La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ataxin-3 and its e3 partners: implications for machado-joseph disease.

Identifieur interne : 000951 ( PubMed/Checkpoint ); précédent : 000950; suivant : 000952

Ataxin-3 and its e3 partners: implications for machado-joseph disease.

Auteurs : Thomas M. Durcan [Canada] ; Edward A. Fon

Source :

RBID : pubmed:23653622

Abstract

Machado-Joseph disease (MJD) is the most common dominant inherited ataxia worldwide, caused by an unstable CAG trinucleotide expansion mutation within the SCA3 gene resulting in an expanded polyglutamine tract within the ataxin-3 protein. Ataxin-3 functions as a deubiquitinating enzyme (DUB), within the Ub system and whilst many DUBs are known to partner with and deubiquitinate specific E3-Ub ligases, ataxin-3 had no identified E3 partner until recent studies implicated parkin and CHIP, two neuroprotective E3 ligases. MJD often presents with symptoms of Parkinson disease (PD), which led to identification of parkin as a novel E3-Ub ligase whose activity was regulated by ataxin-3-mediated deubiquitination. Findings from these studies also revealed an unexpected convergence upon the E2-Ub-conjugating enzyme in the regulation of an E3/DUBenzyme pair. Moreover, mutant but not wild-type ataxin-3 promotes the clearance of parkin via the autophagy pathway, raising the intriguing possibility that increased turnover of parkin may contribute to the pathogenesis of MJD and help explain some of the Parkinsonian features in MJD. In addition to parkin, the U-box E3 ligase CHIP, a neuroprotective E3 implicated in protein quality control, was identified as a second E3 partner of ataxin-3, with ataxin-3 regulating the ability of CHIP to ubiquitinate itself. Indeed, ataxin-3 not only deubiquitinated CHIP, but also trimmed Ub conjugates on CHIP substrates, thereby regulating the length of Ub chains. Interestingly, when expanded ataxin-3 was present, CHIP levels were also reduced in the brains of MJD transgenic mice, raising the possibility that loss of one or both E3 partners may be a contributing factor in the pathogenesis of SCA3. In this review we discuss the implications from these studies and describe the importance of these findings in helping us understand the molecular processes involved in SCA3 and other neurodegenerative disorders.

