La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: A pet study of resting-state glucose metabolism

Identifieur interne : 000C17 ( PascalFrancis/Corpus ); précédent : 000C16; suivant : 000C18

Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: A pet study of resting-state glucose metabolism

Auteurs : M. Fukuda ; M. J. Mentis ; Y. Ma ; V. Dhawan ; A. Antonini ; A. E. Lang ; A. M. Lozano ; J. Hammerstad ; K. Lyons ; W. C. Koller ; J. R. Moeller ; D. Eidelberg

Source :

RBID : Pascal:01-0400778

Descripteurs français

English descriptors

Abstract

Employing [18F]fluorodeoxyglucose (FDG) and PET, we have found previously that stereotaxic ablation of the internal globus pallidus (GPi) for Parkinson's disease causes resting metabolic changes in brain regions remote from the lesion site. In this study we determined whether similar metabolic changes occur in Parkinson's disease patients treated with deep brain stimulation (DBS) of the GPi. We studied seven Parkinson's disease patients with FDG-PET to measure resting regional cerebral glucose utilization on and off GPi stimulation. We used statistical parametric mapping to identify significant changes in regional brain metabolism that occurred with this intervention. We also quantified stimulation-related changes in the expression of a specific abnormal Parkinson's disease-related pattern of metabolic covariation (PDRP) that had been identified in earlier FDG-PET studies. Metabolic changes with DBS were correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings off medication. GPi DBS improved UPDRS motor ratings (36%, P < 0.001) and significantly increased regional glucose metabolism in the premotor cortex ipsilateral to stimulation and in the cerebellum bilaterally. GPi DBS also resulted in a significant (P < 0.01) decline in PDRP activity ipsilateral to stimulation, which correlated significantly with clinical improvement in UPDRS motor ratings (P < 0.03). Clinical improvement with GPi DBS is associated with reduced expression of an abnormal Parkinson's disease-related metabolic network involving elements of the cortico-striato-pallido-thalamocortical and the cerebello-cortical motor loops.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0006-8950
A03   1    @0 Brain
A05       @2 124
A06       @3 p.8
A08 01  1  ENG  @1 Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: A pet study of resting-state glucose metabolism
A11 01  1    @1 FUKUDA (M.)
A11 02  1    @1 MENTIS (M. J.)
A11 03  1    @1 MA (Y.)
A11 04  1    @1 DHAWAN (V.)
A11 05  1    @1 ANTONINI (A.)
A11 06  1    @1 LANG (A. E.)
A11 07  1    @1 LOZANO (A. M.)
A11 08  1    @1 HAMMERSTAD (J.)
A11 09  1    @1 LYONS (K.)
A11 10  1    @1 KOLLER (W. C.)
A11 11  1    @1 MOELLER (J. R.)
A11 12  1    @1 EIDELBERG (D.)
A14 01      @1 Center for Neurosciences, North Shore-Long Island Jewish Research Institute @2 Manhasset @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 12 aut.
A14 02      @1 Department of Neurology, New York University School of Medicine @2 New York @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 12 aut.
A14 03      @1 Toronto Western Hospital @2 Toronto, Ontario @3 CAN @Z 6 aut. @Z 7 aut.
A14 04      @1 Department of Neurology, Oregon Health Science University @2 Portland, Oregon @3 USA @Z 8 aut.
A14 05      @1 University of Miami Medical Center @2 Miami, Florida @3 USA @Z 9 aut. @Z 10 aut.
A14 06      @1 Department of Psychiatry, Columbia College of Physicians and Surgeons @2 New York @3 USA @Z 11 aut.
A20       @1 1601-1609
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 998 @5 354000098620390120
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 01-0400778
A60       @1 P
A61       @0 A
A64 01  1    @0 Brain
A66 01      @0 GBR
