La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model

Identifieur interne : 001507 ( Istex/Corpus ); précédent : 001506; suivant : 001508

Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model

Auteurs : Daniel Y. Robitaille ; Andrew J. Weaver

Source :

RBID : ISTEX:E86A6F045B52D610C7DCBFCC5F42367A49ADF188

Abstract

Three sub‐grid‐scale mixing parameterizations (lateral/vertical; isopycnal; Gent and McWilliams, 1990) are used in a global ocean model in an attempt to determine which yields the best ocean climate. Observed CFC‐11 distributions, in both the North and South Atlantic, are used in evaluating the model results. While the isopycnal mixing scheme does improve the deep ocean potential temperature and salinity distributions, when compared to results from the traditional lateral/vertical mixing scheme, the CFC‐11 distribution is worse in the upper ocean due to too much mixing. The Gent and McWilliams (1990) parameterization significantly improves the CFC‐11 distributions when compared to both of the other schemes. The main improvement comes from a reduction of CFC uptake in the southern ocean where the ‘bolus’ transport cancels the mean advection of tracers and hence causes the Deacon Cell to disappear. These results suggest that the asymmetric response found in CO2‐increase experiments, whereby the climate over the southern ocean does not warm as much as in the northern hemisphere, may be due to the particular mixing schemes used.

