Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cardiac tissue development for delivery of embryonic stem cell‐derived endothelial and cardiac cells in natural matrices

Identifieur interne : 008438 ( Main/Merge ); précédent : 008437; suivant : 008439

Cardiac tissue development for delivery of embryonic stem cell‐derived endothelial and cardiac cells in natural matrices

Auteurs : William S. Turner [États-Unis] ; Xiaoling Wang [États-Unis] ; Scott Johnson [États-Unis] ; Christopher Medberry [États-Unis] ; Jose Mendez [États-Unis] ; Stephen F. Badylak [États-Unis] ; Marian G. Mccord [États-Unis] ; Kara E. Mccloskey [États-Unis]

Source :

RBID : ISTEX:A9B09EB82F050F8569FAB0DCCC5A10928F119602

Descripteurs français

English descriptors

Abstract

The packaging and delivery of cells for cardiac regeneration has been explored using a variety biomaterials and delivery methods, but these studies often ignore one or more important design factors critical for rebuilding cardiac tissue. These include the biomaterial architecture, strength and stiffness, cell alignment, and/or incorporation of multiple cell types. In this article, we explore the combinatorial use of decellularized tissues, moldable hydrogels, patterned cell‐seeding, and cell‐sheet engineering and find that a combination of these methods is optimal in the recreation of transplantable cardiac‐like tissue in vivo. We show that decellularized urinary bladder matrix (UBM), that is compliant and suturable, supports the survival of cell cultures but does not allow maintenance of cell‐to‐cell contacts of transferred cell‐sheets (presumably, due to its rough surface). Moreover, the UBM material must be filled with hyaluronan (HA) hydrogels for smoothing rough surfaces and allowing the delivery of greater cell numbers. We additionally incorporated our previously developed “wrinkled” microchip for inducing alignment of cardiac cells with a laser‐etched mask for co‐seeding patterned “channels” of cells. This article also introduces a novel method of plasma coating for cell‐sheet engineering that compares well with electron bean irradiation methods and may be combined with our “wrinkled” surfaces to facilitate the alignment of cardiac cells into sheets. Our data shows that an optimal design for generating cardiac tissue would include (1) decellularized matrix seeded with endothelial cells in a HA layered with (2) prealigned cardiac cell‐sheets fabricated using our “wrinkled” microchips and thermo‐responsive polymer [poly(N‐isopropylacrylamide)] cell sheet transfer system. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.

Url:
DOI: 10.1002/jbm.b.32770

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:A9B09EB82F050F8569FAB0DCCC5A10928F119602