C01 01    ENG  @0 Employing [18F]fluorodeoxyglucose (FDG) and PET, we have found previously that stereotaxic ablation of the internal globus pallidus (GPi) for Parkinson's disease causes resting metabolic changes in brain regions remote from the lesion site. In this study we determined whether similar metabolic changes occur in Parkinson's disease patients treated with deep brain stimulation (DBS) of the GPi. We studied seven Parkinson's disease patients with FDG-PET to measure resting regional cerebral glucose utilization on and off GPi stimulation. We used statistical parametric mapping to identify significant changes in regional brain metabolism that occurred with this intervention. We also quantified stimulation-related changes in the expression of a specific abnormal Parkinson's disease-related pattern of metabolic covariation (PDRP) that had been identified in earlier FDG-PET studies. Metabolic changes with DBS were correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings off medication. GPi DBS improved UPDRS motor ratings (36%, P < 0.001) and significantly increased regional glucose metabolism in the premotor cortex ipsilateral to stimulation and in the cerebellum bilaterally. GPi DBS also resulted in a significant (P < 0.01) decline in PDRP activity ipsilateral to stimulation, which correlated significantly with clinical improvement in UPDRS motor ratings (P < 0.03). Clinical improvement with GPi DBS is associated with reduced expression of an abnormal Parkinson's disease-related metabolic network involving elements of the cortico-striato-pallido-thalamocortical and the cerebello-cortical motor loops.
C02 01  X    @0 002B17G
C03 01  X  FRE  @0 Parkinson maladie @5 01
C03 01  X  ENG  @0 Parkinson disease @5 01
C03 01  X  SPA  @0 Parkinson enfermedad @5 01
C03 02  X  FRE  @0 Tomoscintigraphie @5 04
C03 02  X  ENG  @0 Emission tomography @5 04
C03 02  X  SPA  @0 Tomocentelleografía @5 04
C03 03  X  FRE  @0 Positon @5 05
C03 03  X  ENG  @0 Positron @5 05
C03 03  X  SPA  @0 Positrón @5 05
C03 04  X  FRE  @0 Stimulation instrumentale @5 07
C03 04  X  ENG  @0 Instrumental stimulation @5 07
C03 04  X  SPA  @0 Estimulación instrumental @5 07
C03 05  X  FRE  @0 Pallidum @5 10
C03 05  X  ENG  @0 Pallidum @5 10
C03 05  X  SPA  @0 Pallidum @5 10
C03 06  X  FRE  @0 Métabolisme @5 13
C03 06  X  ENG  @0 Metabolism @5 13
C03 06  X  SPA  @0 Metabolismo @5 13
C03 07  X  FRE  @0 Glucose @2 NK @5 14
C03 07  X  ENG  @0 Glucose @2 NK @5 14
C03 07  X  SPA  @0 Glucosa @2 NK @5 14
C03 08  X  FRE  @0 Exploration @5 17
C03 08  X  ENG  @0 Exploration @5 17
C03 08  X  SPA  @0 Exploración @5 17
C03 09  X  FRE  @0 Homme @5 20
C03 09  X  ENG  @0 Human @5 20
C03 09  X  SPA  @0 Hombre @5 20
C07 01  X  FRE  @0 Système nerveux pathologie @5 37
C07 01  X  ENG  @0 Nervous system diseases @5 37
C07 01  X  SPA  @0 Sistema nervioso patología @5 37
C07 02  X  FRE  @0 Système nerveux central pathologie @5 38
C07 02  X  ENG  @0 Central nervous system disease @5 38
C07 02  X  SPA  @0 Sistema nervosio central patología @5 38
C07 03  X  FRE  @0 Encéphale pathologie @5 39
C07 03  X  ENG  @0 Cerebral disorder @5 39
C07 03  X  SPA  @0 Encéfalo patología @5 39
C07 04  X  FRE  @0 Extrapyramidal syndrome @5 40
C07 04  X  ENG  @0 Extrapyramidal syndrome @5 40
C07 04  X  SPA  @0 Extrapiramidal síndrome @5 40
C07 05  X  FRE  @0 Maladie dégénérative @5 41
C07 05  X  ENG  @0 Degenerative disease @5 41
C07 05  X  SPA  @0 Enfermedad degenerativa @5 41
C07 06  X  FRE  @0 Exploration radioisotopique @5 45
C07 06  X  ENG  @0 Radionuclide study @5 45
C07 06  X  SPA  @0 Exploración radioisotópica @5 45
C07 07  X  FRE  @0 Traitement instrumental @5 53
C07 07  X  ENG  @0 Instrumentation therapy @5 53
C07 07  X  SPA  @0 Tratamiento instrumental @5 53
C07 08  X  FRE  @0 Encéphale @5 61
C07 08  X  ENG  @0 Brain (vertebrata) @5 61
C07 08  X  SPA  @0 Encéfalo @5 61
N21       @1 281

Format Inist (serveur)

