La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage

Identifieur interne : 001509 ( Istex/Corpus ); précédent : 001508; suivant : 001510

The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage

Auteurs : Stephen D. Waldman ; Marc D. Grynpas ; Robert M. Pilliar ; Rita A. Kandel

Source :

RBID : ISTEX:F499E5EA9E952CCD4FE54F00FCF7477660161D7F

English descriptors

Abstract

Tissue engineering of articular cartilage is a promising alternative to the conventional approaches for cartilage repair. However, recent attempts to develop articular cartilage in vitro have proven to be difficult. The tissue formed in vitro may not accumulate enough extracellular matrix, and the resulting mechanical properties are only a fraction of the native tissue. We investigated whether using specific populations of chondrocytes would improve the properties of the cartilaginous tissue that was generated in vitro. Full‐thickness (FT), mid‐and‐deep zone (MD), and deep‐zone (DEEP) chondrocytes were isolated, placed on the surface of porous ceramic substrates and maintained in culture for eight weeks. Tissue developed from DEEP chondrocytes was thicker (FT: 0.94 ± 0.03, MD: 0.88 ± 0.04, DEEP: 2.4 ± 0.1 mm) and had accumulated larger amounts of extracellular matrix (FT: 1.61 ± 0.05, MD: 1.5 ± 0.1, DEEP: 3.8 ± 0.2 mg dry weight) than the tissues formed by the FT and MD chondrocytes. The tissue formed by the FT chondrocytes accumulated the greatest amount of collagen (FT: 211 ± 14, MD: 185 ± 8, DEEP: 178 ± 5 μg/mg dry weight) whereas the tissue formed by the MD chondrocytes accumulated significantly more proteoglycans (FT: 198 ± 10, MD: 265 ± 10, DEEP: 215 ± 5 μg/mg dry weight). Interestingly, MD chondrocytes produced tissue that had compressive mechanical properties up to four times greater than the cartilaginous tissues formed by cells from either the FT or DEEP of cartilage. Thus, a combined population of intermediate and DEEP chondrocytes might be more suitable for the tissue engineering of articular cartilage. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Url:
DOI: 10.1016/S0736-0266(02)00105-5

