166(6):3663-71</RefSource>
<PMID Version="1">11238605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Immunol. 2014;32:25-50</RefSource>
<PMID Version="1">24215318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2009 Feb 12;113(7):1399-407</RefSource>
<PMID Version="1">18757776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2005 Feb;6(2):163-70</RefSource>
<PMID Version="1">15654341</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Immunol Rev. 2009 Jan;227(1):221-33</RefSource>
<PMID Version="1">19120487</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13</RefSource>
<PMID Version="1">2700931</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Organ Transplant. 2009 Aug;14(4):419-25</RefSource>
<PMID Version="1">19444105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Jan 15;327(5963):291-5</RefSource>
<PMID Version="1">20075244</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2000 Mar 15;164(6):3065-71</RefSource>
<PMID Version="1">10706695</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5062-6</RefSource>
<PMID Version="1">17360380</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D064591" MajorTopicYN="N">Allografts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000938" MajorTopicYN="N">Antigen-Presenting Cells</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006084" MajorTopicYN="N">Graft Rejection</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006085" MajorTopicYN="N">Graft Survival</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="Y">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016377" MajorTopicYN="Y">Organ Transplantation</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023001" MajorTopicYN="Y">Transplantation Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS550791</OtherID>
<OtherID Source="NLM">PMC3941468</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">allorecognition</Keyword>
<Keyword MajorTopicYN="N">dendritic cells</Keyword>
<Keyword MajorTopicYN="N">innate immune system</Keyword>
<Keyword MajorTopicYN="N">monocytes</Keyword>
<Keyword MajorTopicYN="N">transplantation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24517431</ArticleId>
<ArticleId IdType="doi">10.1111/imr.12153</ArticleId>
<ArticleId IdType="pmc">PMC3941468</ArticleId>
<ArticleId IdType="mid">NIHMS550791</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003884 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003884 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24517431
   |texte=   Innate allorecognition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24517431" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021