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cardiac tissue development for delivery of embryonic stem cell‐derived endothelial and cardiac cells in natural matrices</title>
<author>
<name sortKey="Turner, William S" sort="Turner, William S" uniqKey="Turner W" first="William S." last="Turner">William S. Turner</name>
</author>
<author>
<name sortKey="Wang, Xiaoling" sort="Wang, Xiaoling" uniqKey="Wang X" first="Xiaoling" last="Wang">Xiaoling Wang</name>
</author>
<author>
<name sortKey="Johnson, Scott" sort="Johnson, Scott" uniqKey="Johnson S" first="Scott" last="Johnson">Scott Johnson</name>
</author>
<author>
<name sortKey="Medberry, Christopher" sort="Medberry, Christopher" uniqKey="Medberry C" first="Christopher" last="Medberry">Christopher Medberry</name>
</author>
<author>
<name sortKey="Mendez, Jose" sort="Mendez, Jose" uniqKey="Mendez J" first="Jose" last="Mendez">Jose Mendez</name>
</author>
<author>
<name sortKey="Badylak, Stephen F" sort="Badylak, Stephen F" uniqKey="Badylak S" first="Stephen F." last="Badylak">Stephen F. Badylak</name>
</author>
<author>
<name sortKey="Mccord, Marian G" sort="Mccord, Marian G" uniqKey="Mccord M" first="Marian G." last="Mccord">Marian G. Mccord</name>
</author>
<author>
<name sortKey="Mccloskey, Kara E" sort="Mccloskey, Kara E" uniqKey="Mccloskey K" first="Kara E." last="Mccloskey">Kara E. Mccloskey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A9B09EB82F050F8569FAB0DCCC5A10928F119602</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/jbm.b.32770</idno>
<idno type="url">https://api.istex.fr/document/A9B09EB82F050F8569FAB0DCCC5A10928F119602/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002794</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002794</idno>
<idno type="wicri:Area/Istex/Curation">002794</idno>
<idno type="wicri:Area/Istex/Checkpoint">001919</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001919</idno>
<idno type="wicri:doubleKey">1552-4973:2012:Turner W:cardiac:tissue:development</idno>
<idno type="wicri:Area/Main/Merge">008438</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Cardiac tissue development for delivery of embryonic stem cell‐derived endothelial and cardiac cells in natural matrices
<ref type="note" target="#fn1"></ref>
</title>
<author>
<name sortKey="Turner, William S" sort="Turner, William S" uniqKey="Turner W" first="William S." last="Turner">William S. Turner</name>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>School of Engineering, University of California, Merced, Merced</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaoling" sort="Wang, Xiaoling" uniqKey="Wang X" first="Xiaoling" last="Wang">Xiaoling Wang</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Textiles, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Scott" sort="Johnson, Scott" uniqKey="Johnson S" first="Scott" last="Johnson">Scott Johnson</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Medberry, Christopher" sort="Medberry, Christopher" uniqKey="Medberry C" first="Christopher" last="Medberry">Christopher Medberry</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mendez, Jose" sort="Mendez, Jose" uniqKey="Mendez J" first="Jose" last="Mendez">Jose Mendez</name>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>School of Engineering, University of California, Merced, Merced</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Badylak, Stephen F" sort="Badylak, Stephen F" uniqKey="Badylak S" first="Stephen F." last="Badylak">Stephen F. Badylak</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mccord, Marian G" sort="Mccord, Marian G" uniqKey="Mccord M" first="Marian G." last="Mccord">Marian G. Mccord</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Textiles, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mccloskey, Kara E" sort="Mccloskey, Kara E" uniqKey="Mccloskey K" first="Kara E." last="Mccloskey">Kara E. Mccloskey</name>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>School of Engineering, University of California, Merced, Merced</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Correspondence address: School of Engineering, University of California, Merced, Merced</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS</title>
<idno type="ISSN">1552-4973</idno>
<idno type="eISSN">1552-4981</idno>
<imprint>
<biblScope unit="vol">100B</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2060">2060</biblScope>
<biblScope unit="page" to="2072">2072</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-11">2012-11</date>
</imprint>
<idno type="ISSN">1552-4973</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1552-4973</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abluminal side</term>
<term>Acellularized matrix</term>
<term>Acrylic mask</term>
<term>Acrylic masks</term>
<term>Alignment</term>
<term>Atmospheric plasma treatment</term>
<term>Atomic force microscopy</term>
<term>Badylak</term>
