Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation

Identifieur interne : 003892 ( Istex/Corpus ); précédent : 003891; suivant : 003893

Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation

Auteurs : Yi It Mengüç ; Sang Yoon Yang ; Seok Kim ; John A. Rogers ; Metin Sitti

Source :

RBID : ISTEX:EE318C056AFF5417A067D8C2FA20DF6EB7F58669

English descriptors

Abstract

Gecko‐inspired angled elastomer micropillars with flat or round tip endings are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick‐to‐release adhesive forces is measured as 39 to 1. It is found that a flat tip shape and shear displacement control provide a higher pick‐to‐release adhesion ratio than a round tip and vertical displacement control, respectively. A model of forces to serve as a framework for the operation of this micromanipulator is presented. Finally, demonstrations of pick‐and‐place manipulation of micrometer‐scale silicon microplatelets and a centimeter‐scale glass cover slip serve as proofs of the concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments.

Url:
DOI: 10.1002/adfm.201101783

Links to Exploration step

ISTEX:EE318C056AFF5417A067D8C2FA20DF6EB7F58669

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation</title>
<author>
<name sortKey="Menguc, Yi It" sort="Menguc, Yi It" uniqKey="Menguc Y" first="Yi It" last="Mengüç">Yi It Mengüç</name>
<affiliation>
<mods:affiliation>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Sang Yoon" sort="Yang, Sang Yoon" uniqKey="Yang S" first="Sang Yoon" last="Yang">Sang Yoon Yang</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Seok" sort="Kim, Seok" uniqKey="Kim S" first="Seok" last="Kim">Seok Kim</name>
<affiliation>
<mods:affiliation>Department of Mechanical Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rogers, John A" sort="Rogers, John A" uniqKey="Rogers J" first="John A." last="Rogers">John A. Rogers</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation>
<mods:affiliation>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: sitti@cmu.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:EE318C056AFF5417A067D8C2FA20DF6EB7F58669</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/adfm.201101783</idno>
<idno type="url">https://api.istex.fr/document/EE318C056AFF5417A067D8C2FA20DF6EB7F58669/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003892</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003892</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation</title>
<author>
<name sortKey="Menguc, Yi It" sort="Menguc, Yi It" uniqKey="Menguc Y" first="Yi It" last="Mengüç">Yi It Mengüç</name>
<affiliation>
<mods:affiliation>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Sang Yoon" sort="Yang, Sang Yoon" uniqKey="Yang S" first="Sang Yoon" last="Yang">Sang Yoon Yang</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Seok" sort="Kim, Seok" uniqKey="Kim S" first="Seok" last="Kim">Seok Kim</name>
<affiliation>
<mods:affiliation>Department of Mechanical Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rogers, John A" sort="Rogers, John A" uniqKey="Rogers J" first="John A." last="Rogers">John A. Rogers</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation>
<mods:affiliation>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: sitti@cmu.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Advanced Functional Materials</title>
<title level="j" type="alt">ADVANCED FUNCTIONAL MATERIALS</title>
<idno type="ISSN">1616-301X</idno>
<idno type="eISSN">1616-3028</idno>
<imprint>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1246">1246</biblScope>
<biblScope unit="page" to="1254">1254</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2012-03-21">2012-03-21</date>
</imprint>
<idno type="ISSN">1616-301X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1616-301X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acta biomater</term>
<term>Adhesion</term>
<term>Adhesion strength</term>
<term>Adhesive</term>
<term>Adhesive force</term>
<term>Adhesive force ratio</term>
<term>Adhesive forces</term>
<term>Aksak</term>
<term>Angled</term>
<term>Angled micropillars</term>
<term>Angled pillars</term>
<term>Appl</term>
<term>Attachment strength</term>