NO : PASCAL 01-0400778 INIST
ET : Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: A pet study of resting-state glucose metabolism
AU : FUKUDA (M.); MENTIS (M. J.); MA (Y.); DHAWAN (V.); ANTONINI (A.); LANG (A. E.); LOZANO (A. M.); HAMMERSTAD (J.); LYONS (K.); KOLLER (W. C.); MOELLER (J. R.); EIDELBERG (D.)
AF : Center for Neurosciences, North Shore-Long Island Jewish Research Institute/Manhasset/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 12 aut.); Department of Neurology, New York University School of Medicine/New York/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 12 aut.); Toronto Western Hospital/Toronto, Ontario/Canada (6 aut., 7 aut.); Department of Neurology, Oregon Health Science University/Portland, Oregon/Etats-Unis (8 aut.); University of Miami Medical Center/Miami, Florida/Etats-Unis (9 aut., 10 aut.); Department of Psychiatry, Columbia College of Physicians and Surgeons/New York/Etats-Unis (11 aut.)
DT : Publication en série; Niveau analytique
SO : Brain; ISSN 0006-8950; Royaume-Uni; Da. 2001; Vol. 124; No. p.8; Pp. 1601-1609; Bibl. 1 p.1/4
LA : Anglais
EA : Employing [18F]fluorodeoxyglucose (FDG) and PET, we have found previously that stereotaxic ablation of the internal globus pallidus (GPi) for Parkinson's disease causes resting metabolic changes in brain regions remote from the lesion site. In this study we determined whether similar metabolic changes occur in Parkinson's disease patients treated with deep brain stimulation (DBS) of the GPi. We studied seven Parkinson's disease patients with FDG-PET to measure resting regional cerebral glucose utilization on and off GPi stimulation. We used statistical parametric mapping to identify significant changes in regional brain metabolism that occurred with this intervention. We also quantified stimulation-related changes in the expression of a specific abnormal Parkinson's disease-related pattern of metabolic covariation (PDRP) that had been identified in earlier FDG-PET studies. Metabolic changes with DBS were correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings off medication. GPi DBS improved UPDRS motor ratings (36%, P < 0.001) and significantly increased regional glucose metabolism in the premotor cortex ipsilateral to stimulation and in the cerebellum bilaterally. GPi DBS also resulted in a significant (P < 0.01) decline in PDRP activity ipsilateral to stimulation, which correlated significantly with clinical improvement in UPDRS motor ratings (P < 0.03). Clinical improvement with GPi DBS is associated with reduced expression of an abnormal Parkinson's disease-related metabolic network involving elements of the cortico-striato-pallido-thalamocortical and the cerebello-cortical motor loops.
CC : 002B17G
FD : Parkinson maladie; Tomoscintigraphie; Positon; Stimulation instrumentale; Pallidum; Métabolisme; Glucose; Exploration; Homme
FG : Système nerveux pathologie; Système nerveux central pathologie; Encéphale pathologie; Extrapyramidal syndrome; Maladie dégénérative; Exploration radioisotopique; Traitement instrumental; Encéphale
ED : Parkinson disease; Emission tomography; Positron; Instrumental stimulation; Pallidum; Metabolism; Glucose; Exploration; Human
EG : Nervous system diseases; Central nervous system disease; Cerebral disorder; Extrapyramidal syndrome; Degenerative disease; Radionuclide study; Instrumentation therapy; Brain (vertebrata)
SD : Parkinson enfermedad; Tomocentelleografía; Positrón; Estimulación instrumental; Pallidum; Metabolismo; Glucosa; Exploración; Hombre
LO : INIST-998.354000098620390120
ID : 01-0400778