Links to Exploration step

ISTEX:F499E5EA9E952CCD4FE54F00FCF7477660161D7F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage</title>
<author>
<name sortKey="Waldman, Stephen D" sort="Waldman, Stephen D" uniqKey="Waldman S" first="Stephen D." last="Waldman">Stephen D. Waldman</name>
<affiliation>
<mods:affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grynpas, Marc D" sort="Grynpas, Marc D" uniqKey="Grynpas M" first="Marc D." last="Grynpas">Marc D. Grynpas</name>
<affiliation>
<mods:affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pilliar, Robert M" sort="Pilliar, Robert M" uniqKey="Pilliar R" first="Robert M." last="Pilliar">Robert M. Pilliar</name>
<affiliation>
<mods:affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kandel, Rita A" sort="Kandel, Rita A" uniqKey="Kandel R" first="Rita A." last="Kandel">Rita A. Kandel</name>
<affiliation>
<mods:affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5. Tel.: +1‐416‐586‐8516; fax: +1‐416‐586‐8628</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F499E5EA9E952CCD4FE54F00FCF7477660161D7F</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1016/S0736-0266(02)00105-5</idno>
<idno type="url">https://api-v5.istex.fr/document/F499E5EA9E952CCD4FE54F00FCF7477660161D7F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001509</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001509</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage</title>
<author>
<name sortKey="Waldman, Stephen D" sort="Waldman, Stephen D" uniqKey="Waldman S" first="Stephen D." last="Waldman">Stephen D. Waldman</name>
<affiliation>
<mods:affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grynpas, Marc D" sort="Grynpas, Marc D" uniqKey="Grynpas M" first="Marc D." last="Grynpas">Marc D. Grynpas</name>
<affiliation>
<mods:affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pilliar, Robert M" sort="Pilliar, Robert M" uniqKey="Pilliar R" first="Robert M." last="Pilliar">Robert M. Pilliar</name>
<affiliation>
<mods:affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kandel, Rita A" sort="Kandel, Rita A" uniqKey="Kandel R" first="Rita A." last="Kandel">Rita A. Kandel</name>
<affiliation>
<mods:affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5. Tel.: +1‐416‐586‐8516; fax: +1‐416‐586‐8628</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Orthopaedic Research</title>
<title level="j" type="abbrev">J. Orthop. Res.</title>
<idno type="ISSN">0736-0266</idno>
<idno type="eISSN">1554-527X</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2003-01">2003-01</date>
<biblScope unit="volume">21</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="132">132</biblScope>
<biblScope unit="page" to="138">138</biblScope>
</imprint>
<idno type="ISSN">0736-0266</idno>
</series>
<idno type="istex">F499E5EA9E952CCD4FE54F00FCF7477660161D7F</idno>
<idno type="DOI">10.1016/S0736-0266(02)00105-5</idno>
<idno type="ArticleID">JOR1100210119</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0736-0266</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Articular cartilage</term>
<term>Calcium polyphosphate substrates</term>
<term>Chondrocytes</term>
<term>Subpopulations</term>
<term>Tissue engineering</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tissue engineering of articular cartilage is a promising alternative to the conventional approaches for cartilage repair. However, recent attempts to develop articular cartilage in vitro have proven to be difficult. The tissue formed in vitro may not accumulate enough extracellular matrix, and the resulting mechanical properties are only a fraction of the native tissue. We investigated whether using specific populations of chondrocytes would improve the properties of the cartilaginous tissue that was generated in vitro. Full‐thickness (FT), mid‐and‐deep zone (MD), and deep‐zone (DEEP) chondrocytes were isolated, placed on the surface of porous ceramic substrates and maintained in culture for eight weeks. Tissue developed from DEEP chondrocytes was thicker (FT: 0.94 ± 0.03, MD: 0.88 ± 0.04, DEEP: 2.4 ± 0.1 mm) and had accumulated larger amounts of extracellular matrix (FT: 1.61 ± 0.05, MD: 1.5 ± 0.1, DEEP: 3.8 ± 0.2 mg dry weight) than the tissues formed by the FT and MD chondrocytes. The tissue formed by the FT chondrocytes accumulated the greatest amount of collagen (FT: 211 ± 14, MD: 185 ± 8, DEEP: 178 ± 5 μg/mg dry weight) whereas the tissue formed by the MD chondrocytes accumulated significantly more proteoglycans (FT: 198 ± 10, MD: 265 ± 10, DEEP: 215 ± 5 μg/mg dry weight). Interestingly, MD chondrocytes produced tissue that had compressive mechanical properties up to four times greater than the cartilaginous tissues formed by cells from either the FT or DEEP of cartilage. Thus, a combined population of intermediate and DEEP chondrocytes might be more suitable for the tissue engineering of articular cartilage. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Stephen D. Waldman</name>
<affiliations>
<json:string>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marc D. Grynpas</name>
<affiliations>
<json:string>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</json:string>
<json:string>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</json:string>
<json:string>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert M. Pilliar</name>
<affiliations>
<json:string>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Rita A. Kandel</name>
<affiliations>
<json:string>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</json:string>
<json:string>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</json:string>
<json:string>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</json:string>
