La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome

Identifieur interne : 000924 ( PascalFrancis/Corpus ); précédent : 000923; suivant : 000925

Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome

Auteurs : Jasvinder S. Sidhu ; Yadavendra S. Rajawat ; Tapan G. Rami ; Michael H. Gollob ; ZHINONG WANG ; RUIYONG YUAN ; A. J. Marian ; Francesco J. Demayo ; Donald Weilbacher ; George E. Taffet ; Joanna K. Davies ; David Carling ; Dirar S. Khoury ; Robert Roberts

Source :

RBID : Pascal:05-0173141

Descripteurs français

English descriptors

Abstract

Background-We identified a gene (PRKAG2) that encodes the γ-2 regulatory subunit of AMP-activated protein kinase (AMPK) with a mutation (Arg302Gln) responsible for familial Wolff-Parkinson-White (WPW) syndrome. The human phenotype consists of ventricular preexcitation, conduction abnormalities, and cardiac hypertrophy. Methods and Results-To elucidate the molecular basis for the phenotype, transgenic mice were generated by cardiac-restricted expression of the wild-type (TGWT) and mutant(TGR302Q) PRKAG2 gene with the cardiac-specific promoter α-myosin heavy chain. ECG recordings and intracardiac electrophysiology studies demonstrated the TGR302Q mice to have ventricular preexcitation (PR interval 10±2 versus 33±5 ms in TGWT, P<0.05) and a prolonged QRS (20±5 versus 10±1 ms in TGWT, P<0.05). A distinct AV accessory pathway was confirmed by electrical and pharmacological stimulation and substantiated by induction of orthodromic AV reentrant tachycardia. Enzymatic activity of AMPK in the mutant heart was significantly reduced (0.009±0.003 versus 0.025±0.001 nmol . min-1 . g-1 in nontransgenic mice), presumably owing to the mutation disrupting the AMP binding site. Excessive cardiac glycogen was observed. Hypertrophy was confirmed by increases in heart weight (296 versus 140 mg in TGWT) and ventricular wall thickness. Conclusions-We have developed a genetic animal model of WPW that expresses a mutation responsible for a familial form of WPW syndrome with a phenotype identical to that of the human, including induction of supraventricular arrhythmia. The defect is due to loss of function of AMPK. Elucidation of the molecular basis should provide insight into development of the cardiac conduction system and accessory pathways.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0009-7322
A02 01      @0 CIRCAZ
A03   1    @0 Circulation : (N. Y. N.Y.)
A05       @2 111
A06       @2 1
A08 01  1  ENG  @1 Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome
A11 01  1    @1 SIDHU (Jasvinder S.)
A11 02  1    @1 RAJAWAT (Yadavendra S.)
A11 03  1    @1 RAMI (Tapan G.)
A11 04  1    @1 GOLLOB (Michael H.)
A11 05  1    @1 ZHINONG WANG
A11 06  1    @1 RUIYONG YUAN
A11 07  1    @1 MARIAN (A. J.)
A11 08  1    @1 DEMAYO (Francesco J.)
A11 09  1    @1 WEILBACHER (Donald)
A11 10  1    @1 TAFFET (George E.)
A11 11  1    @1 DAVIES (Joanna K.)
A11 12  1    @1 CARLING (David)
A11 13  1    @1 KHOURY (Dirar S.)
A11 14  1    @1 ROBERTS (Robert)
A14 01      @1 Baylor College of Medicine @2 Houston, Tex @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut. @Z 8 aut. @Z 9 aut. @Z 10 aut. @Z 13 aut.
A14 02      @1 University of Ottawa Heart Institute @2 Ottawa, Ontario @3 CAN @Z 4 aut. @Z 14 aut.
A14 03      @1 Imperial College @2 London @3 GBR @Z 11 aut. @Z 12 aut.
A20       @1 21-29
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 5907 @5 354000125001540050
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 25 ref.
A47 01  1    @0 05-0173141
A60       @1 P
A61       @0 A
A64 01  1    @0 Circulation : (New York, N.Y.)
