Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exact hybrid particle/population simulation of rule-based models of biochemical systems.

Identifieur interne : 003165 ( PubMed/Corpus ); précédent : 003164; suivant : 003166

Exact hybrid particle/population simulation of rule-based models of biochemical systems.

Auteurs : Justin S. Hogg ; Leonard A. Harris ; Lori J. Stover ; Niketh S. Nair ; James R. Faeder

Source :

RBID : pubmed:24699269

English descriptors

Abstract

Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.

DOI: 10.1371/journal.pcbi.1003544
PubMed: 24699269

Links to Exploration step

pubmed:24699269

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exact hybrid particle/population simulation of rule-based models of biochemical systems.</title>
<author>
<name sortKey="Hogg, Justin S" sort="Hogg, Justin S" uniqKey="Hogg J" first="Justin S" last="Hogg">Justin S. Hogg</name>
<affiliation>
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harris, Leonard A" sort="Harris, Leonard A" uniqKey="Harris L" first="Leonard A" last="Harris">Leonard A. Harris</name>
<affiliation>
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stover, Lori J" sort="Stover, Lori J" uniqKey="Stover L" first="Lori J" last="Stover">Lori J. Stover</name>
<affiliation>
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nair, Niketh S" sort="Nair, Niketh S" uniqKey="Nair N" first="Niketh S" last="Nair">Niketh S. Nair</name>
<affiliation>
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Faeder, James R" sort="Faeder, James R" uniqKey="Faeder J" first="James R" last="Faeder">James R. Faeder</name>
<affiliation>
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24699269</idno>
<idno type="pmid">24699269</idno>
<idno type="doi">10.1371/journal.pcbi.1003544</idno>
<idno type="wicri:Area/PubMed/Corpus">003165</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exact hybrid particle/population simulation of rule-based models of biochemical systems.</title>
<author>
<name sortKey="Hogg, Justin S" sort="Hogg, Justin S" uniqKey="Hogg J" first="Justin S" last="Hogg">Justin S. Hogg</name>
<affiliation>
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harris, Leonard A" sort="Harris, Leonard A" uniqKey="Harris L" first="Leonard A" last="Harris">Leonard A. Harris</name>
<affiliation>
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stover, Lori J" sort="Stover, Lori J" uniqKey="Stover L" first="Lori J" last="Stover">Lori J. Stover</name>
<affiliation>
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nair, Niketh S" sort="Nair, Niketh S" uniqKey="Nair N" first="Niketh S" last="Nair">Niketh S. Nair</name>
<affiliation>
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Faeder, James R" sort="Faeder, James R" uniqKey="Faeder J" first="James R" last="Faeder">James R. Faeder</name>
<affiliation>
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Models, Biological</term>
<term>Models, Chemical</term>
<term>Monte Carlo Method</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Biological</term>
<term>Models, Chemical</term>
<term>Monte Carlo Method</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24699269</PMID>
<DateCreated>
<Year>2014</Year>
<Month>04</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Exact hybrid particle/population simulation of rule-based models of biochemical systems.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003544</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1003544</ELocationID>
<Abstract>
<AbstractText>Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hogg</LastName>
<ForeName>Justin S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harris</LastName>
<ForeName>Leonard A</ForeName>
<Initials>LA</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stover</LastName>
<ForeName>Lori J</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nair</LastName>
<ForeName>Niketh S</ForeName>
<Initials>NS</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Faeder</LastName>
<ForeName>James R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>UL1 TR000005</GrantID>
<Acronym>TR</Acronym>
<Agency>NCATS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32EB009403</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41GM103712</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 EB009403</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 GM103712</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2013 Dec 3;105(11):2451-60</RefSource>
<PMID Version="1">24314076</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Biol. 2011;9:68</RefSource>
<PMID Version="1">22005092</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031910</RefSource>
<PMID Version="1">18851068</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2012 Jul 20;150(2):389-401</RefSource>
<PMID Version="1">22817898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2010 Jun 25;141(7):1262-1262.e1</RefSource>
<PMID Version="1">20603006</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2005 Jan;23(1):131-6</RefSource>
<PMID Version="1">15637632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2005 Nov;23(11):1344-5; author reply 1345</RefSource>
<PMID Version="1">16273053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2007 Sep;5(9):e233</RefSource>
<PMID Version="1">17760506</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2005 Aug;89(2):951-66</RefSource>
<PMID Version="1">15923229</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Reprod Dev. 1995 Dec;42(4):468-76</RefSource>
<PMID Version="1">8607978</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Jan 1;20(1):78-84</RefSource>
<PMID Version="1">14693812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2007 Oct 19;318(5849):463-7</RefSource>