<json:string>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5. Tel.: +1‐416‐586‐8516; fax: +1‐416‐586‐8628</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Tissue engineering</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Articular cartilage</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Calcium polyphosphate substrates</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Chondrocytes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Subpopulations</value>
</json:item>
</subject>
<articleId>
<json:string>JOR1100210119</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Tissue engineering of articular cartilage is a promising alternative to the conventional approaches for cartilage repair. However, recent attempts to develop articular cartilage in vitro have proven to be difficult. The tissue formed in vitro may not accumulate enough extracellular matrix, and the resulting mechanical properties are only a fraction of the native tissue. We investigated whether using specific populations of chondrocytes would improve the properties of the cartilaginous tissue that was generated in vitro. Full‐thickness (FT), mid‐and‐deep zone (MD), and deep‐zone (DEEP) chondrocytes were isolated, placed on the surface of porous ceramic substrates and maintained in culture for eight weeks. Tissue developed from DEEP chondrocytes was thicker (FT: 0.94 ± 0.03, MD: 0.88 ± 0.04, DEEP: 2.4 ± 0.1 mm) and had accumulated larger amounts of extracellular matrix (FT: 1.61 ± 0.05, MD: 1.5 ± 0.1, DEEP: 3.8 ± 0.2 mg dry weight) than the tissues formed by the FT and MD chondrocytes. The tissue formed by the FT chondrocytes accumulated the greatest amount of collagen (FT: 211 ± 14, MD: 185 ± 8, DEEP: 178 ± 5 μg/mg dry weight) whereas the tissue formed by the MD chondrocytes accumulated significantly more proteoglycans (FT: 198 ± 10, MD: 265 ± 10, DEEP: 215 ± 5 μg/mg dry weight). Interestingly, MD chondrocytes produced tissue that had compressive mechanical properties up to four times greater than the cartilaginous tissues formed by cells from either the FT or DEEP of cartilage. Thus, a combined population of intermediate and DEEP chondrocytes might be more suitable for the tissue engineering of articular cartilage. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.</abstract>
<qualityIndicators>
<score>7.979</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1735</abstractCharCount>
<pdfWordCount>4979</pdfWordCount>
<pdfCharCount>32905</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>272</abstractWordCount>
</qualityIndicators>
<title>The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Orthopaedic Research</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1554-527X</json:string>
</doi>
<issn>
<json:string>0736-0266</json:string>
</issn>
<eissn>
<json:string>1554-527X</json:string>
</eissn>
<publisherId>
<json:string>JOR</json:string>
</publisherId>
<volume>21</volume>
<issue>1</issue>
<pages>
<first>132</first>
<last>138</last>
<total>7</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>orthopedics</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>orthopedics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences medicales</json:string>
<json:string>toxicologie</json:string>
</inist>
</categories>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1016/S0736-0266(02)00105-5</json:string>
</doi>
<id>F499E5EA9E952CCD4FE54F00FCF7477660161D7F</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/F499E5EA9E952CCD4FE54F00FCF7477660161D7F/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/F499E5EA9E952CCD4FE54F00FCF7477660161D7F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/F499E5EA9E952CCD4FE54F00FCF7477660161D7F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 2003 Orthopaedic Research Society</p>
</availability>
<date>2003</date>
</publicationStmt>
<notesStmt>
<note>Canadian Arthritis Network (CAN)</note>
<note>Canadian Institutes of Health Research (CIHR)</note>
<note>Arthritis Society of Canada (TAS)</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage</title>
<author xml:id="author-1">
<persName>
<forename type="first">Stephen D.</forename>
<surname>Waldman</surname>
</persName>
<affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Marc D.</forename>
<surname>Grynpas</surname>
</persName>
<affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</affiliation>
<affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</affiliation>
<affiliation>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Robert M.</forename>
<surname>Pilliar</surname>
</persName>
<affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Rita A.</forename>
<surname>Kandel</surname>
</persName>
<affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</affiliation>
<affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</affiliation>
<affiliation>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</affiliation>
<affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5. Tel.: +1‐416‐586‐8516; fax: +1‐416‐586‐8628</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Orthopaedic Research</title>
<title level="j" type="abbrev">J. Orthop. Res.</title>
<idno type="pISSN">0736-0266</idno>
<idno type="eISSN">1554-527X</idno>
<idno type="DOI">10.1002/(ISSN)1554-527X</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2003-01"></date>
<biblScope unit="volume">21</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="132">132</biblScope>
<biblScope unit="page" to="138">138</biblScope>
</imprint>
</monogr>
<idno type="istex">F499E5EA9E952CCD4FE54F00FCF7477660161D7F</idno>
<idno type="DOI">10.1016/S0736-0266(02)00105-5</idno>