A66 01      @0 USA
C01 01    ENG  @0 Background-We identified a gene (PRKAG2) that encodes the γ-2 regulatory subunit of AMP-activated protein kinase (AMPK) with a mutation (Arg302Gln) responsible for familial Wolff-Parkinson-White (WPW) syndrome. The human phenotype consists of ventricular preexcitation, conduction abnormalities, and cardiac hypertrophy. Methods and Results-To elucidate the molecular basis for the phenotype, transgenic mice were generated by cardiac-restricted expression of the wild-type (TGWT) and mutant(TGR302Q) PRKAG2 gene with the cardiac-specific promoter α-myosin heavy chain. ECG recordings and intracardiac electrophysiology studies demonstrated the TGR302Q mice to have ventricular preexcitation (PR interval 10±2 versus 33±5 ms in TGWT, P<0.05) and a prolonged QRS (20±5 versus 10±1 ms in TGWT, P<0.05). A distinct AV accessory pathway was confirmed by electrical and pharmacological stimulation and substantiated by induction of orthodromic AV reentrant tachycardia. Enzymatic activity of AMPK in the mutant heart was significantly reduced (0.009±0.003 versus 0.025±0.001 nmol . min-1 . g-1 in nontransgenic mice), presumably owing to the mutation disrupting the AMP binding site. Excessive cardiac glycogen was observed. Hypertrophy was confirmed by increases in heart weight (296 versus 140 mg in TGWT) and ventricular wall thickness. Conclusions-We have developed a genetic animal model of WPW that expresses a mutation responsible for a familial form of WPW syndrome with a phenotype identical to that of the human, including induction of supraventricular arrhythmia. The defect is due to loss of function of AMPK. Elucidation of the molecular basis should provide insight into development of the cardiac conduction system and accessory pathways.
C02 01  X    @0 002B12B03
C02 02  X    @0 002B21E01B
C02 03  X    @0 002B02U02
C03 01  X  FRE  @0 Appareil circulatoire pathologie @5 01
C03 01  X  ENG  @0 Cardiovascular disease @5 01
C03 01  X  SPA  @0 Aparato circulatorio patología @5 01
C03 02  X  FRE  @0 Animal @5 02
C03 02  X  ENG  @0 Animal @5 02
C03 02  X  SPA  @0 Animal @5 02
C03 03  X  FRE  @0 Souris @5 03
C03 03  X  ENG  @0 Mouse @5 03
C03 03  X  SPA  @0 Ratón @5 03
C03 04  X  FRE  @0 Tachycardie ventriculaire @2 NM @5 04
C03 04  X  ENG  @0 Ventricular tachycardia @2 NM @5 04
C03 04  X  SPA  @0 Taquicardia ventricular @2 NM @5 04
C03 05  X  FRE  @0 AMP @2 NK @2 FR @5 05
C03 05  X  ENG  @0 AMP @2 NK @2 FR @5 05
C03 05  X  SPA  @0 AMP @2 NK @2 FR @5 05
C03 06  X  FRE  @0 Protein kinase @2 FE @5 06
C03 06  X  ENG  @0 Protein kinase @2 FE @5 06
C03 06  X  SPA  @0 Protein kinase @2 FE @5 06
C03 07  X  FRE  @0 Wolff Parkinson White syndrome @5 07
C03 07  X  ENG  @0 Wolff Parkinson White syndrome @5 07
C03 07  X  SPA  @0 Wolff Parkinson White síndrome @5 07
C03 08  X  FRE  @0 Mutation @5 08
C03 08  X  ENG  @0 Mutation @5 08
C03 08  X  SPA  @0 Mutación @5 08
C07 01  X  FRE  @0 Rodentia @2 NS
C07 01  X  ENG  @0 Rodentia @2 NS
C07 01  X  SPA  @0 Rodentia @2 NS
C07 02  X  FRE  @0 Mammalia @2 NS
C07 02  X  ENG  @0 Mammalia @2 NS
C07 02  X  SPA  @0 Mammalia @2 NS
C07 03  X  FRE  @0 Vertebrata @2 NS
C07 03  X  ENG  @0 Vertebrata @2 NS
C07 03  X  SPA  @0 Vertebrata @2 NS
C07 04  X  FRE  @0 Transferases @2 FE
C07 04  X  ENG  @0 Transferases @2 FE
C07 04  X  SPA  @0 Transferases @2 FE
C07 05  X  FRE  @0 Enzyme @2 FE
