La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The origins of apicomplexan sequence innovation.

Identifieur interne : 000A59 ( Ncbi/Merge ); précédent : 000A58; suivant : 000A60

The origins of apicomplexan sequence innovation.

Auteurs : James Wasmuth [Canada] ; Jennifer Daub ; José Manuel Peregrín-Alvarez ; Constance A M. Finney ; John Parkinson

Source :

RBID : pubmed:19363216

English descriptors

Abstract

The Apicomplexa are a group of phylogenetically related parasitic protists that include Plasmodium, Cryptosporidium, and Toxoplasma. Together they are a major global burden on human health and economics. To meet this challenge, several international consortia have generated vast amounts of sequence data for many of these parasites. Here, we exploit these data to perform a systematic analysis of protein family and domain incidence across the phylum. A total of 87,736 protein sequences were collected from 15 apicomplexan species. These were compared with three protein databases, including the partial genome database, PartiGeneDB, which increases the breadth of taxonomic coverage. From these searches we constructed taxonomic profiles that reveal the extent of apicomplexan sequence diversity. Sequences without a significant match outside the phylum were denoted as apicomplexan specialized. These were collated into 9134 discrete protein families and placed in the context of the apicomplexan phylogeny, identifying the putative origin of each family. Most apicomplexan families were associated with an individual genus or species. Interestingly, many genera-specific innovations were associated with specialized host cell invasion and/or parasite survival processes. Contrastingly, those families reflecting more ancestral relationships were enriched in generalized housekeeping functions such as translation and transcription, which have diverged within the apicomplexan lineage. Protein domain searches revealed 192 domains not previously reported in apicomplexans together with a number of novel domain combinations. We highlight domains that may be important to parasite survival.