<PMID Version="1">17947584</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S73-80</RefSource>
<PMID Version="1">20176269</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2006 Nov 15;22(22):2782-9</RefSource>
<PMID Version="1">16954141</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Feb 12;20(3):316-22</RefSource>
<PMID Version="1">14960457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Syst Biol. 2012;6:107</RefSource>
<PMID Version="1">22913808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2006 Jan 28;124(4):044109</RefSource>
<PMID Version="1">16460151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2003 Feb 21;112(4):453-65</RefSource>
<PMID Version="1">12600310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biosystems. 2006 Feb-Mar;83(2-3):136-51</RefSource>
<PMID Version="1">16233948</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2011 Feb;8(2):177-83</RefSource>
<PMID Version="1">21186362</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2012 Mar;9(3):283-9</RefSource>
<PMID Version="1">22286385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2009 Sep 1;25(17):2289-91</RefSource>
<PMID Version="1">19578038</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Immunol. 2004 Jun;4(6):445-56</RefSource>
<PMID Version="1">15173833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2008 Mar 15;94(6):2082-94</RefSource>
<PMID Version="1">18065447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2010;11:404</RefSource>
<PMID Version="1">20673321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Bioeng. 2003 Dec 30;84(7):783-94</RefSource>
<PMID Version="1">14708119</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Biophys Mol Biol. 2004 Jun-Jul;85(2-3):217-34</RefSource>
<PMID Version="1">15142745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Immunol. 2002 Sep;38(16-18):1213-9</RefSource>
<PMID Version="1">12217386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biosystems. 2006 Feb-Mar;83(2-3):152-66</RefSource>
<PMID Version="1">16242235</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 1984 Jun;45(6):1109-23</RefSource>
<PMID Version="1">6204698</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Biol Chem. 2006 Feb;30(1):39-49</RefSource>
<PMID Version="1">16321569</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Mar 31;281(13):8917-26</RefSource>
<PMID Version="1">16418172</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2006 Jun 29;110(25):12749-65</RefSource>
<PMID Version="1">16800611</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2006 Nov;8(11):1195-203</RefSource>
<PMID Version="1">17060902</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2012;880:139-218</RefSource>
<PMID Version="1">23361986</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046713</RefSource>
<PMID Version="1">18999567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2006 Oct 14;125(14):144107</RefSource>
<PMID Version="1">17042579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6453-8</RefSource>
<PMID Version="1">19346467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2012 Jan 21;136(3):034105</RefSource>
<PMID Version="1">22280742</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2003 Apr 1;170(7):3769-81</RefSource>
<PMID Version="1">12646643</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Biol. 2011 Oct;8(5):055009</RefSource>
<PMID Version="1">21832806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2006;7:93</RefSource>
<PMID Version="1">16504125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Phys Chem. 2007;58:35-55</RefSource>
<PMID Version="1">17037977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2009 Apr 1;25(7):910-7</RefSource>
<PMID Version="1">19213740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2008 May 28;128(20):205101</RefSource>
<PMID Version="1">18513044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Syst Biol. 2011;5:166</RefSource>
<PMID Version="1">22005019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2004 Sep 1;121(9):4059-67</RefSource>
<PMID Version="1">15332951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IET Syst Biol. 2008 Sep;2(5):342-51</RefSource>
<PMID Version="1">19045829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2009;500:113-67</RefSource>
<PMID Version="1">19399430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sci STKE. 2006 Jul 17;2006(344):re6</RefSource>
<PMID Version="1">16849649</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2010 Jan 6;98(1):48-56</RefSource>
<PMID Version="1">20085718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Biotechnol. 2001 Jun;19(6):205-10</RefSource>
<PMID Version="1">11356281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2005 Feb 1;122(5):54103</RefSource>
<PMID Version="1">15740306</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Syst Biol. 2008;2:78</RefSource>
<PMID Version="1">18755034</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Nov 22;20(17):3289-91</RefSource>
<PMID Version="1">15217809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Mar 1;20(4):538-46</RefSource>
<PMID Version="1">14990450</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009010" MajorTopicYN="N">Monte Carlo Method</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3974646</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24699269</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1003544</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-13-00394</ArticleId>
<ArticleId IdType="pmc">PMC3974646</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24699269
   |texte=   Exact hybrid particle/population simulation of rule-based models of biochemical systems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24699269" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021