<term>Compression tension force</term>
<term>Compressive</term>
<term>Compressive direction</term>
<term>Compressive displacement</term>
<term>Contact area</term>
<term>Contact process</term>
<term>Critical cases</term>
<term>Data point</term>
<term>Donor substrate</term>
<term>Edge contact</term>
<term>Elastomer</term>
<term>Error bars</term>
<term>First part</term>
<term>Flat tips</term>
<term>Fragile parts</term>
<term>Full paper</term>
<term>Funct</term>
<term>Gecko</term>
<term>Glass slide</term>
<term>Gmbh</term>
<term>High speed</term>
<term>Interface materials</term>
<term>Intermolecular forces</term>
<term>Jeong</term>
<term>Kgaa</term>
<term>Langmuir</term>
<term>Lateral displacement</term>
<term>Lett</term>
<term>Linear stage</term>
<term>Manipulator</term>
<term>Mater</term>
<term>Maximum force</term>
<term>Maximum force values</term>
<term>Mechanical instability</term>
<term>Micropillar</term>
<term>Micropillar profile</term>
<term>Micropillars</term>
<term>Optimal speed</term>
<term>Part release</term>
<term>Phys</term>
<term>Pillar</term>
<term>Pillar micromanipulator</term>
<term>Placement control</term>
<term>Polymer</term>
<term>Proc</term>
<term>Receiver substrate</term>
<term>Release state</term>
<term>Release states</term>
<term>Retraction</term>
<term>Second part</term>
<term>Sharper switch</term>
<term>Shear displacement</term>
<term>Shear displacement control</term>
<term>Shear strength</term>
<term>Side view</term>
<term>Silicon</term>
<term>Silicon microplatelet</term>
<term>Silicon microplatelets</term>
<term>Silicon wafer</term>
<term>Single structure</term>
<term>Sitti</term>
<term>Solid lines</term>
<term>Surface viscoelasticity</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Vertical axis</term>
<term>Vertical compression</term>
<term>Vertical displacement</term>
<term>Vertical stage</term>
<term>Video</term>
<term>Viscoelastic effects</term>
<term>Visual feedback</term>
<term>Waals forces</term>
<term>Weinheim</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta biomater</term>
<term>Adhesion</term>
<term>Adhesion strength</term>
<term>Adhesive</term>
<term>Adhesive force</term>
<term>Adhesive force ratio</term>
<term>Adhesive forces</term>
<term>Aksak</term>
<term>Angled</term>
<term>Angled micropillars</term>
<term>Angled pillars</term>
<term>Appl</term>
<term>Attachment strength</term>
<term>Compression tension force</term>
<term>Compressive</term>
<term>Compressive direction</term>
<term>Compressive displacement</term>
<term>Contact area</term>
<term>Contact process</term>
<term>Critical cases</term>
<term>Data point</term>
<term>Donor substrate</term>
<term>Edge contact</term>
<term>Elastomer</term>
<term>Error bars</term>
<term>First part</term>
<term>Flat tips</term>
<term>Fragile parts</term>
<term>Full paper</term>
<term>Funct</term>
<term>Gecko</term>
<term>Glass slide</term>
<term>Gmbh</term>
<term>High speed</term>
<term>Interface materials</term>
<term>Intermolecular forces</term>
<term>Jeong</term>
<term>Kgaa</term>
<term>Langmuir</term>
<term>Lateral displacement</term>
<term>Lett</term>
<term>Linear stage</term>
<term>Manipulator</term>
<term>Mater</term>
<term>Maximum force</term>
<term>Maximum force values</term>
<term>Mechanical instability</term>
<term>Micropillar</term>
<term>Micropillar profile</term>
<term>Micropillars</term>
<term>Optimal speed</term>
<term>Part release</term>
<term>Phys</term>
<term>Pillar</term>
<term>Pillar micromanipulator</term>
<term>Placement control</term>
<term>Polymer</term>
<term>Proc</term>
<term>Receiver substrate</term>
<term>Release state</term>
<term>Release states</term>
<term>Retraction</term>
<term>Second part</term>
<term>Sharper switch</term>
<term>Shear displacement</term>
<term>Shear displacement control</term>
<term>Shear strength</term>
<term>Side view</term>
<term>Silicon</term>
<term>Silicon microplatelet</term>
<term>Silicon microplatelets</term>
<term>Silicon wafer</term>
<term>Single structure</term>
<term>Sitti</term>
<term>Solid lines</term>
<term>Surface viscoelasticity</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Vertical axis</term>
<term>Vertical compression</term>
<term>Vertical displacement</term>
<term>Vertical stage</term>
