Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

PKCδ regulates force signaling during VEGF/CXCL4 induced dissociation of endothelial tubes.

Identifieur interne : 003164 ( PubMed/Corpus ); précédent : 003163; suivant : 003165

PKCδ regulates force signaling during VEGF/CXCL4 induced dissociation of endothelial tubes.

Auteurs : Joshua Jamison ; James H-C Wang ; Alan Wells

Source :

RBID : pubmed:24699667

English descriptors

Abstract

Wound healing requires the vasculature to re-establish itself from the severed ends; endothelial cells within capillaries must detach from neighboring cells before they can migrate into the nascent wound bed to initiate angiogenesis. The dissociation of these endothelial capillaries is driven partially by platelets' release of growth factors and cytokines, particularly the chemokine CXCL4/platelet factor-4 (PF4) that increases cell-cell de-adherence. As this retraction is partly mediated by increased transcellular contractility, the protein kinase c-δ/myosin light chain-2 (PKCδ/MLC-2) signaling axis becomes a candidate mechanism to drive endothelial dissociation. We hypothesize that PKCδ activation induces contractility through MLC-2 to promote dissociation of endothelial cords after exposure to platelet-released CXCL4 and VEGF. To investigate this mechanism of contractility, endothelial cells were allowed to form cords following CXCL4 addition to perpetuate cord dissociation. In this study, CXCL4-induced dissociation was reduced by a VEGFR inhibitor (sunitinib malate) and/or PKCδ inhibition. During combined CXCL4+VEGF treatment, increased contractility mediated by MLC-2 that is dependent on PKCδ regulation. As cellular force is transmitted to focal adhesions, zyxin, a focal adhesion protein that is mechano-responsive, was upregulated after PKCδ inhibition. This study suggests that growth factor regulation of PKCδ may be involved in CXCL4-mediated dissociation of endothelial cords.

