Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation

Identifieur interne : 008209 ( Main/Merge ); précédent : 008208; suivant : 008210

Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation

Auteurs : Yi It Mengüç [États-Unis] ; Sang Yoon Yang [États-Unis] ; Seok Kim [États-Unis] ; John A. Rogers [États-Unis] ; Metin Sitti [États-Unis]

Source :

RBID : ISTEX:EE318C056AFF5417A067D8C2FA20DF6EB7F58669

Descripteurs français

English descriptors

Abstract

Gecko‐inspired angled elastomer micropillars with flat or round tip endings are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick‐to‐release adhesive forces is measured as 39 to 1. It is found that a flat tip shape and shear displacement control provide a higher pick‐to‐release adhesion ratio than a round tip and vertical displacement control, respectively. A model of forces to serve as a framework for the operation of this micromanipulator is presented. Finally, demonstrations of pick‐and‐place manipulation of micrometer‐scale silicon microplatelets and a centimeter‐scale glass cover slip serve as proofs of the concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments.

Url:
DOI: 10.1002/adfm.201101783

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:EE318C056AFF5417A067D8C2FA20DF6EB7F58669

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation</title>
<author>
<name sortKey="Menguc, Yi It" sort="Menguc, Yi It" uniqKey="Menguc Y" first="Yi It" last="Mengüç">Yi It Mengüç</name>
</author>
<author>
<name sortKey="Yang, Sang Yoon" sort="Yang, Sang Yoon" uniqKey="Yang S" first="Sang Yoon" last="Yang">Sang Yoon Yang</name>
</author>
<author>
<name sortKey="Kim, Seok" sort="Kim, Seok" uniqKey="Kim S" first="Seok" last="Kim">Seok Kim</name>
</author>
<author>
<name sortKey="Rogers, John A" sort="Rogers, John A" uniqKey="Rogers J" first="John A." last="Rogers">John A. Rogers</name>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:EE318C056AFF5417A067D8C2FA20DF6EB7F58669</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/adfm.201101783</idno>
<idno type="url">https://api.istex.fr/document/EE318C056AFF5417A067D8C2FA20DF6EB7F58669/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003892</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003892</idno>
<idno type="wicri:Area/Istex/Curation">003891</idno>
<idno type="wicri:Area/Istex/Checkpoint">001686</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001686</idno>
<idno type="wicri:doubleKey">1616-301X:2012:Menguc Y:gecko:inspired:controllable</idno>
<idno type="wicri:Area/Main/Merge">008209</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation</title>
<author>
<name sortKey="Menguc, Yi It" sort="Menguc, Yi It" uniqKey="Menguc Y" first="Yi It" last="Mengüç">Yi It Mengüç</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Sang Yoon" sort="Yang, Sang Yoon" uniqKey="Yang S" first="Sang Yoon" last="Yang">Sang Yoon Yang</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Seok" sort="Kim, Seok" uniqKey="Kim S" first="Seok" last="Kim">Seok Kim</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rogers, John A" sort="Rogers, John A" uniqKey="Rogers J" first="John A." last="Rogers">John A. Rogers</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Correspondence address: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Advanced Functional Materials</title>
<title level="j" type="alt">ADVANCED FUNCTIONAL MATERIALS</title>
<idno type="ISSN">1616-301X</idno>
<idno type="eISSN">1616-3028</idno>
<imprint>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1246">1246</biblScope>
<biblScope unit="page" to="1254">1254</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2012-03-21">2012-03-21</date>
</imprint>
<idno type="ISSN">1616-301X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1616-301X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acta biomater</term>
<term>Adhesion</term>
<term>Adhesion strength</term>
<term>Adhesive</term>
<term>Adhesive force</term>
<term>Adhesive force ratio</term>
<term>Adhesive forces</term>
<term>Aksak</term>
<term>Angled</term>
<term>Angled micropillars</term>
<term>Angled pillars</term>
<term>Appl</term>
<term>Attachment strength</term>
<term>Compression tension force</term>
<term>Compressive</term>
<term>Compressive direction</term>
<term>Compressive displacement</term>
<term>Contact area</term>
<term>Contact process</term>
<term>Critical cases</term>
<term>Data point</term>
<term>Donor substrate</term>
<term>Edge contact</term>
<term>Elastomer</term>
<term>Error bars</term>
<term>First part</term>
<term>Flat tips</term>
<term>Fragile parts</term>
<term>Full paper</term>
<term>Funct</term>
<term>Gecko</term>
<term>Glass slide</term>
<term>Gmbh</term>
<term>High speed</term>
<term>Interface materials</term>