<term>Biomaterials</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Biomimetic topography</term>
<term>Bladder matrix</term>
<term>Bone marrow cells</term>
<term>Bronectin</term>
<term>Cardiac</term>
<term>Cardiac cells</term>
<term>Cardiac function</term>
<term>Cardiac muscle</term>
<term>Cardiac patch</term>
<term>Cardiac patch design</term>
<term>Cardiac patch materials</term>
<term>Cardiac repair</term>
<term>Cardiac tissue</term>
<term>Cardiac tissue development</term>
<term>Cardiac tissue engineering</term>
<term>Cardiac tissues</term>
<term>Carolina state university</term>
<term>Cell</term>
<term>Cell adhesion</term>
<term>Cell alignment</term>
<term>Cell attachment</term>
<term>Cell culture</term>
<term>Cell cultures</term>
<term>Cell delivery</term>
<term>Cell encapsulation</term>
<term>Cell patterning</term>
<term>Cell retention</term>
<term>Cell seeding</term>
<term>Cell seeding surface</term>
<term>Cell sheet</term>
<term>Cell sheet engineering</term>
<term>Cell sheet transfer</term>
<term>Cell sheets</term>
<term>Cell therapy</term>
<term>Cellular retention</term>
<term>Clinical trials</term>
<term>Coll cardiol</term>
<term>Contact angle</term>
<term>Contract grant number</term>
<term>Contract grant sponsor</term>
<term>Contract sheet</term>
<term>Critical elements</term>
<term>Decellularized</term>
<term>Decellularized matrix</term>
<term>Decellularized tissues</term>
<term>Direct cell injection</term>
<term>Endothelial</term>
<term>Endothelial cells</term>
<term>Etching</term>
<term>Etching channels</term>
<term>Extracellular matrix</term>
<term>Figure cells</term>
<term>Figure figure</term>
<term>Functional myocardium</term>
<term>Gelatin</term>
<term>Gelatin solution</term>
<term>Glycosan biosystems</term>
<term>Grafted</term>
<term>Growth factor</term>
<term>Heart cells</term>
<term>Heart function</term>
<term>Heart tissue</term>
<term>Hyaluronan</term>
<term>Hydrogel</term>
<term>Images show</term>
<term>Infarcted myocardium</term>
<term>Invitrogen</term>
<term>Ischemic heart tissue</term>
<term>Large area</term>
<term>Laser</term>
<term>Laser etching</term>
<term>Luminal surface</term>
<term>Marolleau duboc</term>
<term>Mask</term>
<term>Matrix</term>
<term>Mechanical function</term>
<term>Metal molds</term>
<term>Microchip</term>
<term>Micropatterned surfaces</term>
<term>Moldable hydrogels</term>
<term>Multiple cell types</term>
<term>Myoblast transplantation</term>
<term>Myocardial infarction</term>
<term>Myocardial patch</term>
<term>Myocardium</term>
<term>Myocyte content</term>
<term>Novel method</term>
<term>Online</term>
<term>Online issue</term>
<term>Patch design</term>
<term>Patterning</term>
<term>Pdms</term>
<term>Pdms microchips</term>
<term>Pdms samples</term>
<term>Plasma coating</term>
<term>Plasma pretreatment</term>
<term>Pnipam plasma coating</term>
<term>Polymer</term>
<term>Polystyrene</term>
<term>Polystyrene plate</term>
<term>Polystyrene plates</term>
<term>Post treatment</term>
<term>Proc natl acad</term>
<term>Regenerative medicine</term>
<term>Research report</term>
<term>Research report figure</term>
<term>Rough surface</term>
<term>Second cell type</term>
<term>Seeding</term>
<term>Seeding cells</term>
<term>Skeletal myoblast transplantation</term>
<term>Smooth muscle</term>
<term>Strong materials</term>
<term>Surface topography</term>
<term>Temperature increases</term>
<term>Tissue culture plates</term>
<term>Tissue engineering</term>
<term>Transplantation</term>
<term>Urinary bladder matrix</term>
<term>Void depth</term>
<term>Void space</term>
<term>Void spaces</term>
<term>Wiley periodicals</term>
<term>Wrinkle</term>
<term>Wrinkle topography</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abluminal side</term>
<term>Acellularized matrix</term>
<term>Acrylic mask</term>
<term>Acrylic masks</term>
<term>Alignment</term>
<term>Atmospheric plasma treatment</term>
<term>Atomic force microscopy</term>
<term>Badylak</term>
<term>Biomaterials</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Biomimetic topography</term>
<term>Bladder matrix</term>
<term>Bone marrow cells</term>
<term>Bronectin</term>
<term>Cardiac</term>
<term>Cardiac cells</term>
<term>Cardiac function</term>
<term>Cardiac muscle</term>
<term>Cardiac patch</term>
<term>Cardiac patch design</term>
<term>Cardiac patch materials</term>
<term>Cardiac repair</term>
<term>Cardiac tissue</term>
<term>Cardiac tissue development</term>
<term>Cardiac tissue engineering</term>
<term>Cardiac tissues</term>
<term>Carolina state university</term>
<term>Cell</term>
<term>Cell adhesion</term>
<term>Cell alignment</term>
<term>Cell attachment</term>
<term>Cell culture</term>
<term>Cell cultures</term>
<term>Cell delivery</term>
<term>Cell encapsulation</term>
<term>Cell patterning</term>
<term>Cell retention</term>
<term>Cell seeding</term>
<term>Cell seeding surface</term>
<term>Cell sheet</term>
<term>Cell sheet engineering</term>
<term>Cell sheet transfer</term>
<term>Cell sheets</term>
<term>Cell therapy</term>