<term>Video</term>
<term>Viscoelastic effects</term>
<term>Visual feedback</term>
<term>Waals forces</term>
<term>Weinheim</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gecko‐inspired angled elastomer micropillars with flat or round tip endings are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick‐to‐release adhesive forces is measured as 39 to 1. It is found that a flat tip shape and shear displacement control provide a higher pick‐to‐release adhesion ratio than a round tip and vertical displacement control, respectively. A model of forces to serve as a framework for the operation of this micromanipulator is presented. Finally, demonstrations of pick‐and‐place manipulation of micrometer‐scale silicon microplatelets and a centimeter‐scale glass cover slip serve as proofs of the concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>angled</json:string>
<json:string>pillar</json:string>
<json:string>sitti</json:string>
<json:string>micropillar</json:string>
<json:string>micropillars</json:string>
<json:string>funct</json:string>
<json:string>shear displacement</json:string>
<json:string>appl</json:string>
<json:string>phys</json:string>
<json:string>verlag</json:string>
<json:string>gmbh</json:string>
<json:string>verlag gmbh</json:string>
<json:string>kgaa</json:string>
<json:string>weinheim</json:string>
<json:string>aksak</json:string>
<json:string>proc</json:string>
<json:string>manipulator</json:string>
<json:string>adhesive force</json:string>
<json:string>adhesion</json:string>
<json:string>gecko</json:string>
<json:string>lett</json:string>
<json:string>langmuir</json:string>
<json:string>jeong</json:string>
<json:string>elastomer</json:string>
<json:string>adhesive forces</json:string>
<json:string>polymer</json:string>
<json:string>contact area</json:string>
<json:string>shear displacement control</json:string>
<json:string>vertical compression</json:string>
<json:string>release state</json:string>
<json:string>adhesion strength</json:string>
<json:string>compressive displacement</json:string>
<json:string>adhesive force ratio</json:string>
<json:string>first part</json:string>
<json:string>mater</json:string>
<json:string>retraction</json:string>
<json:string>second part</json:string>
<json:string>shear strength</json:string>
<json:string>release states</json:string>
<json:string>glass slide</json:string>
<json:string>angled pillars</json:string>
<json:string>surface viscoelasticity</json:string>
<json:string>full paper</json:string>
<json:string>silicon</json:string>
<json:string>adhesive</json:string>
<json:string>compressive</json:string>
<json:string>vertical stage</json:string>
<json:string>linear stage</json:string>
<json:string>visual feedback</json:string>
<json:string>silicon wafer</json:string>
<json:string>flat tips</json:string>
<json:string>intermolecular forces</json:string>
<json:string>compressive direction</json:string>
<json:string>contact process</json:string>
<json:string>compression tension force</json:string>
<json:string>single structure</json:string>
<json:string>micropillar profile</json:string>
<json:string>edge contact</json:string>
<json:string>mechanical instability</json:string>
<json:string>maximum force</json:string>
<json:string>placement control</json:string>
<json:string>sharper switch</json:string>
<json:string>part release</json:string>
<json:string>attachment strength</json:string>
<json:string>angled micropillars</json:string>
<json:string>vertical axis</json:string>
<json:string>vertical displacement</json:string>
<json:string>solid lines</json:string>
<json:string>optimal speed</json:string>
<json:string>data point</json:string>
<json:string>error bars</json:string>
<json:string>maximum force values</json:string>
<json:string>silicon microplatelet</json:string>
<json:string>silicon microplatelets</json:string>
<json:string>high speed</json:string>
<json:string>fragile parts</json:string>
<json:string>interface materials</json:string>
<json:string>viscoelastic effects</json:string>
<json:string>critical cases</json:string>
<json:string>pillar micromanipulator</json:string>
<json:string>lateral displacement</json:string>
<json:string>receiver substrate</json:string>
