Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tunable Coarse Graining for Monte Carlo Simulations of Proteins via Smoothed Energy Tables: Direct and Exchange Simulations.

Identifieur interne : 000D29 ( PubMed/Checkpoint ); précédent : 000D28; suivant : 000D30

Tunable Coarse Graining for Monte Carlo Simulations of Proteins via Smoothed Energy Tables: Direct and Exchange Simulations.

Auteurs : Justin Spiriti [États-Unis] ; Daniel M. Zuckerman [États-Unis]

Source :

RBID : pubmed:25400525

Abstract

Many commonly used coarse-grained models for proteins are based on simplified interaction sites and consequently may suffer from significant limitations, such as the inability to properly model protein secondary structure without the addition of restraints. Recent work on a benzene fluid (Lettieri S.; Zuckerman D. M.J. Comput. Chem.2012, 33, 268-275) suggested an alternative strategy of tabulating and smoothing fully atomistic orientation-dependent interactions among rigid molecules or fragments. Here we report our initial efforts to apply this approach to the polar and covalent interactions intrinsic to polypeptides. We divide proteins into nearly rigid fragments, construct distance and orientation-dependent tables of the atomistic interaction energies between those fragments, and apply potential energy smoothing techniques to those tables. The amount of smoothing can be adjusted to give coarse-grained models that range from the underlying atomistic force field all the way to a bead-like coarse-grained model. For a moderate amount of smoothing, the method is able to preserve about 70-90% of the α-helical structure while providing a factor of 3-10 improvement in sampling per unit computation time (depending on how sampling is measured). For a greater amount of smoothing, multiple folding-unfolding transitions of the peptide were observed, along with a factor of 10-100 improvement in sampling per unit computation time, although the time spent in the unfolded state was increased compared with less smoothed simulations. For a β hairpin, secondary structure is also preserved, albeit for a narrower range of the smoothing parameter and, consequently, for a more modest improvement in sampling. We have also applied the new method in a "resolution exchange" setting, in which each replica runs a Monte Carlo simulation with a different degree of smoothing. We obtain exchange rates that compare favorably to our previous efforts at resolution exchange (Lyman E.; Zuckerman D. M.J. Chem. Theory Comput.2006, 2, 656-666).