Links to Exploration step

Pascal:01-0400778

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: A pet study of resting-state glucose metabolism</title>
<author>
<name sortKey="Fukuda, M" sort="Fukuda, M" uniqKey="Fukuda M" first="M." last="Fukuda">M. Fukuda</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mentis, M J" sort="Mentis, M J" uniqKey="Mentis M" first="M. J." last="Mentis">M. J. Mentis</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ma, Y" sort="Ma, Y" uniqKey="Ma Y" first="Y." last="Ma">Y. Ma</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dhawan, V" sort="Dhawan, V" uniqKey="Dhawan V" first="V." last="Dhawan">V. Dhawan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Antonini, A" sort="Antonini, A" uniqKey="Antonini A" first="A." last="Antonini">A. Antonini</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lang, A E" sort="Lang, A E" uniqKey="Lang A" first="A. E." last="Lang">A. E. Lang</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Toronto Western Hospital</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lozano, A M" sort="Lozano, A M" uniqKey="Lozano A" first="A. M." last="Lozano">A. M. Lozano</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Toronto Western Hospital</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hammerstad, J" sort="Hammerstad, J" uniqKey="Hammerstad J" first="J." last="Hammerstad">J. Hammerstad</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Neurology, Oregon Health Science University</s1>
<s2>Portland, Oregon</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lyons, K" sort="Lyons, K" uniqKey="Lyons K" first="K." last="Lyons">K. Lyons</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of Miami Medical Center</s1>
<s2>Miami, Florida</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Koller, W C" sort="Koller, W C" uniqKey="Koller W" first="W. C." last="Koller">W. C. Koller</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of Miami Medical Center</s1>
<s2>Miami, Florida</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moeller, J R" sort="Moeller, J R" uniqKey="Moeller J" first="J. R." last="Moeller">J. R. Moeller</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Department of Psychiatry, Columbia College of Physicians and Surgeons</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Eidelberg, D" sort="Eidelberg, D" uniqKey="Eidelberg D" first="D." last="Eidelberg">D. Eidelberg</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0400778</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0400778 INIST</idno>
<idno type="RBID">Pascal:01-0400778</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000C17</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: A pet study of resting-state glucose metabolism</title>
<author>
<name sortKey="Fukuda, M" sort="Fukuda, M" uniqKey="Fukuda M" first="M." last="Fukuda">M. Fukuda</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mentis, M J" sort="Mentis, M J" uniqKey="Mentis M" first="M. J." last="Mentis">M. J. Mentis</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ma, Y" sort="Ma, Y" uniqKey="Ma Y" first="Y." last="Ma">Y. Ma</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dhawan, V" sort="Dhawan, V" uniqKey="Dhawan V" first="V." last="Dhawan">V. Dhawan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Antonini, A" sort="Antonini, A" uniqKey="Antonini A" first="A." last="Antonini">A. Antonini</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lang, A E" sort="Lang, A E" uniqKey="Lang A" first="A. E." last="Lang">A. E. Lang</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Toronto Western Hospital</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lozano, A M" sort="Lozano, A M" uniqKey="Lozano A" first="A. M." last="Lozano">A. M. Lozano</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Toronto Western Hospital</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hammerstad, J" sort="Hammerstad, J" uniqKey="Hammerstad J" first="J." last="Hammerstad">J. Hammerstad</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Neurology, Oregon Health Science University</s1>
<s2>Portland, Oregon</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lyons, K" sort="Lyons, K" uniqKey="Lyons K" first="K." last="Lyons">K. Lyons</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of Miami Medical Center</s1>
<s2>Miami, Florida</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Koller, W C" sort="Koller, W C" uniqKey="Koller W" first="W. C." last="Koller">W. C. Koller</name>
<affiliation>
<inist:fA14 i1="05">
<s1>University of Miami Medical Center</s1>
<s2>Miami, Florida</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moeller, J R" sort="Moeller, J R" uniqKey="Moeller J" first="J. R." last="Moeller">J. R. Moeller</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Department of Psychiatry, Columbia College of Physicians and Surgeons</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Eidelberg, D" sort="Eidelberg, D" uniqKey="Eidelberg D" first="D." last="Eidelberg">D. Eidelberg</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Brain</title>
<title level="j" type="abbreviated">Brain</title>
<idno type="ISSN">0006-8950</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Brain</title>
<title level="j" type="abbreviated">Brain</title>
<idno type="ISSN">0006-8950</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Emission tomography</term>
<term>Exploration</term>
<term>Glucose</term>
<term>Human</term>
<term>Instrumental stimulation</term>
<term>Metabolism</term>
<term>Pallidum</term>
<term>Parkinson disease</term>
<term>Positron</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Parkinson maladie</term>
<term>Tomoscintigraphie</term>
<term>Positon</term>
<term>Stimulation instrumentale</term>
<term>Pallidum</term>
<term>Métabolisme</term>
<term>Glucose</term>
<term>Exploration</term>
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Employing [
<sup>18</sup>