<json:string>acta biomater</json:string>
<json:string>donor substrate</json:string>
<json:string>waals forces</json:string>
<json:string>side view</json:string>
<json:string>video</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Yiğit Mengüç</name>
<affiliations>
<json:string>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sang Yoon Yang</name>
<affiliations>
<json:string>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Seok Kim</name>
<affiliations>
<json:string>Department of Mechanical Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>John A. Rogers</name>
<affiliations>
<json:string>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Metin Sitti</name>
<affiliations>
<json:string>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA</json:string>
<json:string>E-mail: sitti@cmu.edu</json:string>
<json:string>Correspondence address: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>gecko‐inspired materials</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dry adhesion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>micromanipulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soft robotics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>elastomeric stamps</value>
</json:item>
</subject>
<articleId>
<json:string>ADFM201101783</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-1XB7B7PW-4</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Gecko‐inspired angled elastomer micropillars with flat or round tip endings are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick‐to‐release adhesive forces is measured as 39 to 1. It is found that a flat tip shape and shear displacement control provide a higher pick‐to‐release adhesion ratio than a round tip and vertical displacement control, respectively. A model of forces to serve as a framework for the operation of this micromanipulator is presented. Finally, demonstrations of pick‐and‐place manipulation of micrometer‐scale silicon microplatelets and a centimeter‐scale glass cover slip serve as proofs of the concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments.</abstract>
<qualityIndicators>
<score>9.796</score>
<pdfWordCount>6658</pdfWordCount>
<pdfCharCount>39571</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>595.276 x 793.701 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>233</abstractWordCount>
<abstractCharCount>1505</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Advanced Functional Materials</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1616-3028</json:string>
</doi>
<issn>
<json:string>1616-301X</json:string>
</issn>
<eissn>
<json:string>1616-3028</json:string>
</eissn>
<publisherId>
<json:string>ADFM</json:string>
</publisherId>
<volume>22</volume>
<issue>6</issue>
<pages>
<first>1246</first>
<last>1254</last>
<total>9</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Full Paper</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2012</json:string>
<json:string>1250</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>BJB Enterprises, Inc.</json:string>
<json:string>Microchem</json:string>
<json:string>Microchem Corp.</json:string>
<json:string>University of Illinois</json:string>
<json:string>National Instruments</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>J. Appl</json:string>
<json:string>N. Esparza</json:string>
<json:string>G. Hill</json:string>
<json:string>S. Das</json:string>
<json:string>S. Baek</json:string>
<json:string>K. Shull</json:string>
<json:string>L. Ci</json:string>
<json:string>M. Sitti</json:string>
<json:string>P. M. Ferreira</json:string>
<json:string>J. Tamelier</json:string>
<json:string>W. Zesch</json:string>
<json:string>R. Maboudian</json:string>
<json:string>M. Wilkinson</json:string>
<json:string>I. Adesida</json:string>
<json:string>J. Tuma</json:string>
<json:string>D. Soto</json:string>
<json:string>K. Johnson</json:string>
<json:string>B. Cusick</json:string>
<json:string>J. Hardie</json:string>
<json:string>A. Majumdar</json:string>
<json:string>A. Roberts</json:string>
<json:string>S. H. Lee</json:string>
<json:string>K. Autumn</json:string>
<json:string>A. Carlson</json:string>
<json:string>W. Federle</json:string>
<json:string>E. Arzt</json:string>