DOI: 10.1021/ct500622z
PubMed: 25400525


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25400525

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tunable Coarse Graining for Monte Carlo Simulations of Proteins via Smoothed Energy Tables: Direct and Exchange Simulations.</title>
<author>
<name sortKey="Spiriti, Justin" sort="Spiriti, Justin" uniqKey="Spiriti J" first="Justin" last="Spiriti">Justin Spiriti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15213</wicri:regionArea>
<wicri:noRegion>Pennsylvania 15213</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zuckerman, Daniel M" sort="Zuckerman, Daniel M" uniqKey="Zuckerman D" first="Daniel M" last="Zuckerman">Daniel M. Zuckerman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15213</wicri:regionArea>
<wicri:noRegion>Pennsylvania 15213</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25400525</idno>
<idno type="pmid">25400525</idno>
<idno type="doi">10.1021/ct500622z</idno>
<idno type="wicri:Area/PubMed/Corpus">001054</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001054</idno>
<idno type="wicri:Area/PubMed/Curation">001048</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001048</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001048</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001048</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tunable Coarse Graining for Monte Carlo Simulations of Proteins via Smoothed Energy Tables: Direct and Exchange Simulations.</title>
<author>
<name sortKey="Spiriti, Justin" sort="Spiriti, Justin" uniqKey="Spiriti J" first="Justin" last="Spiriti">Justin Spiriti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15213</wicri:regionArea>
<wicri:noRegion>Pennsylvania 15213</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zuckerman, Daniel M" sort="Zuckerman, Daniel M" uniqKey="Zuckerman D" first="Daniel M" last="Zuckerman">Daniel M. Zuckerman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15213</wicri:regionArea>
<wicri:noRegion>Pennsylvania 15213</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical theory and computation</title>
<idno type="eISSN">1549-9626</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many commonly used coarse-grained models for proteins are based on simplified interaction sites and consequently may suffer from significant limitations, such as the inability to properly model protein secondary structure without the addition of restraints. Recent work on a benzene fluid (Lettieri S.; Zuckerman D. M.J. Comput. Chem.2012, 33, 268-275) suggested an alternative strategy of tabulating and smoothing fully atomistic orientation-dependent interactions among rigid molecules or fragments. Here we report our initial efforts to apply this approach to the polar and covalent interactions intrinsic to polypeptides. We divide proteins into nearly rigid fragments, construct distance and orientation-dependent tables of the atomistic interaction energies between those fragments, and apply potential energy smoothing techniques to those tables. The amount of smoothing can be adjusted to give coarse-grained models that range from the underlying atomistic force field all the way to a bead-like coarse-grained model. For a moderate amount of smoothing, the method is able to preserve about 70-90% of the α-helical structure while providing a factor of 3-10 improvement in sampling per unit computation time (depending on how sampling is measured). For a greater amount of smoothing, multiple folding-unfolding transitions of the peptide were observed, along with a factor of 10-100 improvement in sampling per unit computation time, although the time spent in the unfolded state was increased compared with less smoothed simulations. For a β hairpin, secondary structure is also preserved, albeit for a narrower range of the smoothing parameter and, consequently, for a more modest improvement in sampling. We have also applied the new method in a "resolution exchange" setting, in which each replica runs a Monte Carlo simulation with a different degree of smoothing. We obtain exchange rates that compare favorably to our previous efforts at resolution exchange (Lyman E.; Zuckerman D. M.J. Chem. Theory Comput.2006, 2, 656-666).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">25400525</PMID>
<DateCreated>
<Year>2014</Year>
<Month>11</Month>
<Day>17</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1549-9626</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Journal of chemical theory and computation</Title>
<ISOAbbreviation>J Chem Theory Comput</ISOAbbreviation>
</Journal>
<ArticleTitle>Tunable Coarse Graining for Monte Carlo Simulations of Proteins via Smoothed Energy Tables: Direct and Exchange Simulations.</ArticleTitle>
<Pagination>
<MedlinePgn>5161-5177</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Many commonly used coarse-grained models for proteins are based on simplified interaction sites and consequently may suffer from significant limitations, such as the inability to properly model protein secondary structure without the addition of restraints. Recent work on a benzene fluid (Lettieri S.; Zuckerman D. M.J. Comput. Chem.2012, 33, 268-275) suggested an alternative strategy of tabulating and smoothing fully atomistic orientation-dependent interactions among rigid molecules or fragments. Here we report our initial efforts to apply this approach to the polar and covalent interactions intrinsic to polypeptides. We divide proteins into nearly rigid fragments, construct distance and orientation-dependent tables of the atomistic interaction energies between those fragments, and apply potential energy smoothing techniques to those tables. The amount of smoothing can be adjusted to give coarse-grained models that range from the underlying atomistic force field all the way to a bead-like coarse-grained model. For a moderate amount of smoothing, the method is able to preserve about 70-90% of the α-helical structure while providing a factor of 3-10 improvement in sampling per unit computation time (depending on how sampling is measured). For a greater amount of smoothing, multiple folding-unfolding transitions of the peptide were observed, along with a factor of 10-100 improvement in sampling per unit computation time, although the time spent in the unfolded state was increased compared with less smoothed simulations. For a β hairpin, secondary structure is also preserved, albeit for a narrower range of the smoothing parameter and, consequently, for a more modest improvement in sampling. We have also applied the new method in a "resolution exchange" setting, in which each replica runs a Monte Carlo simulation with a different degree of smoothing. We obtain exchange rates that compare favorably to our previous efforts at resolution exchange (Lyman E.; Zuckerman D. M.J. Chem. Theory Comput.2006, 2, 656-666).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Spiriti</LastName>
<ForeName>Justin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zuckerman</LastName>
<ForeName>Daniel M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P41 GM103712</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Theory Comput</MedlineTA>
<NlmUniqueID>101232704</NlmUniqueID>
<ISSNLinking>1549-9618</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2011 Oct 21;135(15):155104</RefSource>
<PMID Version="1">22029338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Soc Rev. 2013 Aug 21;42(16):6801-22</RefSource>
<PMID Version="1">23708257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Biol. 1999 Jan;6(1):50-5</RefSource>
<PMID Version="1">9886292</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biophys. 2011;40:41-62</RefSource>
<PMID Version="1">21370970</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1990 Nov 23;250(4984):1121-5</RefSource>