DOI: 10.1101/gr.083386.108
PubMed: 19363216

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19363216

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The origins of apicomplexan sequence innovation.</title>
<author>
<name sortKey="Wasmuth, James" sort="Wasmuth, James" uniqKey="Wasmuth J" first="James" last="Wasmuth">James Wasmuth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 2L3, Canada. jwasmuth@sickkids.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 2L3</wicri:regionArea>
<wicri:noRegion>Ontario M5G 2L3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Daub, Jennifer" sort="Daub, Jennifer" uniqKey="Daub J" first="Jennifer" last="Daub">Jennifer Daub</name>
</author>
<author>
<name sortKey="Peregrin Alvarez, Jose Manuel" sort="Peregrin Alvarez, Jose Manuel" uniqKey="Peregrin Alvarez J" first="José Manuel" last="Peregrín-Alvarez">José Manuel Peregrín-Alvarez</name>
</author>
<author>
<name sortKey="Finney, Constance A M" sort="Finney, Constance A M" uniqKey="Finney C" first="Constance A M" last="Finney">Constance A M. Finney</name>
</author>
<author>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19363216</idno>
<idno type="pmid">19363216</idno>
<idno type="doi">10.1101/gr.083386.108</idno>
<idno type="wicri:Area/PubMed/Corpus">000E63</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E63</idno>
<idno type="wicri:Area/PubMed/Curation">000E63</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E63</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000E63</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000E63</idno>
<idno type="wicri:Area/Ncbi/Merge">000A59</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The origins of apicomplexan sequence innovation.</title>
<author>
<name sortKey="Wasmuth, James" sort="Wasmuth, James" uniqKey="Wasmuth J" first="James" last="Wasmuth">James Wasmuth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 2L3, Canada. jwasmuth@sickkids.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 2L3</wicri:regionArea>
<wicri:noRegion>Ontario M5G 2L3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Daub, Jennifer" sort="Daub, Jennifer" uniqKey="Daub J" first="Jennifer" last="Daub">Jennifer Daub</name>
</author>
<author>
<name sortKey="Peregrin Alvarez, Jose Manuel" sort="Peregrin Alvarez, Jose Manuel" uniqKey="Peregrin Alvarez J" first="José Manuel" last="Peregrín-Alvarez">José Manuel Peregrín-Alvarez</name>
</author>
<author>
<name sortKey="Finney, Constance A M" sort="Finney, Constance A M" uniqKey="Finney C" first="Constance A M" last="Finney">Constance A M. Finney</name>
</author>
<author>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
</author>
</analytic>
<series>
<title level="j">Genome research</title>
<idno type="ISSN">1088-9051</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Apicomplexa (genetics)</term>
<term>Evolution, Molecular</term>
<term>Humans</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Protozoan Proteins (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Apicomplexa</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Evolution, Molecular</term>
<term>Humans</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Apicomplexa are a group of phylogenetically related parasitic protists that include Plasmodium, Cryptosporidium, and Toxoplasma. Together they are a major global burden on human health and economics. To meet this challenge, several international consortia have generated vast amounts of sequence data for many of these parasites. Here, we exploit these data to perform a systematic analysis of protein family and domain incidence across the phylum. A total of 87,736 protein sequences were collected from 15 apicomplexan species. These were compared with three protein databases, including the partial genome database, PartiGeneDB, which increases the breadth of taxonomic coverage. From these searches we constructed taxonomic profiles that reveal the extent of apicomplexan sequence diversity. Sequences without a significant match outside the phylum were denoted as apicomplexan specialized. These were collated into 9134 discrete protein families and placed in the context of the apicomplexan phylogeny, identifying the putative origin of each family. Most apicomplexan families were associated with an individual genus or species. Interestingly, many genera-specific innovations were associated with specialized host cell invasion and/or parasite survival processes. Contrastingly, those families reflecting more ancestral relationships were enriched in generalized housekeeping functions such as translation and transcription, which have diverged within the apicomplexan lineage. Protein domain searches revealed 192 domains not previously reported in apicomplexans together with a number of novel domain combinations. We highlight domains that may be important to parasite survival.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19363216</PMID>
<DateCreated>
<Year>2009</Year>
<Month>07</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1088-9051</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>19</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Genome research</Title>
<ISOAbbreviation>Genome Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>The origins of apicomplexan sequence innovation.</ArticleTitle>
<Pagination>
<MedlinePgn>1202-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1101/gr.083386.108</ELocationID>
<Abstract>