DOI: 10.1371/journal.pone.0093968
PubMed: 24699667

Links to Exploration step

pubmed:24699667

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">PKCδ regulates force signaling during VEGF/CXCL4 induced dissociation of endothelial tubes.</title>
<author>
<name sortKey="Jamison, Joshua" sort="Jamison, Joshua" uniqKey="Jamison J" first="Joshua" last="Jamison">Joshua Jamison</name>
<affiliation>
<nlm:affiliation>Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, James H C" sort="Wang, James H C" uniqKey="Wang J" first="James H-C" last="Wang">James H-C Wang</name>
<affiliation>
<nlm:affiliation>Department of Orthopedic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wells, Alan" sort="Wells, Alan" uniqKey="Wells A" first="Alan" last="Wells">Alan Wells</name>
<affiliation>
<nlm:affiliation>Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24699667</idno>
<idno type="pmid">24699667</idno>
<idno type="doi">10.1371/journal.pone.0093968</idno>
<idno type="wicri:Area/PubMed/Corpus">003164</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003164</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">PKCδ regulates force signaling during VEGF/CXCL4 induced dissociation of endothelial tubes.</title>
<author>
<name sortKey="Jamison, Joshua" sort="Jamison, Joshua" uniqKey="Jamison J" first="Joshua" last="Jamison">Joshua Jamison</name>
<affiliation>
<nlm:affiliation>Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, James H C" sort="Wang, James H C" uniqKey="Wang J" first="James H-C" last="Wang">James H-C Wang</name>
<affiliation>
<nlm:affiliation>Department of Orthopedic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wells, Alan" sort="Wells, Alan" uniqKey="Wells A" first="Alan" last="Wells">Alan Wells</name>
<affiliation>
<nlm:affiliation>Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Movement (drug effects)</term>
<term>Cell Movement (physiology)</term>
<term>Cells, Cultured</term>
<term>Endothelial Cells (drug effects)</term>
<term>Endothelial Cells (metabolism)</term>
<term>Endothelium, Vascular (drug effects)</term>
<term>Endothelium, Vascular (metabolism)</term>
<term>Humans</term>
<term>Indoles (pharmacology)</term>
<term>Neovascularization, Physiologic (drug effects)</term>
<term>Neovascularization, Physiologic (physiology)</term>
<term>Platelet Factor 4 (pharmacology)</term>
<term>Protein Kinase C-delta (metabolism)</term>
<term>Pyrroles (pharmacology)</term>
<term>Vascular Endothelial Growth Factor A (pharmacology)</term>
<term>Wound Healing (drug effects)</term>
<term>Wound Healing (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein Kinase C-delta</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Indoles</term>
<term>Platelet Factor 4</term>
<term>Pyrroles</term>
<term>Vascular Endothelial Growth Factor A</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Movement</term>
<term>Endothelial Cells</term>
<term>Endothelium, Vascular</term>
<term>Neovascularization, Physiologic</term>
<term>Wound Healing</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endothelial Cells</term>
<term>Endothelium, Vascular</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Movement</term>
<term>Neovascularization, Physiologic</term>
<term>Wound Healing</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cells, Cultured</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wound healing requires the vasculature to re-establish itself from the severed ends; endothelial cells within capillaries must detach from neighboring cells before they can migrate into the nascent wound bed to initiate angiogenesis. The dissociation of these endothelial capillaries is driven partially by platelets' release of growth factors and cytokines, particularly the chemokine CXCL4/platelet factor-4 (PF4) that increases cell-cell de-adherence. As this retraction is partly mediated by increased transcellular contractility, the protein kinase c-δ/myosin light chain-2 (PKCδ/MLC-2) signaling axis becomes a candidate mechanism to drive endothelial dissociation. We hypothesize that PKCδ activation induces contractility through MLC-2 to promote dissociation of endothelial cords after exposure to platelet-released CXCL4 and VEGF. To investigate this mechanism of contractility, endothelial cells were allowed to form cords following CXCL4 addition to perpetuate cord dissociation. In this study, CXCL4-induced dissociation was reduced by a VEGFR inhibitor (sunitinib malate) and/or PKCδ inhibition. During combined CXCL4+VEGF treatment, increased contractility mediated by MLC-2 that is dependent on PKCδ regulation. As cellular force is transmitted to focal adhesions, zyxin, a focal adhesion protein that is mechano-responsive, was upregulated after PKCδ inhibition. This study suggests that growth factor regulation of PKCδ may be involved in CXCL4-mediated dissociation of endothelial cords.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24699667</PMID>
<DateCreated>
<Year>2014</Year>
<Month>04</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>PKCδ regulates force signaling during VEGF/CXCL4 induced dissociation of endothelial tubes.</ArticleTitle>
<Pagination>
<MedlinePgn>e93968</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0093968</ELocationID>
<Abstract>
<AbstractText>Wound healing requires the vasculature to re-establish itself from the severed ends; endothelial cells within capillaries must detach from neighboring cells before they can migrate into the nascent wound bed to initiate angiogenesis. The dissociation of these endothelial capillaries is driven partially by platelets' release of growth factors and cytokines, particularly the chemokine CXCL4/platelet factor-4 (PF4) that increases cell-cell de-adherence. As this retraction is partly mediated by increased transcellular contractility, the protein kinase c-δ/myosin light chain-2 (PKCδ/MLC-2) signaling axis becomes a candidate mechanism to drive endothelial dissociation. We hypothesize that PKCδ activation induces contractility through MLC-2 to promote dissociation of endothelial cords after exposure to platelet-released CXCL4 and VEGF. To investigate this mechanism of contractility, endothelial cells were allowed to form cords following CXCL4 addition to perpetuate cord dissociation. In this study, CXCL4-induced dissociation was reduced by a VEGFR inhibitor (sunitinib malate) and/or PKCδ inhibition. During combined CXCL4+VEGF treatment, increased contractility mediated by MLC-2 that is dependent on PKCδ regulation. As cellular force is transmitted to focal adhesions, zyxin, a focal adhesion protein that is mechano-responsive, was upregulated after PKCδ inhibition. This study suggests that growth factor regulation of PKCδ may be involved in CXCL4-mediated dissociation of endothelial cords.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jamison</LastName>