F]fluorodeoxyglucose (FDG) and PET, we have found previously that stereotaxic ablation of the internal globus pallidus (GPi) for Parkinson's disease causes resting metabolic changes in brain regions remote from the lesion site. In this study we determined whether similar metabolic changes occur in Parkinson's disease patients treated with deep brain stimulation (DBS) of the GPi. We studied seven Parkinson's disease patients with FDG-PET to measure resting regional cerebral glucose utilization on and off GPi stimulation. We used statistical parametric mapping to identify significant changes in regional brain metabolism that occurred with this intervention. We also quantified stimulation-related changes in the expression of a specific abnormal Parkinson's disease-related pattern of metabolic covariation (PDRP) that had been identified in earlier FDG-PET studies. Metabolic changes with DBS were correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings off medication. GPi DBS improved UPDRS motor ratings (36%, P < 0.001) and significantly increased regional glucose metabolism in the premotor cortex ipsilateral to stimulation and in the cerebellum bilaterally. GPi DBS also resulted in a significant (P < 0.01) decline in PDRP activity ipsilateral to stimulation, which correlated significantly with clinical improvement in UPDRS motor ratings (P < 0.03). Clinical improvement with GPi DBS is associated with reduced expression of an abnormal Parkinson's disease-related metabolic network involving elements of the cortico-striato-pallido-thalamocortical and the cerebello-cortical motor loops.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0006-8950</s0>
</fA01>
<fA03 i2="1">
<s0>Brain</s0>
</fA03>
<fA05>
<s2>124</s2>
</fA05>
<fA06>
<s3>p.8</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: A pet study of resting-state glucose metabolism</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FUKUDA (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MENTIS (M. J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MA (Y.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DHAWAN (V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ANTONINI (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LANG (A. E.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LOZANO (A. M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HAMMERSTAD (J.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>LYONS (K.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>KOLLER (W. C.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>MOELLER (J. R.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>EIDELBERG (D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Neurosciences, North Shore-Long Island Jewish Research Institute</s1>
<s2>Manhasset</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Neurology, New York University School of Medicine</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Toronto Western Hospital</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Neurology, Oregon Health Science University</s1>
<s2>Portland, Oregon</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>University of Miami Medical Center</s1>
<s2>Miami, Florida</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Department of Psychiatry, Columbia College of Physicians and Surgeons</s1>
<s2>New York</s2>
<s3>USA</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA20>
<s1>1601-1609</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>998</s2>
<s5>354000098620390120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0400778</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Brain</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Employing [
<sup>18</sup>
F]fluorodeoxyglucose (FDG) and PET, we have found previously that stereotaxic ablation of the internal globus pallidus (GPi) for Parkinson's disease causes resting metabolic changes in brain regions remote from the lesion site. In this study we determined whether similar metabolic changes occur in Parkinson's disease patients treated with deep brain stimulation (DBS) of the GPi. We studied seven Parkinson's disease patients with FDG-PET to measure resting regional cerebral glucose utilization on and off GPi stimulation. We used statistical parametric mapping to identify significant changes in regional brain metabolism that occurred with this intervention. We also quantified stimulation-related changes in the expression of a specific abnormal Parkinson's disease-related pattern of metabolic covariation (PDRP) that had been identified in earlier FDG-PET studies. Metabolic changes with DBS were correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings off medication. GPi DBS improved UPDRS motor ratings (36%, P < 0.001) and significantly increased regional glucose metabolism in the premotor cortex ipsilateral to stimulation and in the cerebellum bilaterally. GPi DBS also resulted in a significant (P < 0.01) decline in PDRP activity ipsilateral to stimulation, which correlated significantly with clinical improvement in UPDRS motor ratings (P < 0.03). Clinical improvement with GPi DBS is associated with reduced expression of an abnormal Parkinson's disease-related metabolic network involving elements of the cortico-striato-pallido-thalamocortical and the cerebello-cortical motor loops.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B17G</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Parkinson maladie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Parkinson disease</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Parkinson enfermedad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Tomoscintigraphie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Emission tomography</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Tomocentelleografía</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Positon</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Positron</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Positrón</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Stimulation instrumentale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Instrumental stimulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estimulación instrumental</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Pallidum</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Pallidum</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Pallidum</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Métabolisme</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Metabolism</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Metabolismo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Glucose</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Glucose</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Glucosa</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Exploration</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Exploration</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Exploración</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Homme</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Human</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>20</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Système nerveux pathologie</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Nervous system diseases</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Sistema nervioso patología</s0>