<AbstractText>The Apicomplexa are a group of phylogenetically related parasitic protists that include Plasmodium, Cryptosporidium, and Toxoplasma. Together they are a major global burden on human health and economics. To meet this challenge, several international consortia have generated vast amounts of sequence data for many of these parasites. Here, we exploit these data to perform a systematic analysis of protein family and domain incidence across the phylum. A total of 87,736 protein sequences were collected from 15 apicomplexan species. These were compared with three protein databases, including the partial genome database, PartiGeneDB, which increases the breadth of taxonomic coverage. From these searches we constructed taxonomic profiles that reveal the extent of apicomplexan sequence diversity. Sequences without a significant match outside the phylum were denoted as apicomplexan specialized. These were collated into 9134 discrete protein families and placed in the context of the apicomplexan phylogeny, identifying the putative origin of each family. Most apicomplexan families were associated with an individual genus or species. Interestingly, many genera-specific innovations were associated with specialized host cell invasion and/or parasite survival processes. Contrastingly, those families reflecting more ancestral relationships were enriched in generalized housekeeping functions such as translation and transcription, which have diverged within the apicomplexan lineage. Protein domain searches revealed 192 domains not previously reported in apicomplexans together with a number of novel domain combinations. We highlight domains that may be important to parasite survival.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wasmuth</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 2L3, Canada. jwasmuth@sickkids.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Daub</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peregrín-Alvarez</LastName>
<ForeName>José Manuel</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Finney</LastName>
<ForeName>Constance A M</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parkinson</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genome Res</MedlineTA>
<NlmUniqueID>9518021</NlmUniqueID>
<ISSNLinking>1088-9051</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015800">Protozoan Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Infect Dis. 2002 Jun 1;185(11):1637-43</RefSource>
<PMID Version="1">12023770</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2002 Jun 22;359(9324):2188-94</RefSource>
<PMID Version="1">12090998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2002 Sep;45(6):1473-84</RefSource>
<PMID Version="1">12354219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Oct 3;419(6906):498-511</RefSource>
<PMID Version="1">12368864</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Oct 3;419(6906):520-6</RefSource>
<PMID Version="1">12368866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2003 Mar;13(3):443-54</RefSource>
<PMID Version="1">12618375</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Syst Evol Microbiol. 2003 Jan;53(Pt 1):345-54</RefSource>
<PMID Version="1">12656194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2003 Apr;13(4):601-16</RefSource>
<PMID Version="1">12671001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Jun 13;300(5626):1703-6</RefSource>
<PMID Version="1">12805537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parasitology. 2003 Jun;126(Pt 6):555-9</RefSource>
<PMID Version="1">12866793</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2003 Jul 22;19(11):1451-2</RefSource>
<PMID Version="1">12874064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2003 Sep;13(9):2178-89</RefSource>
<PMID Version="1">12952885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2003 Dec 4;321:39-46</RefSource>
<PMID Version="1">14636990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9</RefSource>
<PMID Version="1">14681372</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Feb 12;20(3):426-7</RefSource>
<PMID Version="1">14960472</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 Apr 9;304(5668):248-53</RefSource>
<PMID Version="1">15073368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Apr 12;20(6):979-81</RefSource>
<PMID Version="1">14764576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2004 Mar;2(3):203-16</RefSource>
<PMID Version="1">15083156</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2004 Apr;113(8):1084-92</RefSource>
<PMID Version="1">15085184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 Apr 16;304(5669):441-5</RefSource>
<PMID Version="1">15044751</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Jun 12;20(9):1398-404</RefSource>
<PMID Version="1">14988115</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2004 Sep 7;14(17):R693-6</RefSource>
<PMID Version="1">15341755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2004 Sep;14(9):1686-95</RefSource>
<PMID Version="1">15342554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Microbiol. 2004 Aug;7(4):388-96</RefSource>
<PMID Version="1">15358257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2004 Aug 19;5:113</RefSource>
<PMID Version="1">15318951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Oct 28;431(7012):1107-12</RefSource>
<PMID Version="1">15510150</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1970 Mar;48(3):443-53</RefSource>
<PMID Version="1">5420325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Gen Genet. 1983;190(2):289-94</RefSource>
<PMID Version="1">6410151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parasitol Res. 1993;79(3):256-8</RefSource>
<PMID Version="1">8493251</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 1993 Aug;4(4):332-3</RefSource>
<PMID Version="1">8401577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Rev. 1993 Dec;57(4):953-94</RefSource>
<PMID Version="1">8302218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1996 Aug 16;261(2):155-72</RefSource>
<PMID Version="1">8757284</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vet Parasitol. 1996 Oct 25;65(3-4):223-32</RefSource>
<PMID Version="1">8983148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</RefSource>
<PMID Version="1">9254694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 1998 Jan;8(1):18-28</RefSource>
<PMID Version="1">9445484</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8</RefSource>
<PMID Version="1">9843981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Infect Dis. 1999 Mar;28(3):575-81</RefSource>
<PMID Version="1">10194081</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Microbiol Lett. 1999 Apr 1;173(1):147-53</RefSource>
<PMID Version="1">10220891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vet Parasitol. 1999 Aug 1;84(3-4):349-67</RefSource>
<PMID Version="1">10456423</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2004;5(11):R88</RefSource>
<PMID Version="1">15535864</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Nov 22;20(17):3246-8</RefSource>
<PMID Version="1">15180930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Issues Mol Biol. 2005 Jan;7(1):57-79</RefSource>
<PMID Version="1">15580780</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D303-7</RefSource>