C07 05  X  ENG  @0 Enzyme @2 FE
C07 05  X  SPA  @0 Enzima @2 FE
C07 06  X  FRE  @0 Cardiopathie @5 37
C07 06  X  ENG  @0 Heart disease @5 37
C07 06  X  SPA  @0 Cardiopatía @5 37
C07 07  X  FRE  @0 Trouble conduction @5 38
C07 07  X  ENG  @0 Conduction disorder @5 38
C07 07  X  SPA  @0 Trastorno conducción @5 38
C07 08  X  FRE  @0 Trouble excitabilité @5 39
C07 08  X  ENG  @0 Excitability disorder @5 39
C07 08  X  SPA  @0 Trastorno excitabilidad @5 39
C07 09  X  FRE  @0 Trouble rythme cardiaque @5 40
C07 09  X  ENG  @0 Arrhythmia @5 40
C07 09  X  SPA  @0 Arritmia @5 40
C07 10  X  FRE  @0 Préexcitation ventriculaire syndrome @5 41
C07 10  X  ENG  @0 Preexcitation ventricular syndrome @5 41
C07 10  X  SPA  @0 Preexcitación ventricular síndrome @5 41
N21       @1 115
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 05-0173141 INIST
ET : Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome
AU : SIDHU (Jasvinder S.); RAJAWAT (Yadavendra S.); RAMI (Tapan G.); GOLLOB (Michael H.); ZHINONG WANG; RUIYONG YUAN; MARIAN (A. J.); DEMAYO (Francesco J.); WEILBACHER (Donald); TAFFET (George E.); DAVIES (Joanna K.); CARLING (David); KHOURY (Dirar S.); ROBERTS (Robert)
AF : Baylor College of Medicine/Houston, Tex/Etats-Unis (1 aut., 2 aut., 3 aut., 5 aut., 6 aut., 7 aut., 8 aut., 9 aut., 10 aut., 13 aut.); University of Ottawa Heart Institute/Ottawa, Ontario/Canada (4 aut., 14 aut.); Imperial College/London/Royaume-Uni (11 aut., 12 aut.)
DT : Publication en série; Niveau analytique
SO : Circulation : (New York, N.Y.); ISSN 0009-7322; Coden CIRCAZ; Etats-Unis; Da. 2005; Vol. 111; No. 1; Pp. 21-29; Bibl. 25 ref.
LA : Anglais
EA : Background-We identified a gene (PRKAG2) that encodes the γ-2 regulatory subunit of AMP-activated protein kinase (AMPK) with a mutation (Arg302Gln) responsible for familial Wolff-Parkinson-White (WPW) syndrome. The human phenotype consists of ventricular preexcitation, conduction abnormalities, and cardiac hypertrophy. Methods and Results-To elucidate the molecular basis for the phenotype, transgenic mice were generated by cardiac-restricted expression of the wild-type (TGWT) and mutant(TGR302Q) PRKAG2 gene with the cardiac-specific promoter α-myosin heavy chain. ECG recordings and intracardiac electrophysiology studies demonstrated the TGR302Q mice to have ventricular preexcitation (PR interval 10±2 versus 33±5 ms in TGWT, P<0.05) and a prolonged QRS (20±5 versus 10±1 ms in TGWT, P<0.05). A distinct AV accessory pathway was confirmed by electrical and pharmacological stimulation and substantiated by induction of orthodromic AV reentrant tachycardia. Enzymatic activity of AMPK in the mutant heart was significantly reduced (0.009±0.003 versus 0.025±0.001 nmol . min-1 . g-1 in nontransgenic mice), presumably owing to the mutation disrupting the AMP binding site. Excessive cardiac glycogen was observed. Hypertrophy was confirmed by increases in heart weight (296 versus 140 mg in TGWT) and ventricular wall thickness. Conclusions-We have developed a genetic animal model of WPW that expresses a mutation responsible for a familial form of WPW syndrome with a phenotype identical to that of the human, including induction of supraventricular arrhythmia. The defect is due to loss of function of AMPK. Elucidation of the molecular basis should provide insight into development of the cardiac conduction system and accessory pathways.