DOI: 10.3389/fneur.2013.00046
PubMed: 23653622


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23653622

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ataxin-3 and its e3 partners: implications for machado-joseph disease.</title>
<author>
<name sortKey="Durcan, Thomas M" sort="Durcan, Thomas M" uniqKey="Durcan T" first="Thomas M" last="Durcan">Thomas M. Durcan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology and Neurosurgery, Centre for Neuronal Survival and McGill Parkinson Program, Montreal Neurological Institute, McGill University Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Neurology and Neurosurgery, Centre for Neuronal Survival and McGill Parkinson Program, Montreal Neurological Institute, McGill University Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fon, Edward A" sort="Fon, Edward A" uniqKey="Fon E" first="Edward A" last="Fon">Edward A. Fon</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23653622</idno>
<idno type="pmid">23653622</idno>
<idno type="doi">10.3389/fneur.2013.00046</idno>
<idno type="wicri:Area/PubMed/Corpus">000920</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000920</idno>
<idno type="wicri:Area/PubMed/Curation">000920</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000920</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000920</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000920</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ataxin-3 and its e3 partners: implications for machado-joseph disease.</title>
<author>
<name sortKey="Durcan, Thomas M" sort="Durcan, Thomas M" uniqKey="Durcan T" first="Thomas M" last="Durcan">Thomas M. Durcan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology and Neurosurgery, Centre for Neuronal Survival and McGill Parkinson Program, Montreal Neurological Institute, McGill University Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Neurology and Neurosurgery, Centre for Neuronal Survival and McGill Parkinson Program, Montreal Neurological Institute, McGill University Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fon, Edward A" sort="Fon, Edward A" uniqKey="Fon E" first="Edward A" last="Fon">Edward A. Fon</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in neurology</title>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Machado-Joseph disease (MJD) is the most common dominant inherited ataxia worldwide, caused by an unstable CAG trinucleotide expansion mutation within the SCA3 gene resulting in an expanded polyglutamine tract within the ataxin-3 protein. Ataxin-3 functions as a deubiquitinating enzyme (DUB), within the Ub system and whilst many DUBs are known to partner with and deubiquitinate specific E3-Ub ligases, ataxin-3 had no identified E3 partner until recent studies implicated parkin and CHIP, two neuroprotective E3 ligases. MJD often presents with symptoms of Parkinson disease (PD), which led to identification of parkin as a novel E3-Ub ligase whose activity was regulated by ataxin-3-mediated deubiquitination. Findings from these studies also revealed an unexpected convergence upon the E2-Ub-conjugating enzyme in the regulation of an E3/DUBenzyme pair. Moreover, mutant but not wild-type ataxin-3 promotes the clearance of parkin via the autophagy pathway, raising the intriguing possibility that increased turnover of parkin may contribute to the pathogenesis of MJD and help explain some of the Parkinsonian features in MJD. In addition to parkin, the U-box E3 ligase CHIP, a neuroprotective E3 implicated in protein quality control, was identified as a second E3 partner of ataxin-3, with ataxin-3 regulating the ability of CHIP to ubiquitinate itself. Indeed, ataxin-3 not only deubiquitinated CHIP, but also trimmed Ub conjugates on CHIP substrates, thereby regulating the length of Ub chains. Interestingly, when expanded ataxin-3 was present, CHIP levels were also reduced in the brains of MJD transgenic mice, raising the possibility that loss of one or both E3 partners may be a contributing factor in the pathogenesis of SCA3. In this review we discuss the implications from these studies and describe the importance of these findings in helping us understand the molecular processes involved in SCA3 and other neurodegenerative disorders.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23653622</PMID>
<DateCreated>
<Year>2013</Year>
<Month>05</Month>
<Day>08</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in neurology</Title>
<ISOAbbreviation>Front Neurol</ISOAbbreviation>
</Journal>
<ArticleTitle>Ataxin-3 and its e3 partners: implications for machado-joseph disease.</ArticleTitle>
<Pagination>
<MedlinePgn>46</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fneur.2013.00046</ELocationID>
<Abstract>
<AbstractText>Machado-Joseph disease (MJD) is the most common dominant inherited ataxia worldwide, caused by an unstable CAG trinucleotide expansion mutation within the SCA3 gene resulting in an expanded polyglutamine tract within the ataxin-3 protein. Ataxin-3 functions as a deubiquitinating enzyme (DUB), within the Ub system and whilst many DUBs are known to partner with and deubiquitinate specific E3-Ub ligases, ataxin-3 had no identified E3 partner until recent studies implicated parkin and CHIP, two neuroprotective E3 ligases. MJD often presents with symptoms of Parkinson disease (PD), which led to identification of parkin as a novel E3-Ub ligase whose activity was regulated by ataxin-3-mediated deubiquitination. Findings from these studies also revealed an unexpected convergence upon the E2-Ub-conjugating enzyme in the regulation of an E3/DUBenzyme pair. Moreover, mutant but not wild-type ataxin-3 promotes the clearance of parkin via the autophagy pathway, raising the intriguing possibility that increased turnover of parkin may contribute to the pathogenesis of MJD and help explain some of the Parkinsonian features in MJD. In addition to parkin, the U-box E3 ligase CHIP, a neuroprotective E3 implicated in protein quality control, was identified as a second E3 partner of ataxin-3, with ataxin-3 regulating the ability of CHIP to ubiquitinate itself. Indeed, ataxin-3 not only deubiquitinated CHIP, but also trimmed Ub conjugates on CHIP substrates, thereby regulating the length of Ub chains. Interestingly, when expanded ataxin-3 was present, CHIP levels were also reduced in the brains of MJD transgenic mice, raising the possibility that loss of one or both E3 partners may be a contributing factor in the pathogenesis of SCA3. In this review we discuss the implications from these studies and describe the importance of these findings in helping us understand the molecular processes involved in SCA3 and other neurodegenerative disorders.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Durcan</LastName>