<idno type="ArticleID">JOR1100210119</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Tissue engineering of articular cartilage is a promising alternative to the conventional approaches for cartilage repair. However, recent attempts to develop articular cartilage in vitro have proven to be difficult. The tissue formed in vitro may not accumulate enough extracellular matrix, and the resulting mechanical properties are only a fraction of the native tissue. We investigated whether using specific populations of chondrocytes would improve the properties of the cartilaginous tissue that was generated in vitro. Full‐thickness (FT), mid‐and‐deep zone (MD), and deep‐zone (DEEP) chondrocytes were isolated, placed on the surface of porous ceramic substrates and maintained in culture for eight weeks. Tissue developed from DEEP chondrocytes was thicker (FT: 0.94 ± 0.03, MD: 0.88 ± 0.04, DEEP: 2.4 ± 0.1 mm) and had accumulated larger amounts of extracellular matrix (FT: 1.61 ± 0.05, MD: 1.5 ± 0.1, DEEP: 3.8 ± 0.2 mg dry weight) than the tissues formed by the FT and MD chondrocytes. The tissue formed by the FT chondrocytes accumulated the greatest amount of collagen (FT: 211 ± 14, MD: 185 ± 8, DEEP: 178 ± 5 μg/mg dry weight) whereas the tissue formed by the MD chondrocytes accumulated significantly more proteoglycans (FT: 198 ± 10, MD: 265 ± 10, DEEP: 215 ± 5 μg/mg dry weight). Interestingly, MD chondrocytes produced tissue that had compressive mechanical properties up to four times greater than the cartilaginous tissues formed by cells from either the FT or DEEP of cartilage. Thus, a combined population of intermediate and DEEP chondrocytes might be more suitable for the tissue engineering of articular cartilage. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Tissue engineering</term>
</item>
<item>
<term>Articular cartilage</term>
</item>
<item>
<term>Calcium polyphosphate substrates</term>
</item>
<item>
<term>Chondrocytes</term>
</item>
<item>
<term>Subpopulations</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/F499E5EA9E952CCD4FE54F00FCF7477660161D7F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1554-527X</doi>
<issn type="print">0736-0266</issn>
<issn type="electronic">1554-527X</issn>
<idGroup>
<id type="product" value="JOR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF ORTHOPAEDIC RESEARCH">Journal of Orthopaedic Research</title>
<title type="short">J. Orthop. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/jor.v21:1</doi>
<numberingGroup>
<numbering type="journalVolume" number="21">21</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2003-01">January 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="19" status="forIssue">
<doi origin="wiley" registered="yes">10.1016/S0736-0266(02)00105-5</doi>
<idGroup>
<id type="unit" value="JOR1100210119"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="7"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright © 2003 Orthopaedic Research Society</copyright>
<eventGroup>
<event type="firstOnline" date="2006-01-01"></event>
<event type="publishedOnlineFinalForm" date="2006-01-01"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.6 mode:FullText source:HeaderRef result:HeaderRef" date="2010-04-23"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">132</numbering>
<numbering type="pageLast">138</numbering>
</numberingGroup>
<correspondenceTo>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5. Tel.: +1‐416‐586‐8516; fax: +1‐416‐586‐8628</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JOR.JOR1100210119.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="2"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="54"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage</title>
<title type="short" xml:lang="en">The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Stephen D.</givenNames>
<familyName>Waldman</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1 #af2 #af3">
<personName>
<givenNames>Marc D.</givenNames>
<familyName>Grynpas</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Robert M.</givenNames>
<familyName>Pilliar</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1 #af2 #af3" corresponding="yes">
<personName>
<givenNames>Rita A.</givenNames>
<familyName>Kandel</familyName>
</personName>
<contactDetails>
<email>rkandel@mtsinai.on.ca</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="CA" type="organization">
<unparsedAffiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="CA" type="organization">
<unparsedAffiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="CA" type="organization">
<unparsedAffiliation>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">Tissue engineering</keyword>
<keyword xml:id="kwd2">Articular cartilage</keyword>
<keyword xml:id="kwd3">Calcium polyphosphate substrates</keyword>
<keyword xml:id="kwd4">Chondrocytes</keyword>
<keyword xml:id="kwd5">Subpopulations</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Canadian Arthritis Network (CAN)</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Canadian Institutes of Health Research (CIHR)</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Arthritis Society of Canada (TAS)</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Tissue engineering of articular cartilage is a promising alternative to the conventional approaches for cartilage repair. However, recent attempts to develop articular cartilage in vitro have proven to be difficult. The tissue formed in vitro may not accumulate enough extracellular matrix, and the resulting mechanical properties are only a fraction of the native tissue. We investigated whether using specific populations of chondrocytes would improve the properties of the cartilaginous tissue