<json:string>S. Chary</json:string>
<json:string>L. Ge</json:string>
<json:string>Y. A. Liang</json:string>
<json:string>S. L. Elgan</json:string>
<json:string>K. L. Turner</json:string>
<json:string>X. Xiao</json:string>
<json:string>C. Majidi</json:string>
<json:string>Y. Maeno</json:string>
<json:string>J. R. Soc</json:string>
<json:string>J. Greenwood</json:string>
<json:string>M. A. Meitl</json:string>
<json:string>J. Phys</json:string>
<json:string>N. S. Pesika</json:string>
<json:string>Q. Yu</json:string>
<json:string>H. Dong</json:string>
<json:string>T. W. Kenny</json:string>
<json:string>P. Elvikis</json:string>
<json:string>H. E. Jeong</json:string>
<json:string>J. Exp</json:string>
<json:string>H. Cheng</json:string>
<json:string>S. T. Hsieh</json:string>
<json:string>M. Barquins</json:string>
<json:string>R. G. Nuzzo</json:string>
<json:string>P. Kim</json:string>
<json:string>B. Aksak</json:string>
<json:string>J. Vac</json:string>
<json:string>A. Cassell</json:string>
<json:string>Nano Lett</json:string>
<json:string>V. Kumar</json:string>
<json:string>Lee</json:string>
<json:string>S. Elgan</json:string>
<json:string>I. V. Grigorieva</json:string>
<json:string>M. Cutkosky</json:string>
<json:string>K. J. Lee</json:string>
<json:string>G. Whitesides</json:string>
<json:string>T. Kenny</json:string>
<json:string>Y. Zhao</json:string>
<json:string>J. Suhan</json:string>
<json:string>W. G. Bae</json:string>
<json:string>J. Lee</json:string>
<json:string>Z. Liu</json:string>
<json:string>H. N. Kim</json:string>
<json:string>A. Kovalsky</json:string>
<json:string>T. Zhu</json:string>
<json:string>A. D. Lees</json:string>
<json:string>M. Varenberg</json:string>
<json:string>L. Delzeit</json:string>
<json:string>W. R. Hansen</json:string>
<json:string>A. Jagota</json:string>
<json:string>S. Y. Shapoval</json:string>
<json:string>P. Glass</json:string>
<json:string>S. V. Dubonos</json:string>
<json:string>A. A. Zhukov</json:string>
<json:string>N. Ahmed</json:string>
<json:string>A. Peressadko</json:string>
<json:string>D. J. Aneshansley</json:string>
<json:string>S. Gorb</json:string>
<json:string>A. Nese</json:string>
<json:string>S. H. Moon</json:string>
<json:string>W. Chen</json:string>
<json:string>Y. Y. Huang</json:string>
<json:string>A. V. Spuskanyuk</json:string>
<json:string>N. R. Washburn</json:string>
<json:string>T. Tong</json:string>
<json:string>Karl Suss</json:string>
<json:string>S. Y. Yang</json:string>
<json:string>D. Dudek</json:string>
<json:string>J. Adhes</json:string>
<json:string>Metin Sitti</json:string>
<json:string>P. M. Ajayan</json:string>
<json:string>V. S. Deshpande</json:string>
<json:string>J. Chen</json:string>
<json:string>T. Kowalewski</json:string>
<json:string>M. Meyyappan</json:string>
<json:string>A. Parness</json:string>
<json:string>C. Chitaphan</json:string>
<json:string>J. Wu</json:string>
<json:string>J. Li</json:string>
<json:string>Y. Hui</json:string>
<json:string>D. Maugis</json:string>
<json:string>N. Gravish</json:string>
<json:string>M. P. Murphy</json:string>
<json:string>J. N. Israelachvili</json:string>
<json:string>H. Chung</json:string>
<json:string>N. J. Glassmaker</json:string>
<json:string>Y. Huang</json:string>
<json:string>S. Sponberg</json:string>
<json:string>K. Y. Suh</json:string>
<json:string>J. Kim-Lee</json:string>
<json:string>S. Kim</json:string>
<json:string>M. Spenko</json:string>
<json:string>X. Feng</json:string>
<json:string>A. M. Peattie</json:string>
<json:string>T. Eisner</json:string>
<json:string>T. Xie</json:string>
<json:string>B. Bush</json:string>
<json:string>C. Greiner</json:string>
<json:string>A. K. Geim</json:string>
<json:string>R. Soc</json:string>
<json:string>R. Groff</json:string>
<json:string>R. M. McMeeking</json:string>
<json:string>S. Jung</json:string>
<json:string>Y. Mengüç</json:string>
<json:string>S. Sethi</json:string>
<json:string>S. H. Jin</json:string>
<json:string>K. Kendall</json:string>
<json:string>K. T. Turner</json:string>
<json:string>K. Lee</json:string>
<json:string>Y. Xia</json:string>
<json:string>A. Kashani</json:string>
<json:string>S. Hsieh</json:string>
<json:string>J. Yu</json:string>
<json:string>B. Schubert</json:string>