CC : 002B12B03; 002B21E01B; 002B02U02
FD : Appareil circulatoire pathologie; Animal; Souris; Tachycardie ventriculaire; AMP; Protein kinase; Wolff Parkinson White syndrome; Mutation
FG : Rodentia; Mammalia; Vertebrata; Transferases; Enzyme; Cardiopathie; Trouble conduction; Trouble excitabilité; Trouble rythme cardiaque; Préexcitation ventriculaire syndrome
ED : Cardiovascular disease; Animal; Mouse; Ventricular tachycardia; AMP; Protein kinase; Wolff Parkinson White syndrome; Mutation
EG : Rodentia; Mammalia; Vertebrata; Transferases; Enzyme; Heart disease; Conduction disorder; Excitability disorder; Arrhythmia; Preexcitation ventricular syndrome
SD : Aparato circulatorio patología; Animal; Ratón; Taquicardia ventricular; AMP; Protein kinase; Wolff Parkinson White síndrome; Mutación
LO : INIST-5907.354000125001540050
ID : 05-0173141

Links to Exploration step

Pascal:05-0173141

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome</title>
<author>
<name sortKey="Sidhu, Jasvinder S" sort="Sidhu, Jasvinder S" uniqKey="Sidhu J" first="Jasvinder S." last="Sidhu">Jasvinder S. Sidhu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rajawat, Yadavendra S" sort="Rajawat, Yadavendra S" uniqKey="Rajawat Y" first="Yadavendra S." last="Rajawat">Yadavendra S. Rajawat</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rami, Tapan G" sort="Rami, Tapan G" uniqKey="Rami T" first="Tapan G." last="Rami">Tapan G. Rami</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gollob, Michael H" sort="Gollob, Michael H" uniqKey="Gollob M" first="Michael H." last="Gollob">Michael H. Gollob</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Ottawa Heart Institute</s1>
<s2>Ottawa, Ontario</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhinong Wang" sort="Zhinong Wang" uniqKey="Zhinong Wang" last="Zhinong Wang">ZHINONG WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ruiyong Yuan" sort="Ruiyong Yuan" uniqKey="Ruiyong Yuan" last="Ruiyong Yuan">RUIYONG YUAN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marian, A J" sort="Marian, A J" uniqKey="Marian A" first="A. J." last="Marian">A. J. Marian</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Demayo, Francesco J" sort="Demayo, Francesco J" uniqKey="Demayo F" first="Francesco J." last="Demayo">Francesco J. Demayo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Weilbacher, Donald" sort="Weilbacher, Donald" uniqKey="Weilbacher D" first="Donald" last="Weilbacher">Donald Weilbacher</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Taffet, George E" sort="Taffet, George E" uniqKey="Taffet G" first="George E." last="Taffet">George E. Taffet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Davies, Joanna K" sort="Davies, Joanna K" uniqKey="Davies J" first="Joanna K." last="Davies">Joanna K. Davies</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Imperial College</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carling, David" sort="Carling, David" uniqKey="Carling D" first="David" last="Carling">David Carling</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Imperial College</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Khoury, Dirar S" sort="Khoury, Dirar S" uniqKey="Khoury D" first="Dirar S." last="Khoury">Dirar S. Khoury</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Roberts, Robert" sort="Roberts, Robert" uniqKey="Roberts R" first="Robert" last="Roberts">Robert Roberts</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Ottawa Heart Institute</s1>
<s2>Ottawa, Ontario</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0173141</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0173141 INIST</idno>
<idno type="RBID">Pascal:05-0173141</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000924</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome</title>
<author>
<name sortKey="Sidhu, Jasvinder S" sort="Sidhu, Jasvinder S" uniqKey="Sidhu J" first="Jasvinder S." last="Sidhu">Jasvinder S. Sidhu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rajawat, Yadavendra S" sort="Rajawat, Yadavendra S" uniqKey="Rajawat Y" first="Yadavendra S." last="Rajawat">Yadavendra S. Rajawat</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rami, Tapan G" sort="Rami, Tapan G" uniqKey="Rami T" first="Tapan G." last="Rami">Tapan G. Rami</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gollob, Michael H" sort="Gollob, Michael H" uniqKey="Gollob M" first="Michael H." last="Gollob">Michael H. Gollob</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Ottawa Heart Institute</s1>