<ForeName>Joshua</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>James H-C</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopedic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wells</LastName>
<ForeName>Alan</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AR061395</GrantID>
<Acronym>AR</Acronym>
<Agency>NIAMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM063569</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM069668</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HL094295</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007211">Indoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011758">Pyrroles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D042461">Vascular Endothelial Growth Factor A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>37270-94-3</RegistryNumber>
<NameOfSubstance UI="D010978">Platelet Factor 4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.13</RegistryNumber>
<NameOfSubstance UI="D051745">Protein Kinase C-delta</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>V99T50803M</RegistryNumber>
<NameOfSubstance UI="C473478">sunitinib</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 1999 Nov 2;100(18):1909-16</RefSource>
<PMID Version="1">10545436</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(10):e77434</RefSource>
<PMID Version="1">24155954</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2001 Dec;1(6):743-7</RefSource>
<PMID Version="1">11740936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biochem. 2002 Dec;132(6):831-9</RefSource>
<PMID Version="1">12473183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microsc Res Tech. 2003 Jan 1;60(1):107-14</RefSource>
<PMID Version="1">12500267</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2004 Jan;286(1):C105-11</RefSource>
<PMID Version="1">13679307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Apr 9;279(15):14551-60</RefSource>
<PMID Version="1">14747473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 1990 Jun;85(6):1991-8</RefSource>
<PMID Version="1">2347922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 1991 Jun;99 ( Pt 2):419-30</RefSource>
<PMID Version="1">1885678</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol Vis Sci. 1992 May;33(6):1958-73</RefSource>
<PMID Version="1">1582801</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Submicrosc Cytol Pathol. 1992 Apr;24(2):145-54</RefSource>
<PMID Version="1">1600506</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Invest Dermatol. 1992 Dec;99(6):683-90</RefSource>
<PMID Version="1">1361507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1994 Feb;124(4):547-55</RefSource>
<PMID Version="1">8106552</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1994 Sep;267(3 Pt 1):L223-41</RefSource>
<PMID Version="1">7943249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1994 Nov;127(3):847-57</RefSource>
<PMID Version="1">7962064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Surg Res. 1996 Jun;63(1):349-54</RefSource>
<PMID Version="1">8661224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 1994 Jul;1(2):121-8</RefSource>
<PMID Version="1">8790583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Physiol Pharmacol. 1996 Jul;74(7):787-800</RefSource>
<PMID Version="1">8946065</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1999 Feb 5;274(6):3764-71</RefSource>
<PMID Version="1">9920929</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 1999 Aug 6;85(3):247-56</RefSource>
<PMID Version="1">10436167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 1999 Oct;13(13):1658-76</RefSource>
<PMID Version="1">10506570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Lung Cell Mol Physiol. 2005 Feb;288(2):L307-16</RefSource>
<PMID Version="1">15489375</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Cells. 2005 Mar;10(3):225-39</RefSource>
<PMID Version="1">15743412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 May 20;280(20):19784-93</RefSource>
<PMID Version="1">15769752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 2005 Aug 15;308(2):407-21</RefSource>
<PMID Version="1">15935342</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2006 Mar 17;98(5):617-25</RefSource>
<PMID Version="1">16484616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2006 Jul;26(14):5481-96</RefSource>
<PMID Version="1">16809781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2009 Oct;1790(10):1179-90</RefSource>
<PMID Version="1">19632305</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2009 Nov;15(11):1298-306</RefSource>
<PMID Version="1">19881493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Condens Matter. 2010 May 19;22(19):194115</RefSource>
<PMID Version="1">21386441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 2012 Jan;83(1):12-21</RefSource>
<PMID Version="1">21549132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Motil Cytoskeleton. 1999 Dec;44(4):227-33</RefSource>
<PMID Version="1">10602252</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002465" MajorTopicYN="N">Cell Movement</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042783" MajorTopicYN="N">Endothelial Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004730" MajorTopicYN="N">Endothelium, Vascular</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007211" MajorTopicYN="N">Indoles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018919" MajorTopicYN="N">Neovascularization, Physiologic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010978" MajorTopicYN="N">Platelet Factor 4</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051745" MajorTopicYN="N">Protein Kinase C-delta</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011758" MajorTopicYN="N">Pyrroles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042461" MajorTopicYN="N">Vascular Endothelial Growth Factor A</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014945" MajorTopicYN="N">Wound Healing</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3974837</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>03</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24699667</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0093968</ArticleId>
<ArticleId IdType="pii">PONE-D-13-53475</ArticleId>
<ArticleId IdType="pmc">PMC3974837</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003164 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003164 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24699667
   |texte=   PKCδ regulates force signaling during VEGF/CXCL4 induced dissociation of endothelial tubes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24699667" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021