<term>Intermolecular forces</term>
<term>Jeong</term>
<term>Kgaa</term>
<term>Langmuir</term>
<term>Lateral displacement</term>
<term>Lett</term>
<term>Linear stage</term>
<term>Manipulator</term>
<term>Mater</term>
<term>Maximum force</term>
<term>Maximum force values</term>
<term>Mechanical instability</term>
<term>Micropillar</term>
<term>Micropillar profile</term>
<term>Micropillars</term>
<term>Optimal speed</term>
<term>Part release</term>
<term>Phys</term>
<term>Pillar</term>
<term>Pillar micromanipulator</term>
<term>Placement control</term>
<term>Polymer</term>
<term>Proc</term>
<term>Receiver substrate</term>
<term>Release state</term>
<term>Release states</term>
<term>Retraction</term>
<term>Second part</term>
<term>Sharper switch</term>
<term>Shear displacement</term>
<term>Shear displacement control</term>
<term>Shear strength</term>
<term>Side view</term>
<term>Silicon</term>
<term>Silicon microplatelet</term>
<term>Silicon microplatelets</term>
<term>Silicon wafer</term>
<term>Single structure</term>
<term>Sitti</term>
<term>Solid lines</term>
<term>Surface viscoelasticity</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Vertical axis</term>
<term>Vertical compression</term>
<term>Vertical displacement</term>
<term>Vertical stage</term>
<term>Video</term>
<term>Viscoelastic effects</term>
<term>Visual feedback</term>
<term>Waals forces</term>
<term>Weinheim</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta biomater</term>
<term>Adhesion</term>
<term>Adhesion strength</term>
<term>Adhesive</term>
<term>Adhesive force</term>
<term>Adhesive force ratio</term>
<term>Adhesive forces</term>
<term>Aksak</term>
<term>Angled</term>
<term>Angled micropillars</term>
<term>Angled pillars</term>
<term>Appl</term>
<term>Attachment strength</term>
<term>Compression tension force</term>
<term>Compressive</term>
<term>Compressive direction</term>
<term>Compressive displacement</term>
<term>Contact area</term>
<term>Contact process</term>
<term>Critical cases</term>
<term>Data point</term>
<term>Donor substrate</term>
<term>Edge contact</term>
<term>Elastomer</term>
<term>Error bars</term>
<term>First part</term>
<term>Flat tips</term>
<term>Fragile parts</term>
<term>Full paper</term>
<term>Funct</term>
<term>Gecko</term>
<term>Glass slide</term>
<term>Gmbh</term>
<term>High speed</term>
<term>Interface materials</term>
<term>Intermolecular forces</term>
<term>Jeong</term>
<term>Kgaa</term>
<term>Langmuir</term>
<term>Lateral displacement</term>
<term>Lett</term>
<term>Linear stage</term>
<term>Manipulator</term>
<term>Mater</term>
<term>Maximum force</term>
<term>Maximum force values</term>
<term>Mechanical instability</term>
<term>Micropillar</term>
<term>Micropillar profile</term>
<term>Micropillars</term>
<term>Optimal speed</term>
<term>Part release</term>
<term>Phys</term>
<term>Pillar</term>
<term>Pillar micromanipulator</term>
<term>Placement control</term>
<term>Polymer</term>
<term>Proc</term>
<term>Receiver substrate</term>
<term>Release state</term>
<term>Release states</term>
<term>Retraction</term>
<term>Second part</term>
<term>Sharper switch</term>
<term>Shear displacement</term>
<term>Shear displacement control</term>
<term>Shear strength</term>
<term>Side view</term>
<term>Silicon</term>
<term>Silicon microplatelet</term>
<term>Silicon microplatelets</term>
<term>Silicon wafer</term>
<term>Single structure</term>
<term>Sitti</term>
<term>Solid lines</term>
<term>Surface viscoelasticity</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Vertical axis</term>
<term>Vertical compression</term>
<term>Vertical displacement</term>
<term>Vertical stage</term>
<term>Video</term>
<term>Viscoelastic effects</term>
<term>Visual feedback</term>
<term>Waals forces</term>
<term>Weinheim</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Adhésif</term>
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gecko‐inspired angled elastomer micropillars with flat or round tip endings are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick‐to‐release adhesive forces is measured as 39 to 1. It is found that a flat tip shape and shear displacement control provide a higher pick‐to‐release adhesion ratio than a round tip and vertical displacement control, respectively. A model of forces to serve as a framework for the operation of this micromanipulator is presented. Finally, demonstrations of pick‐and‐place manipulation of micrometer‐scale silicon microplatelets and a centimeter‐scale glass cover slip serve as proofs of the concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008209 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 008209 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:EE318C056AFF5417A067D8C2FA20DF6EB7F58669
   |texte=   Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021