<s2>Ottawa, Ontario</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhinong Wang" sort="Zhinong Wang" uniqKey="Zhinong Wang" last="Zhinong Wang">ZHINONG WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ruiyong Yuan" sort="Ruiyong Yuan" uniqKey="Ruiyong Yuan" last="Ruiyong Yuan">RUIYONG YUAN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marian, A J" sort="Marian, A J" uniqKey="Marian A" first="A. J." last="Marian">A. J. Marian</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Demayo, Francesco J" sort="Demayo, Francesco J" uniqKey="Demayo F" first="Francesco J." last="Demayo">Francesco J. Demayo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Weilbacher, Donald" sort="Weilbacher, Donald" uniqKey="Weilbacher D" first="Donald" last="Weilbacher">Donald Weilbacher</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Taffet, George E" sort="Taffet, George E" uniqKey="Taffet G" first="George E." last="Taffet">George E. Taffet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Davies, Joanna K" sort="Davies, Joanna K" uniqKey="Davies J" first="Joanna K." last="Davies">Joanna K. Davies</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Imperial College</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carling, David" sort="Carling, David" uniqKey="Carling D" first="David" last="Carling">David Carling</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Imperial College</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Khoury, Dirar S" sort="Khoury, Dirar S" uniqKey="Khoury D" first="Dirar S." last="Khoury">Dirar S. Khoury</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Roberts, Robert" sort="Roberts, Robert" uniqKey="Roberts R" first="Robert" last="Roberts">Robert Roberts</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Ottawa Heart Institute</s1>
<s2>Ottawa, Ontario</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Circulation : (New York, N.Y.)</title>
<title level="j" type="abbreviated">Circulation : (N. Y. N.Y.)</title>
<idno type="ISSN">0009-7322</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Circulation : (New York, N.Y.)</title>
<title level="j" type="abbreviated">Circulation : (N. Y. N.Y.)</title>
<idno type="ISSN">0009-7322</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AMP</term>
<term>Animal</term>
<term>Cardiovascular disease</term>
<term>Mouse</term>
<term>Mutation</term>
<term>Protein kinase</term>
<term>Ventricular tachycardia</term>
<term>Wolff Parkinson White syndrome</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Appareil circulatoire pathologie</term>
<term>Animal</term>
<term>Souris</term>
<term>Tachycardie ventriculaire</term>
<term>AMP</term>
<term>Protein kinase</term>
<term>Wolff Parkinson White syndrome</term>
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background-We identified a gene (PRKAG2) that encodes the γ-2 regulatory subunit of AMP-activated protein kinase (AMPK) with a mutation (Arg302Gln) responsible for familial Wolff-Parkinson-White (WPW) syndrome. The human phenotype consists of ventricular preexcitation, conduction abnormalities, and cardiac hypertrophy. Methods and Results-To elucidate the molecular basis for the phenotype, transgenic mice were generated by cardiac-restricted expression of the wild-type (TG
<sub>WT</sub>
) and mutant(TG
<sub>R302Q</sub>
) PRKAG2 gene with the cardiac-specific promoter α-myosin heavy chain. ECG recordings and intracardiac electrophysiology studies demonstrated the TG
<sub>R302Q</sub>
mice to have ventricular preexcitation (PR interval 10±2 versus 33±5 ms in TG
<sub>WT</sub>
, P<0.05) and a prolonged QRS (20±5 versus 10±1 ms in TG
<sub>WT</sub>
, P<0.05). A distinct AV accessory pathway was confirmed by electrical and pharmacological stimulation and substantiated by induction of orthodromic AV reentrant tachycardia. Enzymatic activity of AMPK in the mutant heart was significantly reduced (0.009±0.003 versus 0.025±0.001 nmol . min
<sup>-1</sup>
. g
<sup>-1</sup>
in nontransgenic mice), presumably owing to the mutation disrupting the AMP binding site. Excessive cardiac glycogen was observed. Hypertrophy was confirmed by increases in heart weight (296 versus 140 mg in TG
<sub>WT</sub>
) and ventricular wall thickness. Conclusions-We have developed a genetic animal model of WPW that expresses a mutation responsible for a familial form of WPW syndrome with a phenotype identical to that of the human, including induction of supraventricular arrhythmia. The defect is due to loss of function of AMPK. Elucidation of the molecular basis should provide insight into development of the cardiac conduction system and accessory pathways.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0009-7322</s0>
</fA01>
<fA02 i1="01">
<s0>CIRCAZ</s0>
</fA02>
<fA03 i2="1">
<s0>Circulation : (N. Y. N.Y.)</s0>
</fA03>
<fA05>
<s2>111</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SIDHU (Jasvinder S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAJAWAT (Yadavendra S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAMI (Tapan G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GOLLOB (Michael H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHINONG WANG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RUIYONG YUAN</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MARIAN (A. J.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>DEMAYO (Francesco J.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>WEILBACHER (Donald)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>TAFFET (George E.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>DAVIES (Joanna K.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>CARLING (David)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>KHOURY (Dirar S.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>ROBERTS (Robert)</s1>