<term>Cellular retention</term>
<term>Clinical trials</term>
<term>Coll cardiol</term>
<term>Contact angle</term>
<term>Contract grant number</term>
<term>Contract grant sponsor</term>
<term>Contract sheet</term>
<term>Critical elements</term>
<term>Decellularized</term>
<term>Decellularized matrix</term>
<term>Decellularized tissues</term>
<term>Direct cell injection</term>
<term>Endothelial</term>
<term>Endothelial cells</term>
<term>Etching</term>
<term>Etching channels</term>
<term>Extracellular matrix</term>
<term>Figure cells</term>
<term>Figure figure</term>
<term>Functional myocardium</term>
<term>Gelatin</term>
<term>Gelatin solution</term>
<term>Glycosan biosystems</term>
<term>Grafted</term>
<term>Growth factor</term>
<term>Heart cells</term>
<term>Heart function</term>
<term>Heart tissue</term>
<term>Hyaluronan</term>
<term>Hydrogel</term>
<term>Images show</term>
<term>Infarcted myocardium</term>
<term>Invitrogen</term>
<term>Ischemic heart tissue</term>
<term>Large area</term>
<term>Laser</term>
<term>Laser etching</term>
<term>Luminal surface</term>
<term>Marolleau duboc</term>
<term>Mask</term>
<term>Matrix</term>
<term>Mechanical function</term>
<term>Metal molds</term>
<term>Microchip</term>
<term>Micropatterned surfaces</term>
<term>Moldable hydrogels</term>
<term>Multiple cell types</term>
<term>Myoblast transplantation</term>
<term>Myocardial infarction</term>
<term>Myocardial patch</term>
<term>Myocardium</term>
<term>Myocyte content</term>
<term>Novel method</term>
<term>Online</term>
<term>Online issue</term>
<term>Patch design</term>
<term>Patterning</term>
<term>Pdms</term>
<term>Pdms microchips</term>
<term>Pdms samples</term>
<term>Plasma coating</term>
<term>Plasma pretreatment</term>
<term>Pnipam plasma coating</term>
<term>Polymer</term>
<term>Polystyrene</term>
<term>Polystyrene plate</term>
<term>Polystyrene plates</term>
<term>Post treatment</term>
<term>Proc natl acad</term>
<term>Regenerative medicine</term>
<term>Research report</term>
<term>Research report figure</term>
<term>Rough surface</term>
<term>Second cell type</term>
<term>Seeding</term>
<term>Seeding cells</term>
<term>Skeletal myoblast transplantation</term>
<term>Smooth muscle</term>
<term>Strong materials</term>
<term>Surface topography</term>
<term>Temperature increases</term>
<term>Tissue culture plates</term>
<term>Tissue engineering</term>
<term>Transplantation</term>
<term>Urinary bladder matrix</term>
<term>Void depth</term>
<term>Void space</term>
<term>Void spaces</term>
<term>Wiley periodicals</term>
<term>Wrinkle</term>
<term>Wrinkle topography</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biomatériau</term>
<term>Polymère</term>
<term>Rapport de recherche</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The packaging and delivery of cells for cardiac regeneration has been explored using a variety biomaterials and delivery methods, but these studies often ignore one or more important design factors critical for rebuilding cardiac tissue. These include the biomaterial architecture, strength and stiffness, cell alignment, and/or incorporation of multiple cell types. In this article, we explore the combinatorial use of decellularized tissues, moldable hydrogels, patterned cell‐seeding, and cell‐sheet engineering and find that a combination of these methods is optimal in the recreation of transplantable cardiac‐like tissue in vivo. We show that decellularized urinary bladder matrix (UBM), that is compliant and suturable, supports the survival of cell cultures but does not allow maintenance of cell‐to‐cell contacts of transferred cell‐sheets (presumably, due to its rough surface). Moreover, the UBM material must be filled with hyaluronan (HA) hydrogels for smoothing rough surfaces and allowing the delivery of greater cell numbers. We additionally incorporated our previously developed “wrinkled” microchip for inducing alignment of cardiac cells with a laser‐etched mask for co‐seeding patterned “channels” of cells. This article also introduces a novel method of plasma coating for cell‐sheet engineering that compares well with electron bean irradiation methods and may be combined with our “wrinkled” surfaces to facilitate the alignment of cardiac cells into sheets. Our data shows that an optimal design for generating cardiac tissue would include (1) decellularized matrix seeded with endothelial cells in a HA layered with (2) prealigned cardiac cell‐sheets fabricated using our “wrinkled” microchips and thermo‐responsive polymer [poly(N‐isopropylacrylamide)] cell sheet transfer system. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008438 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 008438 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:A9B09EB82F050F8569FAB0DCCC5A10928F119602
   |texte=   Cardiac tissue development for delivery of embryonic stem cell‐derived endothelial and cardiac cells in natural matrices
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021