<ForeName>Thomas M</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology and Neurosurgery, Centre for Neuronal Survival and McGill Parkinson Program, Montreal Neurological Institute, McGill University Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fon</LastName>
<ForeName>Edward A</ForeName>
<Initials>EA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Neurol</MedlineTA>
<NlmUniqueID>101546899</NlmUniqueID>
<ISSNLinking>1664-2295</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Aug 17;287(34):28576-85</RefSource>
<PMID Version="1">22761419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 Dec 10;285(50):39303-13</RefSource>
<PMID Version="1">20943656</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Jan 20;287(4):2317-27</RefSource>
<PMID Version="1">22069321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10493-8</RefSource>
<PMID Version="1">16020535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2000 Jul;25(3):302-5</RefSource>
<PMID Version="1">10888878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Nov 30;276(48):44889-97</RefSource>
<PMID Version="1">11572863</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Neurol. 2011 Oct 24;11:131</RefSource>
<PMID Version="1">22023810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2000 Oct;165(2):248-56</RefSource>
<PMID Version="1">10993685</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2012 Feb;1822(2):139-49</RefSource>
<PMID Version="1">22037589</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2012 Feb;1822(2):101-10</RefSource>
<PMID Version="1">22080977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Aug 5;430(7000):694-9</RefSource>
<PMID Version="1">15258597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2003 Sep;23 (18):6469-83</RefSource>
<PMID Version="1">12944474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Jun 2;474(7349):105-8</RefSource>
<PMID Version="1">21532592</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 1994 Nov;8(3):221-8</RefSource>
<PMID Version="1">7874163</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2008 May;30(2):190-200</RefSource>
<PMID Version="1">18353661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Mar 25;280(12 ):11635-40</RefSource>
<PMID Version="1">15664989</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Autophagy. 2011 Feb;7(2):233-4</RefSource>
<PMID Version="1">21116127</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Res. 2009 Jun;87(8):1884-91</RefSource>
<PMID Version="1">19185026</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Jan 2;287(1):531-41</RefSource>
<PMID Version="1">22081612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Mar 22;102(12 ):4330-5</RefSource>
<PMID Version="1">15767577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Nov 23;480(7378):543-6</RefSource>
<PMID Version="1">22113611</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2011 Jan 1;20(1):141-54</RefSource>
<PMID Version="1">20940148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2003 Dec 1;12 (23 ):3195-205</RefSource>
<PMID Version="1">14559776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2010 Sep 24;400(3):389-95</RefSource>
<PMID Version="1">20800574</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 Jun 13;278(24):22044-55</RefSource>
<PMID Version="1">12676955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2000 Jul;74(14 ):6408-17</RefSource>
<PMID Version="1">10864652</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2011 Aug 19;43(4):599-612</RefSource>
<PMID Version="1">21855799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 2001 Feb;58(2):296-9</RefSource>
<PMID Version="1">11176969</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2003 Nov 1;12 (21):2845-52</RefSource>
<PMID Version="1">12944423</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurodegener Dis. 2013;11(4):206-14</RefSource>
<PMID Version="1">22832131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mitochondrion. 2011 Jan;11(1):139-46</RefSource>
<PMID Version="1">20851218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8892-7</RefSource>
<PMID Version="1">12857950</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 1997 Aug;19(2):333-44</RefSource>
<PMID Version="1">9292723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Traffic. 2008 Jul;9(7):1130-45</RefSource>
<PMID Version="1">18410486</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2008 Dec 1;183(5):795-803</RefSource>
<PMID Version="1">19029340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2013 Jan 21;200(2):163-72</RefSource>
<PMID Version="1">23319602</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Sep 26;283(39):26436-43</RefSource>
<PMID Version="1">18599482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2002 Oct 18;111(2):209-18</RefSource>
<PMID Version="1">12408865</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2009 Jan 1;18(1):27-42</RefSource>
<PMID Version="1">18824496</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochimie. 2008 Feb;90(2):270-83</RefSource>
<PMID Version="1">17961905</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC3644722</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CHIP</Keyword>
<Keyword MajorTopicYN="N">Machado–Joseph disease</Keyword>
<Keyword MajorTopicYN="N">Parkinson’s disease</Keyword>
<Keyword MajorTopicYN="N">ataxin-3</Keyword>
<Keyword MajorTopicYN="N">parkin</Keyword>
<Keyword MajorTopicYN="N">polyglutamine expansion</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23653622</ArticleId>
<ArticleId IdType="doi">10.3389/fneur.2013.00046</ArticleId>
<ArticleId IdType="pmc">PMC3644722</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fon, Edward A" sort="Fon, Edward A" uniqKey="Fon E" first="Edward A" last="Fon">Edward A. Fon</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Durcan, Thomas M" sort="Durcan, Thomas M" uniqKey="Durcan T" first="Thomas M" last="Durcan">Thomas M. Durcan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000951 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000951 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23653622
   |texte=   Ataxin-3 and its e3 partners: implications for machado-joseph disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23653622" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022