</fA11>
<fA14 i1="01">
<s1>Baylor College of Medicine</s1>
<s2>Houston, Tex</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>University of Ottawa Heart Institute</s1>
<s2>Ottawa, Ontario</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>14 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Imperial College</s1>
<s2>London</s2>
<s3>GBR</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA20>
<s1>21-29</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5907</s2>
<s5>354000125001540050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0173141</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Circulation : (New York, N.Y.)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Background-We identified a gene (PRKAG2) that encodes the γ-2 regulatory subunit of AMP-activated protein kinase (AMPK) with a mutation (Arg302Gln) responsible for familial Wolff-Parkinson-White (WPW) syndrome. The human phenotype consists of ventricular preexcitation, conduction abnormalities, and cardiac hypertrophy. Methods and Results-To elucidate the molecular basis for the phenotype, transgenic mice were generated by cardiac-restricted expression of the wild-type (TG
<sub>WT</sub>
) and mutant(TG
<sub>R302Q</sub>
) PRKAG2 gene with the cardiac-specific promoter α-myosin heavy chain. ECG recordings and intracardiac electrophysiology studies demonstrated the TG
<sub>R302Q</sub>
mice to have ventricular preexcitation (PR interval 10±2 versus 33±5 ms in TG
<sub>WT</sub>
, P<0.05) and a prolonged QRS (20±5 versus 10±1 ms in TG
<sub>WT</sub>
, P<0.05). A distinct AV accessory pathway was confirmed by electrical and pharmacological stimulation and substantiated by induction of orthodromic AV reentrant tachycardia. Enzymatic activity of AMPK in the mutant heart was significantly reduced (0.009±0.003 versus 0.025±0.001 nmol . min
<sup>-1</sup>
. g
<sup>-1</sup>
in nontransgenic mice), presumably owing to the mutation disrupting the AMP binding site. Excessive cardiac glycogen was observed. Hypertrophy was confirmed by increases in heart weight (296 versus 140 mg in TG
<sub>WT</sub>
) and ventricular wall thickness. Conclusions-We have developed a genetic animal model of WPW that expresses a mutation responsible for a familial form of WPW syndrome with a phenotype identical to that of the human, including induction of supraventricular arrhythmia. The defect is due to loss of function of AMPK. Elucidation of the molecular basis should provide insight into development of the cardiac conduction system and accessory pathways.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B12B03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B21E01B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002B02U02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Appareil circulatoire pathologie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Cardiovascular disease</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Aparato circulatorio patología</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Animal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Animal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Animal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Souris</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Mouse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ratón</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Tachycardie ventriculaire</s0>
<s2>NM</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ventricular tachycardia</s0>
<s2>NM</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Taquicardia ventricular</s0>
<s2>NM</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>AMP</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>AMP</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>AMP</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Protein kinase</s0>
<s2>FE</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Protein kinase</s0>
<s2>FE</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Protein kinase</s0>
<s2>FE</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Wolff Parkinson White syndrome</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Wolff Parkinson White syndrome</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Wolff Parkinson White síndrome</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Mutation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Mutation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Mutación</s0>
<s5>08</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Enzima</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Cardiopathie</s0>
<s5>37</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Heart disease</s0>
<s5>37</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Cardiopatía</s0>