<s5>37</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Système nerveux central pathologie</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Central nervous system disease</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Sistema nervosio central patología</s0>
<s5>38</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Encéphale pathologie</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Cerebral disorder</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Encéfalo patología</s0>
<s5>39</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Extrapyramidal syndrome</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Extrapyramidal syndrome</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Extrapiramidal síndrome</s0>
<s5>40</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Maladie dégénérative</s0>
<s5>41</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Degenerative disease</s0>
<s5>41</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Enfermedad degenerativa</s0>
<s5>41</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Exploration radioisotopique</s0>
<s5>45</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Radionuclide study</s0>
<s5>45</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Exploración radioisotópica</s0>
<s5>45</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Traitement instrumental</s0>
<s5>53</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Instrumentation therapy</s0>
<s5>53</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Tratamiento instrumental</s0>
<s5>53</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Encéphale</s0>
<s5>61</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Brain (vertebrata)</s0>
<s5>61</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Encéfalo</s0>
<s5>61</s5>
</fC07>
<fN21>
<s1>281</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 01-0400778 INIST</NO>
<ET>Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: A pet study of resting-state glucose metabolism</ET>
<AU>FUKUDA (M.); MENTIS (M. J.); MA (Y.); DHAWAN (V.); ANTONINI (A.); LANG (A. E.); LOZANO (A. M.); HAMMERSTAD (J.); LYONS (K.); KOLLER (W. C.); MOELLER (J. R.); EIDELBERG (D.)</AU>
<AF>Center for Neurosciences, North Shore-Long Island Jewish Research Institute/Manhasset/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 12 aut.); Department of Neurology, New York University School of Medicine/New York/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 12 aut.); Toronto Western Hospital/Toronto, Ontario/Canada (6 aut., 7 aut.); Department of Neurology, Oregon Health Science University/Portland, Oregon/Etats-Unis (8 aut.); University of Miami Medical Center/Miami, Florida/Etats-Unis (9 aut., 10 aut.); Department of Psychiatry, Columbia College of Physicians and Surgeons/New York/Etats-Unis (11 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Brain; ISSN 0006-8950; Royaume-Uni; Da. 2001; Vol. 124; No. p.8; Pp. 1601-1609; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>Employing [
<sup>18</sup>
F]fluorodeoxyglucose (FDG) and PET, we have found previously that stereotaxic ablation of the internal globus pallidus (GPi) for Parkinson's disease causes resting metabolic changes in brain regions remote from the lesion site. In this study we determined whether similar metabolic changes occur in Parkinson's disease patients treated with deep brain stimulation (DBS) of the GPi. We studied seven Parkinson's disease patients with FDG-PET to measure resting regional cerebral glucose utilization on and off GPi stimulation. We used statistical parametric mapping to identify significant changes in regional brain metabolism that occurred with this intervention. We also quantified stimulation-related changes in the expression of a specific abnormal Parkinson's disease-related pattern of metabolic covariation (PDRP) that had been identified in earlier FDG-PET studies. Metabolic changes with DBS were correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings off medication. GPi DBS improved UPDRS motor ratings (36%, P < 0.001) and significantly increased regional glucose metabolism in the premotor cortex ipsilateral to stimulation and in the cerebellum bilaterally. GPi DBS also resulted in a significant (P < 0.01) decline in PDRP activity ipsilateral to stimulation, which correlated significantly with clinical improvement in UPDRS motor ratings (P < 0.03). Clinical improvement with GPi DBS is associated with reduced expression of an abnormal Parkinson's disease-related metabolic network involving elements of the cortico-striato-pallido-thalamocortical and the cerebello-cortical motor loops.</EA>
<CC>002B17G</CC>
<FD>Parkinson maladie; Tomoscintigraphie; Positon; Stimulation instrumentale; Pallidum; Métabolisme; Glucose; Exploration; Homme</FD>
<FG>Système nerveux pathologie; Système nerveux central pathologie; Encéphale pathologie; Extrapyramidal syndrome; Maladie dégénérative; Exploration radioisotopique; Traitement instrumental; Encéphale</FG>
<ED>Parkinson disease; Emission tomography; Positron; Instrumental stimulation; Pallidum; Metabolism; Glucose; Exploration; Human</ED>
<EG>Nervous system diseases; Central nervous system disease; Cerebral disorder; Extrapyramidal syndrome; Degenerative disease; Radionuclide study; Instrumentation therapy; Brain (vertebrata)</EG>
<SD>Parkinson enfermedad; Tomocentelleografía; Positrón; Estimulación instrumental; Pallidum; Metabolismo; Glucosa; Exploración; Hombre</SD>
<LO>INIST-998.354000098620390120</LO>
<ID>01-0400778</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C17 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000C17 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:01-0400778
   |texte=   Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: A pet study of resting-state glucose metabolism
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022