</persName>
<placeName>
<json:string>Santos</json:string>
<json:string>Newport</json:string>
<json:string>PA</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[4]</json:string>
<json:string>Murphy et al.[28]</json:string>
<json:string>[29]</json:string>
<json:string>[33]</json:string>
<json:string>[17]</json:string>
<json:string>[1]</json:string>
<json:string>[16]</json:string>
<json:string>Autumn et al.[3]</json:string>
<json:string>Jeong et al.</json:string>
<json:string>Aksak et al.[15]</json:string>
<json:string>[41]</json:string>
<json:string>Carlson et al.[34]</json:string>
<json:string>Zhao et al.[26]</json:string>
<json:string>Kim et al.</json:string>
<json:string>[46]</json:string>
<json:string>Kim et al.[33]</json:string>
<json:string>Jeong et al.[16]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-1XB7B7PW-4</json:string>
</ark>
<categories>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1002/adfm.201101783</json:string>
</doi>
<id>EE318C056AFF5417A067D8C2FA20DF6EB7F58669</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/EE318C056AFF5417A067D8C2FA20DF6EB7F58669/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/EE318C056AFF5417A067D8C2FA20DF6EB7F58669/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/EE318C056AFF5417A067D8C2FA20DF6EB7F58669/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<availability>
<licence>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</licence>
</availability>
<date type="published" when="2012-03-21"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Yiğit</forename>
<surname>Mengüç</surname>
</persName>
<affiliation>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Sang Yoon</forename>
<surname>Yang</surname>
</persName>
<affiliation>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Seok</forename>
<surname>Kim</surname>
</persName>
<affiliation>Department of Mechanical Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">John A.</forename>
<surname>Rogers</surname>
</persName>
<affiliation>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004" role="corresp">
<persName>
<forename type="first">Metin</forename>
<surname>Sitti</surname>
</persName>
<email>sitti@cmu.edu</email>
<affiliation>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</affiliation>
</author>
<idno type="istex">EE318C056AFF5417A067D8C2FA20DF6EB7F58669</idno>
<idno type="ark">ark:/67375/WNG-1XB7B7PW-4</idno>
<idno type="DOI">10.1002/adfm.201101783</idno>
<idno type="unit">ADFM201101783</idno>
<idno type="toTypesetVersion">file:ADFM.ADFM201101783.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Advanced Functional Materials</title>
<title level="j" type="alt">ADVANCED FUNCTIONAL MATERIALS</title>
<idno type="pISSN">1616-301X</idno>
<idno type="eISSN">1616-3028</idno>
<idno type="book-DOI">10.1002/(ISSN)1616-3028</idno>
<idno type="book-part-DOI">10.1002/adfm.v22.6</idno>
<idno type="product">ADFM</idno>
<imprint>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1246">1246</biblScope>
<biblScope unit="page" to="1254">1254</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2012-03-21"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Gecko‐inspired angled elastomer micropillars with flat or round tip endings are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick‐to‐release adhesive forces is measured as 39 to 1. It is found that a flat tip shape and shear displacement control provide a higher pick‐to‐release adhesion ratio than a round tip and vertical displacement control, respectively. A model of forces to serve as a framework for the operation of this micromanipulator is presented. Finally, demonstrations of pick‐and‐place manipulation of micrometer‐scale silicon microplatelets and a centimeter‐scale glass cover slip serve as proofs of the concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments.</p>
</abstract>
<abstract xml:lang="en" style="graphical">
<p>
<hi rend="bold">Gecko‐inspired angled elastomer micropillars with flat or round tip endings</hi>
are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. Through shear displacement control, pick‐to‐release attachment force ratios of 39 to 1 are achieved and micromanipulation is demonstrated.