<s5>37</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Trouble conduction</s0>
<s5>38</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Conduction disorder</s0>
<s5>38</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Trastorno conducción</s0>
<s5>38</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Trouble excitabilité</s0>
<s5>39</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Excitability disorder</s0>
<s5>39</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Trastorno excitabilidad</s0>
<s5>39</s5>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Trouble rythme cardiaque</s0>
<s5>40</s5>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Arrhythmia</s0>
<s5>40</s5>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Arritmia</s0>
<s5>40</s5>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Préexcitation ventriculaire syndrome</s0>
<s5>41</s5>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Preexcitation ventricular syndrome</s0>
<s5>41</s5>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Preexcitación ventricular síndrome</s0>
<s5>41</s5>
</fC07>
<fN21>
<s1>115</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 05-0173141 INIST</NO>
<ET>Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome</ET>
<AU>SIDHU (Jasvinder S.); RAJAWAT (Yadavendra S.); RAMI (Tapan G.); GOLLOB (Michael H.); ZHINONG WANG; RUIYONG YUAN; MARIAN (A. J.); DEMAYO (Francesco J.); WEILBACHER (Donald); TAFFET (George E.); DAVIES (Joanna K.); CARLING (David); KHOURY (Dirar S.); ROBERTS (Robert)</AU>
<AF>Baylor College of Medicine/Houston, Tex/Etats-Unis (1 aut., 2 aut., 3 aut., 5 aut., 6 aut., 7 aut., 8 aut., 9 aut., 10 aut., 13 aut.); University of Ottawa Heart Institute/Ottawa, Ontario/Canada (4 aut., 14 aut.); Imperial College/London/Royaume-Uni (11 aut., 12 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Circulation : (New York, N.Y.); ISSN 0009-7322; Coden CIRCAZ; Etats-Unis; Da. 2005; Vol. 111; No. 1; Pp. 21-29; Bibl. 25 ref.</SO>
<LA>Anglais</LA>
<EA>Background-We identified a gene (PRKAG2) that encodes the γ-2 regulatory subunit of AMP-activated protein kinase (AMPK) with a mutation (Arg302Gln) responsible for familial Wolff-Parkinson-White (WPW) syndrome. The human phenotype consists of ventricular preexcitation, conduction abnormalities, and cardiac hypertrophy. Methods and Results-To elucidate the molecular basis for the phenotype, transgenic mice were generated by cardiac-restricted expression of the wild-type (TG
<sub>WT</sub>
) and mutant(TG
<sub>R302Q</sub>
) PRKAG2 gene with the cardiac-specific promoter α-myosin heavy chain. ECG recordings and intracardiac electrophysiology studies demonstrated the TG
<sub>R302Q</sub>
mice to have ventricular preexcitation (PR interval 10±2 versus 33±5 ms in TG
<sub>WT</sub>
, P<0.05) and a prolonged QRS (20±5 versus 10±1 ms in TG
<sub>WT</sub>
, P<0.05). A distinct AV accessory pathway was confirmed by electrical and pharmacological stimulation and substantiated by induction of orthodromic AV reentrant tachycardia. Enzymatic activity of AMPK in the mutant heart was significantly reduced (0.009±0.003 versus 0.025±0.001 nmol . min
<sup>-1</sup>
. g
<sup>-1</sup>
in nontransgenic mice), presumably owing to the mutation disrupting the AMP binding site. Excessive cardiac glycogen was observed. Hypertrophy was confirmed by increases in heart weight (296 versus 140 mg in TG
<sub>WT</sub>
) and ventricular wall thickness. Conclusions-We have developed a genetic animal model of WPW that expresses a mutation responsible for a familial form of WPW syndrome with a phenotype identical to that of the human, including induction of supraventricular arrhythmia. The defect is due to loss of function of AMPK. Elucidation of the molecular basis should provide insight into development of the cardiac conduction system and accessory pathways.</EA>
<CC>002B12B03; 002B21E01B; 002B02U02</CC>
<FD>Appareil circulatoire pathologie; Animal; Souris; Tachycardie ventriculaire; AMP; Protein kinase; Wolff Parkinson White syndrome; Mutation</FD>
<FG>Rodentia; Mammalia; Vertebrata; Transferases; Enzyme; Cardiopathie; Trouble conduction; Trouble excitabilité; Trouble rythme cardiaque; Préexcitation ventriculaire syndrome</FG>
<ED>Cardiovascular disease; Animal; Mouse; Ventricular tachycardia; AMP; Protein kinase; Wolff Parkinson White syndrome; Mutation</ED>
<EG>Rodentia; Mammalia; Vertebrata; Transferases; Enzyme; Heart disease; Conduction disorder; Excitability disorder; Arrhythmia; Preexcitation ventricular syndrome</EG>
<SD>Aparato circulatorio patología; Animal; Ratón; Taquicardia ventricular; AMP; Protein kinase; Wolff Parkinson White síndrome; Mutación</SD>
<LO>INIST-5907.354000125001540050</LO>
<ID>05-0173141</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000924 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000924 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0173141
   |texte=   Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022