<PMID Version="1">15608203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D34-8</RefSource>
<PMID Version="1">15608212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Jan 7;307(5706):82-6</RefSource>
<PMID Version="1">15637271</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2004 Nov 30;5:187</RefSource>
<PMID Version="1">15571632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biochem Parasitol. 2005 Mar;140(1):61-8</RefSource>
<PMID Version="1">15694487</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Jun 10;308(5728):1626-9</RefSource>
<PMID Version="1">15860593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2005;33(10):3390-400</RefSource>
<PMID Version="1">15951512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Parasitol. 2005 Jul;35(8):829-49</RefSource>
<PMID Version="1">15978597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Jul 1;309(5731):131-3</RefSource>
<PMID Version="1">15994557</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Jul 1;309(5731):134-7</RefSource>
<PMID Version="1">15994558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Eng Des Sel. 2005 Aug;18(8):379-88</RefSource>
<PMID Version="1">15976010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2005 Aug 1;355:40-7</RefSource>
<PMID Version="1">16023794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Oct 7;280(40):34245-58</RefSource>
<PMID Version="1">16002398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biochem Parasitol. 2005 Nov;144(1):1-9</RefSource>
<PMID Version="1">16085323</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D247-51</RefSource>
<PMID Version="1">16381856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eukaryot Cell. 2006 Apr;5(4):672-82</RefSource>
<PMID Version="1">16607015</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2006 Aug;4(8):621-8</RefSource>
<PMID Version="1">16845432</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2006 Nov;6(21):5773-84</RefSource>
<PMID Version="1">17022100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2007 Jan;35(Database issue):D427-30</RefSource>
<PMID Version="1">17098930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Eukaryot Microbiol. 2007 Jan-Feb;54(1):66-72</RefSource>
<PMID Version="1">17300522</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2007;2(4):e383</RefSource>
<PMID Version="1">17440619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2007 Oct 19;3(10):1401-13</RefSource>
<PMID Version="1">17953480</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):305-10</RefSource>
<PMID Version="1">18172196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2007;8(11):R238</RefSource>
<PMID Version="1">17996061</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3427-32</RefSource>
<PMID Version="1">18299576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Parasitol. 2008 Feb;94(1):158-68</RefSource>
<PMID Version="1">18372636</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2008 Apr;8(7):1398-414</RefSource>
<PMID Version="1">18306179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Negl Trop Dis. 2008;2(7):e258</RefSource>
<PMID Version="1">18596977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2008;9(7):R116</RefSource>
<PMID Version="1">18644147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Oct 9;455(7214):757-63</RefSource>
<PMID Version="1">18843361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1999 Nov 29;147(5):937-44</RefSource>
<PMID Version="1">10579715</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Parasitol. 1999 Oct;29(10):1557-62</RefSource>
<PMID Version="1">10608442</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiology. 2000 Feb;146 ( Pt 2):315-21</RefSource>
<PMID Version="1">10708370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2000 May;25(1):25-9</RefSource>
<PMID Version="1">10802651</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2000 Jun;16(6):276-7</RefSource>
<PMID Version="1">10827456</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Syst Evol Microbiol. 2000 Jul;50 Pt 4:1673-81</RefSource>
<PMID Version="1">10939675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Parasitol. 2000 Sep;30(10):1099-107</RefSource>
<PMID Version="1">10996328</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vet Parasitol. 2001 Feb 26;95(2-4):233-9</RefSource>
<PMID Version="1">11223203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2001 Mar;18(3):418-26</RefSource>
<PMID Version="1">11230543</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Microbiol Rev. 2002 Jan;15(1):145-54</RefSource>
<PMID Version="1">11781272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2002 Apr 1;30(7):1575-84</RefSource>
<PMID Version="1">11917018</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016782" MajorTopicYN="N">Apicomplexa</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015800" MajorTopicYN="N">Protozoan Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC2704437</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19363216</ArticleId>
<ArticleId IdType="pii">gr.083386.108</ArticleId>
<ArticleId IdType="doi">10.1101/gr.083386.108</ArticleId>
<ArticleId IdType="pmc">PMC2704437</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Daub, Jennifer" sort="Daub, Jennifer" uniqKey="Daub J" first="Jennifer" last="Daub">Jennifer Daub</name>
<name sortKey="Finney, Constance A M" sort="Finney, Constance A M" uniqKey="Finney C" first="Constance A M" last="Finney">Constance A M. Finney</name>
<name sortKey="Parkinson, John" sort="Parkinson, John" uniqKey="Parkinson J" first="John" last="Parkinson">John Parkinson</name>
<name sortKey="Peregrin Alvarez, Jose Manuel" sort="Peregrin Alvarez, Jose Manuel" uniqKey="Peregrin Alvarez J" first="José Manuel" last="Peregrín-Alvarez">José Manuel Peregrín-Alvarez</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Wasmuth, James" sort="Wasmuth, James" uniqKey="Wasmuth J" first="James" last="Wasmuth">James Wasmuth</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A59 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000A59 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:19363216
   |texte=   The origins of apicomplexan sequence innovation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:19363216" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022