<figure type="box">
<media mimeType="image" url="urn:x-wiley:1616301X:media:ADFM201101783:content"></media>
</figure>
</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">gecko‐inspired materials</term>
<term xml:id="kwd2">dry adhesion</term>
<term xml:id="kwd3">micromanipulation</term>
<term xml:id="kwd4">soft robotics</term>
<term xml:id="kwd5">elastomeric stamps</term>
</keywords>
<keywords rend="articleCategory">
<term>Full Paper</term>
</keywords>
<keywords rend="tocHeading1">
<term>Full Papers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/EE318C056AFF5417A067D8C2FA20DF6EB7F58669/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>WILEY‐VCH Verlag</publisherName>
<publisherLoc>Weinheim</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1616-3028</doi>
<issn type="print">1616-301X</issn>
<issn type="electronic">1616-3028</issn>
<idGroup>
<id type="product" value="ADFM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="ADVANCED FUNCTIONAL MATERIALS">Advanced Functional Materials</title>
<title type="short">Adv. Funct. Mater.</title>
</titleGroup>
<selfCitationGroup>
<citation type="ancestor" xml:id="cit1">
<journalTitle>Advanced Materials for Optics and Electronics</journalTitle>
<accessionId ref="info:x-wiley/issn/10579257">1057-9257</accessionId>
<pubYear year="2000">2000</pubYear>
<vol>10</vol>
<issue>6</issue>
</citation>
</selfCitationGroup>
</publicationMeta>
<publicationMeta level="part" position="60">
<doi origin="wiley" registered="yes">10.1002/adfm.v22.6</doi>
<numberingGroup>
<numbering type="journalVolume" number="22">22</numbering>
<numbering type="journalIssue">6</numbering>
</numberingGroup>
<coverDate startDate="2012-03-21">March 21, 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="26" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/adfm.201101783</doi>
<idGroup>
<id type="unit" value="ADFM201101783"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Full Paper</title>
<title type="tocHeading1">Full Papers</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-08-01"></event>
<event type="manuscriptRevised" date="2011-11-16"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.3 standalone mode:FullText mathml2tex" date="2012-03-14"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2012-01-19"></event>
<event type="firstOnline" date="2012-01-19"></event>
<event type="publishedOnlineFinalForm" date="2012-03-14"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2013-12-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1246</numbering>
<numbering type="pageLast">1254</numbering>
</numberingGroup>
<correspondenceTo>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:ADFM.ADFM201101783.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="referenceTotal" number="48"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Yiğit</givenNames>
<familyName>Mengüç</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Sang Yoon</givenNames>
<familyName>Yang</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Seok</givenNames>
<familyName>Kim</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>John A.</givenNames>
<familyName>Rogers</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Metin</givenNames>
<familyName>Sitti</familyName>
</personName>
<contactDetails>
<email>sitti@cmu.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="US" type="organization">
<unparsedAffiliation>Department of Mechanical Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">gecko‐inspired materials</keyword>
<keyword xml:id="kwd2">dry adhesion</keyword>
<keyword xml:id="kwd3">micromanipulation</keyword>
<keyword xml:id="kwd4">soft robotics</keyword>
<keyword xml:id="kwd5">elastomeric stamps</keyword>
</keywordGroup>
<supportingInformation>
<p>Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer‐reviewed, but not copy‐edited or typeset. They are made available as submitted by the authors. </p>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:1616301X:media:adfm201101783:adfm_201101783_sm_Movie001"></mediaResource>
<caption>Movie001</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:1616301X:media:adfm201101783:adfm_201101783_sm_Movie002"></mediaResource>
<caption>Movie002</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:1616301X:media:adfm201101783:adfm_201101783_sm_suppl"></mediaResource>
<caption>suppl</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Gecko‐inspired angled elastomer micropillars with flat or round tip endings are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick‐to‐release adhesive forces is measured as 39 to 1. It is found that a flat tip shape and shear displacement control provide a higher pick‐to‐release adhesion ratio than a round tip and vertical displacement control, respectively. A model of forces to serve as a framework for the operation of this micromanipulator is presented. Finally, demonstrations of pick‐and‐place manipulation of micrometer‐scale silicon microplatelets and a centimeter‐scale glass cover slip serve as proofs of the concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments.</p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>
<b>Gecko‐inspired angled elastomer micropillars with flat or round tip endings</b>
are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. Through shear displacement control, pick‐to‐release attachment force ratios of 39 to 1 are achieved and micromanipulation is demonstrated.