<PMID Version="1">17840193</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Pept Protein Res. 1975;7(6):445-59</RefSource>
<PMID Version="1">1201909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2008 Jun 28;128(24):244115</RefSource>
<PMID Version="1">18601325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2014 Jul 8;10(7):2632-47</RefSource>
<PMID Version="1">26586503</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2007 Apr 26;111(16):4116-27</RefSource>
<PMID Version="1">17394308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2006 Jan 20;96(2):028105</RefSource>
<PMID Version="1">16486650</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2013 Aug 13;9(8):3769-3788</RefSource>
<PMID Version="1">23997693</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2009 Jul 30;30(10):1545-614</RefSource>
<PMID Version="1">19444816</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2005 Sep 30;352(4):807-22</RefSource>
<PMID Version="1">16139299</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2014 Apr 15;106(8):1553-4</RefSource>
<PMID Version="1">24739152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 1994 Apr;18(4):338-52</RefSource>
<PMID Version="1">8208726</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Phys Chem. 2000;51:129-52</RefSource>
<PMID Version="1">11031278</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2012 Aug 2;116(30):8741-52</RefSource>
<PMID Version="1">22742737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 1996 Aug 26;77(9):1905-1908</RefSource>
<PMID Version="1">10063201</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2012 Jul 26;116(29):8337-49</RefSource>
<PMID Version="1">22292916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2009 Sep 8;5(9):2531-43</RefSource>
<PMID Version="1">26616630</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2007 Jul 12;111(27):7812-24</RefSource>
<PMID Version="1">17569554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2013 Aug 13;9(8):3728-39</RefSource>
<PMID Version="1">26584124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2005 Dec 1;109(47):22667-73</RefSource>
<PMID Version="1">16853951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2012 Jan 30;33(3):268-75</RefSource>
<PMID Version="1">22120971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2010 Sep 1;6(10):3048-3057</RefSource>
<PMID Version="1">21221418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1975 Feb 27;253(5494):694-8</RefSource>
<PMID Version="1">1167625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2004 Mar;86(3):1587-600</RefSource>
<PMID Version="1">14990485</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2004 Nov 30;25(15):1849-57</RefSource>
<PMID Version="1">15376254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Chem Chem Phys. 2011 Oct 14;13(38):16890-901</RefSource>
<PMID Version="1">21643583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Graph Model. 2007 Jan;25(5):595-604</RefSource>
<PMID Version="1">16777449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Chem Chem Phys. 2012 Jun 28;14(24):8662-77</RefSource>
<PMID Version="1">22614001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biophys. 2013;42:73-93</RefSource>
<PMID Version="1">23451897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nano Lett. 2007 Feb;7(2):338-44</RefSource>
<PMID Version="1">17297998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 2010 Apr;20(2):196-206</RefSource>
<PMID Version="1">20167475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 2005 Oct;15(5):586-92</RefSource>
<PMID Version="1">16143512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 2012 Apr;22(2):130-7</RefSource>
<PMID Version="1">22365574</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2008 Feb 8;376(1):288-301</RefSource>
<PMID Version="1">18177896</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Chem Chem Phys. 2011 Jun 14;13(22):10437-48</RefSource>
<PMID Version="1">21494747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Macromolecules. 1976 Nov-Dec;9(6):945-50</RefSource>
<PMID Version="1">1004017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2007 Dec 1;93(11):3860-71</RefSource>
<PMID Version="1">17704151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2013 Apr 4;117(13):3516-30</RefSource>
<PMID Version="1">23406326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2009 Feb 25;131(7):2606-14</RefSource>
<PMID Version="1">19199626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 1998 Apr 30;102(18):3586-616</RefSource>
<PMID Version="1">24889800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 1995 Dec;23(4):566-79</RefSource>
<PMID Version="1">8749853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2013 Sep 7;139(9):090901</RefSource>
<PMID Version="1">24028092</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Fold Des. 1997;2(3):173-81</RefSource>
<PMID Version="1">9218955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11844-9</RefSource>
<PMID Version="1">16877541</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2005 Dec;13(12):1755-63</RefSource>
<PMID Version="1">16338404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1976 Jun 14;104(1):59-107</RefSource>
<PMID Version="1">957439</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2012 Aug 14;8(8):2921-2929</RefSource>
<PMID Version="1">23162384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2006 May;2(3):656-66</RefSource>
<PMID Version="1">26626672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2012 Jul 26;116(29):8494-503</RefSource>
<PMID Version="1">22545654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2009 Aug 18;42(8):1087-96</RefSource>
<PMID Version="1">19445451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Sci. 2004 Apr;13(4):862-74</RefSource>
<PMID Version="1">15044723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2014 Jul 5;35(18):1371-87</RefSource>
<PMID Version="1">24854675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Chem Chem Phys. 2012 Sep 28;14(36):12423-30</RefSource>
<PMID Version="1">22678152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2006 Jul 1;91(1):164-72</RefSource>
<PMID Version="1">16617086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1991 Aug 9;253(5020):657-61</RefSource>
<PMID Version="1">1871600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2004 Aug;25(11):1400-15</RefSource>
<PMID Version="1">15185334</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2007 Apr 1;67(1):31-40</RefSource>
<PMID Version="1">17243153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2010 Mar 05;6(3):e1000694</RefSource>
<PMID Version="1">20221255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2011 Jan 7;134(1):014104</RefSource>
<PMID Version="1">21218994</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2008 May;4(5):819-34</RefSource>
<PMID Version="1">26621095</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2012 May 8;8(5):1774-1785</RefSource>
<PMID Version="1">22582033</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25400525</ArticleId>
<ArticleId IdType="doi">10.1021/ct500622z</ArticleId>
<ArticleId IdType="pmc">PMC4230378</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Spiriti, Justin" sort="Spiriti, Justin" uniqKey="Spiriti J" first="Justin" last="Spiriti">Justin Spiriti</name>
</noRegion>
<name sortKey="Zuckerman, Daniel M" sort="Zuckerman, Daniel M" uniqKey="Zuckerman D" first="Daniel M" last="Zuckerman">Daniel M. Zuckerman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000D29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25400525
   |texte=   Tunable Coarse Graining for Monte Carlo Simulations of Proteins via Smoothed Energy Tables: Direct and Exchange Simulations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25400525" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021