that was generated in vitro. Full‐thickness (FT), mid‐and‐deep zone (MD), and deep‐zone (DEEP) chondrocytes were isolated, placed on the surface of porous ceramic substrates and maintained in culture for eight weeks. Tissue developed from DEEP chondrocytes was thicker (FT: 0.94 ± 0.03, MD: 0.88 ± 0.04, DEEP: 2.4 ± 0.1 mm) and had accumulated larger amounts of extracellular matrix (FT: 1.61 ± 0.05, MD: 1.5 ± 0.1, DEEP: 3.8 ± 0.2 mg dry weight) than the tissues formed by the FT and MD chondrocytes. The tissue formed by the FT chondrocytes accumulated the greatest amount of collagen (FT: 211 ± 14, MD: 185 ± 8, DEEP: 178 ± 5 μg/mg dry weight) whereas the tissue formed by the MD chondrocytes accumulated significantly more proteoglycans (FT: 198 ± 10, MD: 265 ± 10, DEEP: 215 ± 5 μg/mg dry weight). Interestingly, MD chondrocytes produced tissue that had compressive mechanical properties up to four times greater than the cartilaginous tissues formed by cells from either the FT or DEEP of cartilage. Thus, a combined population of intermediate and DEEP chondrocytes might be more suitable for the tissue engineering of articular cartilage.</p>
<p>© 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stephen D.</namePart>
<namePart type="family">Waldman</namePart>
<affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc D.</namePart>
<namePart type="family">Grynpas</namePart>
<affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</affiliation>
<affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</affiliation>
<affiliation>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert M.</namePart>
<namePart type="family">Pilliar</namePart>
<affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rita A.</namePart>
<namePart type="family">Kandel</namePart>
<affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5</affiliation>
<affiliation>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont., Canada</affiliation>
<affiliation>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada</affiliation>
<affiliation>Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5. Tel.: +1‐416‐586‐8516; fax: +1‐416‐586‐8628</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2003-01</dateIssued>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">2</extent>
<extent unit="tables">1</extent>
<extent unit="references">54</extent>
</physicalDescription>
<abstract lang="en">Tissue engineering of articular cartilage is a promising alternative to the conventional approaches for cartilage repair. However, recent attempts to develop articular cartilage in vitro have proven to be difficult. The tissue formed in vitro may not accumulate enough extracellular matrix, and the resulting mechanical properties are only a fraction of the native tissue. We investigated whether using specific populations of chondrocytes would improve the properties of the cartilaginous tissue that was generated in vitro. Full‐thickness (FT), mid‐and‐deep zone (MD), and deep‐zone (DEEP) chondrocytes were isolated, placed on the surface of porous ceramic substrates and maintained in culture for eight weeks. Tissue developed from DEEP chondrocytes was thicker (FT: 0.94 ± 0.03, MD: 0.88 ± 0.04, DEEP: 2.4 ± 0.1 mm) and had accumulated larger amounts of extracellular matrix (FT: 1.61 ± 0.05, MD: 1.5 ± 0.1, DEEP: 3.8 ± 0.2 mg dry weight) than the tissues formed by the FT and MD chondrocytes. The tissue formed by the FT chondrocytes accumulated the greatest amount of collagen (FT: 211 ± 14, MD: 185 ± 8, DEEP: 178 ± 5 μg/mg dry weight) whereas the tissue formed by the MD chondrocytes accumulated significantly more proteoglycans (FT: 198 ± 10, MD: 265 ± 10, DEEP: 215 ± 5 μg/mg dry weight). Interestingly, MD chondrocytes produced tissue that had compressive mechanical properties up to four times greater than the cartilaginous tissues formed by cells from either the FT or DEEP of cartilage. Thus, a combined population of intermediate and DEEP chondrocytes might be more suitable for the tissue engineering of articular cartilage. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.</abstract>
<note type="funding">Canadian Arthritis Network (CAN)</note>
<note type="funding">Canadian Institutes of Health Research (CIHR)</note>
<note type="funding">Arthritis Society of Canada (TAS)</note>
<subject lang="en">
<genre>keywords</genre>
<topic>Tissue engineering</topic>
<topic>Articular cartilage</topic>
<topic>Calcium polyphosphate substrates</topic>
<topic>Chondrocytes</topic>
<topic>Subpopulations</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Orthopaedic Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Orthop. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0736-0266</identifier>
<identifier type="eISSN">1554-527X</identifier>
<identifier type="DOI">10.1002/(ISSN)1554-527X</identifier>
<identifier type="PublisherID">JOR</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>21</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>132</start>
<end>138</end>
<total>7</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">F499E5EA9E952CCD4FE54F00FCF7477660161D7F</identifier>
<identifier type="DOI">10.1016/S0736-0266(02)00105-5</identifier>
<identifier type="ArticleID">JOR1100210119</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2003 Orthopaedic Research Society</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001509 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001509 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:F499E5EA9E952CCD4FE54F00FCF7477660161D7F
   |texte=   The use of specific chondrocyte populations to modulate the properties of tissue‐engineered cartilage
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022