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" eRights="yes" copyright="WILEY-VCH" href="urn:x-wiley:1616301X:media:ADFM201101783:content"></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yiğit</namePart>
<namePart type="family">Mengüç</namePart>
<affiliation>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sang Yoon</namePart>
<namePart type="family">Yang</namePart>
<affiliation>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seok</namePart>
<namePart type="family">Kim</namePart>
<affiliation>Department of Mechanical Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John A.</namePart>
<namePart type="family">Rogers</namePart>
<affiliation>Department of Materials Science and Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL 61801, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Metin</namePart>
<namePart type="family">Sitti</namePart>
<affiliation>Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA</affiliation>
<affiliation>E-mail: sitti@cmu.edu</affiliation>
<affiliation>Correspondence address: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>WILEY‐VCH Verlag</publisher>
<place>
<placeTerm type="text">Weinheim</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-03-21</dateIssued>
<dateCaptured encoding="w3cdtf">2011-08-01</dateCaptured>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">9</extent>
<extent unit="references">48</extent>
</physicalDescription>
<abstract lang="en">Gecko‐inspired angled elastomer micropillars with flat or round tip endings are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick‐to‐release adhesive forces is measured as 39 to 1. It is found that a flat tip shape and shear displacement control provide a higher pick‐to‐release adhesion ratio than a round tip and vertical displacement control, respectively. A model of forces to serve as a framework for the operation of this micromanipulator is presented. Finally, demonstrations of pick‐and‐place manipulation of micrometer‐scale silicon microplatelets and a centimeter‐scale glass cover slip serve as proofs of the concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments.</abstract>
<abstract>Gecko‐inspired angled elastomer micropillars with flat or round tip endings are presented as compliant pick‐and‐place micromanipulators. The pillars are 35 μm in diameter, 90 μm tall, and angled at an inclination of 20°. Through shear displacement control, pick‐to‐release attachment force ratios of 39 to 1 are achieved and micromanipulation is demonstrated.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>gecko‐inspired materials</topic>
<topic>dry adhesion</topic>
<topic>micromanipulation</topic>
<topic>soft robotics</topic>
<topic>elastomeric stamps</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Advanced Functional Materials</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Adv. Funct. Mater.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<note type="content"> Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer‐reviewed, but not copy‐edited or typeset. They are made available as submitted by the authors.Supporting Info Item: Movie001 - Movie002 - suppl - </note>
<subject>
<genre>article-category</genre>
<topic>Full Paper</topic>
</subject>
<identifier type="ISSN">1616-301X</identifier>
<identifier type="eISSN">1616-3028</identifier>
<identifier type="DOI">10.1002/(ISSN)1616-3028</identifier>
<identifier type="PublisherID">ADFM</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>1246</start>
<end>1254</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<relatedItem type="preceding">
<titleInfo>
<title>Advanced Materials for Optics and Electronics</title>
</titleInfo>
<identifier type="ISSN">1057-9257</identifier>
<part>
<date point="end">2000</date>
<detail type="volume">
<caption>last vol.</caption>
<number>10</number>
</detail>
<detail type="issue">
<caption>last no.</caption>
<number>6</number>
</detail>
</part>
</relatedItem>
<identifier type="istex">EE318C056AFF5417A067D8C2FA20DF6EB7F58669</identifier>
<identifier type="ark">ark:/67375/WNG-1XB7B7PW-4</identifier>
<identifier type="DOI">10.1002/adfm.201101783</identifier>
<identifier type="ArticleID">ADFM201101783</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>WILEY‐VCH Verlag</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/EE318C056AFF5417A067D8C2FA20DF6EB7F58669/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003892 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003892 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:EE318C056AFF5417A067D8C2FA20DF6EB7F58669
   |texte=   Gecko‐Inspired Controllable Adhesive Structures Applied to Micromanipulation
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021