Url:
DOI: 10.1029/95GL02651

Links to Exploration step

ISTEX:E86A6F045B52D610C7DCBFCC5F42367A49ADF188

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model</title>
<author>
<name sortKey="Robitaille, Daniel Y" sort="Robitaille, Daniel Y" uniqKey="Robitaille D" first="Daniel Y." last="Robitaille">Daniel Y. Robitaille</name>
<affiliation>
<mods:affiliation>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weaver, Andrew J" sort="Weaver, Andrew J" uniqKey="Weaver A" first="Andrew J." last="Weaver">Andrew J. Weaver</name>
<affiliation>
<mods:affiliation>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E86A6F045B52D610C7DCBFCC5F42367A49ADF188</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1029/95GL02651</idno>
<idno type="url">https://api-v5.istex.fr/document/E86A6F045B52D610C7DCBFCC5F42367A49ADF188/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001507</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001507</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model</title>
<author>
<name sortKey="Robitaille, Daniel Y" sort="Robitaille, Daniel Y" uniqKey="Robitaille D" first="Daniel Y." last="Robitaille">Daniel Y. Robitaille</name>
<affiliation>
<mods:affiliation>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weaver, Andrew J" sort="Weaver, Andrew J" uniqKey="Weaver A" first="Andrew J." last="Weaver">Andrew J. Weaver</name>
<affiliation>
<mods:affiliation>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geophysical Research Letters</title>
<title level="j" type="abbrev">Geophys. Res. Lett.</title>
<idno type="ISSN">0094-8276</idno>
<idno type="eISSN">1944-8007</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1995-11-01">1995-11-01</date>
<biblScope unit="volume">22</biblScope>
<biblScope unit="issue">21</biblScope>
<biblScope unit="page" from="2917">2917</biblScope>
<biblScope unit="page" to="2920">2920</biblScope>
</imprint>
<idno type="ISSN">0094-8276</idno>
</series>
<idno type="istex">E86A6F045B52D610C7DCBFCC5F42367A49ADF188</idno>
<idno type="DOI">10.1029/95GL02651</idno>
<idno type="ArticleID">95GL02651</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0094-8276</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Three sub‐grid‐scale mixing parameterizations (lateral/vertical; isopycnal; Gent and McWilliams, 1990) are used in a global ocean model in an attempt to determine which yields the best ocean climate. Observed CFC‐11 distributions, in both the North and South Atlantic, are used in evaluating the model results. While the isopycnal mixing scheme does improve the deep ocean potential temperature and salinity distributions, when compared to results from the traditional lateral/vertical mixing scheme, the CFC‐11 distribution is worse in the upper ocean due to too much mixing. The Gent and McWilliams (1990) parameterization significantly improves the CFC‐11 distributions when compared to both of the other schemes. The main improvement comes from a reduction of CFC uptake in the southern ocean where the ‘bolus’ transport cancels the mean advection of tracers and hence causes the Deacon Cell to disappear. These results suggest that the asymmetric response found in CO2‐increase experiments, whereby the climate over the southern ocean does not warm as much as in the northern hemisphere, may be due to the particular mixing schemes used.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>salinity</json:string>
<json:string>isopycnal</json:string>
<json:string>parameterization</json:string>
<json:string>deep ocean</json:string>
<json:string>validation</json:string>
<json:string>weiss</json:string>
<json:string>deacon cell</json:string>
<json:string>ocean model</json:string>
<json:string>asymmetric response</json:string>
<json:string>easternnorth atlantic</json:string>
<json:string>diffusion tensor</json:string>
<json:string>real ocean</json:string>
<json:string>vertical diffusivity</json:string>
<json:string>southern hemisphere</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Daniel Y. Robitaille</name>
<affiliations>
<json:string>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Andrew J. Weaver</name>
<affiliations>
<json:string>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>95GL02651</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Three sub‐grid‐scale mixing parameterizations (lateral/vertical; isopycnal; Gent and McWilliams, 1990) are used in a global ocean model in an attempt to determine which yields the best ocean climate. Observed CFC‐11 distributions, in both the North and South Atlantic, are used in evaluating the model results. While the isopycnal mixing scheme does improve the deep ocean potential temperature and salinity distributions, when compared to results from the traditional lateral/vertical mixing scheme, the CFC‐11 distribution is worse in the upper ocean due to too much mixing. The Gent and McWilliams (1990) parameterization significantly improves the CFC‐11 distributions when compared to both of the other schemes. The main improvement comes from a reduction of CFC uptake in the southern ocean where the ‘bolus’ transport cancels the mean advection of tracers and hence causes the Deacon Cell to disappear. These results suggest that the asymmetric response found in CO2‐increase experiments, whereby the climate over the southern ocean does not warm as much as in the northern hemisphere, may be due to the particular mixing schemes used.</abstract>
<qualityIndicators>
<score>4.352</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>571 x 809 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1142</abstractCharCount>
<pdfWordCount>2288</pdfWordCount>
<pdfCharCount>17646</pdfCharCount>
<pdfPageCount>4</pdfPageCount>
<abstractWordCount>172</abstractWordCount>
</qualityIndicators>
<title>Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Geophysical Research Letters</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1944-8007</json:string>
</doi>
<issn>
<json:string>0094-8276</json:string>
</issn>
<eissn>
<json:string>1944-8007</json:string>
</eissn>
<publisherId>
<json:string>GRL</json:string>
</publisherId>
<volume>22</volume>
<issue>21</issue>
<pages>
<first>2917</first>
<last>2920</last>
<total>4</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Oceanography: Physical</value>
</json:item>
<json:item>
<value>Oceanography: Physical: General circulation</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1029/95GL02651</json:string>
</doi>
<id>E86A6F045B52D610C7DCBFCC5F42367A49ADF188</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/E86A6F045B52D610C7DCBFCC5F42367A49ADF188/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/E86A6F045B52D610C7DCBFCC5F42367A49ADF188/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/E86A6F045B52D610C7DCBFCC5F42367A49ADF188/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 1995 by the American Geophysical Union.</p>
</availability>
<date>1995</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model</title>
<author xml:id="author-1">
<persName>
<forename type="first">Daniel Y.</forename>
<surname>Robitaille</surname>
</persName>
<affiliation>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Andrew J.</forename>
<surname>Weaver</surname>
</persName>
<affiliation>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Geophysical Research Letters</title>
<title level="j" type="abbrev">Geophys. Res. Lett.</title>
<idno type="pISSN">0094-8276</idno>
<idno type="eISSN">1944-8007</idno>
<idno type="DOI">10.1002/(ISSN)1944-8007</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1995-11-01"></date>
<biblScope unit="volume">22</biblScope>
<biblScope unit="issue">21</biblScope>
<biblScope unit="page" from="2917">2917</biblScope>
<biblScope unit="page" to="2920">2920</biblScope>
</imprint>
</monogr>
<idno type="istex">E86A6F045B52D610C7DCBFCC5F42367A49ADF188</idno>
<idno type="DOI">10.1029/95GL02651</idno>
<idno type="ArticleID">95GL02651</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1995</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Three sub‐grid‐scale mixing parameterizations (lateral/vertical; isopycnal; Gent and McWilliams, 1990) are used in a global ocean model in an attempt to determine which yields the best ocean climate. Observed CFC‐11 distributions, in both the North and South Atlantic, are used in evaluating the model results. While the isopycnal mixing scheme does improve the deep ocean potential temperature and salinity distributions, when compared to results from the traditional lateral/vertical mixing scheme, the CFC‐11 distribution is worse in the upper ocean due to too much mixing. The Gent and McWilliams (1990) parameterization significantly improves the CFC‐11 distributions when compared to both of the other schemes. The main improvement comes from a reduction of CFC uptake in the southern ocean where the ‘bolus’ transport cancels the mean advection of tracers and hence causes the Deacon Cell to disappear. These results suggest that the asymmetric response found in CO2‐increase experiments, whereby the climate over the southern ocean does not warm as much as in the northern hemisphere, may be due to the particular mixing schemes used.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>Oceanography: Physical</term>
</item>
<item>
<term>Oceanography: Physical: General circulation</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1995-03-30">Received</change>
<change when="1995-08-04">Registration</change>
<change when="1995-11-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/E86A6F045B52D610C7DCBFCC5F42367A49ADF188/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="grl8664">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-8007</doi>
<issn type="print">0094-8276</issn>
<issn type="electronic">1944-8007</issn>
<idGroup>
<id type="product" value="GRL"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="GEOPHYSICAL RESEARCH LETTERS">Geophysical Research Letters</title>
<title type="short">Geophys. Res. Lett.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="210">
<doi>10.1002/grl.v22.21</doi>
<numberingGroup>
<numbering type="journalVolume" number="22">22</numbering>
<numbering type="journalIssue">21</numbering>
</numberingGroup>
<coverDate startDate="1995-11-01">1 November 1995</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="90" type="article" status="forIssue">
<doi>10.1029/95GL02651</doi>
<idGroup>
<id type="editorialOffice" value="95GL02651"></id>
<id type="unit" value="GRL8664"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="4"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 1995 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1995-03-30"></event>
<event type="manuscriptAccepted" date="1995-08-04"></event>
<event type="publishedPrint" date="1995-11-01"></event>
<event type="firstOnline" date="2012-12-07"></event>
<event type="publishedOnlineFinalForm" date="2012-12-07"></event>
<event type="publishedPrint" date="1995-11-01"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.1; WileyML 3G Packaging Tool v1.0" date="2013-02-05"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-26"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">2917</numbering>
<numbering type="pageLast">2920</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4500">Oceanography: Physical</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4532">Oceanography: Physical: General circulation</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="grl8664-cit-0000" type="self">.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:GRL.GRL8664.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model</title>
<title type="shortAuthors">Robitaille and Weaver</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="grl8664-cr-0001" affiliationRef="#grl8664-aff-0001">
<personName>
<givenNames>Daniel Y.</givenNames>
<familyName>Robitaille</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="grl8664-cr-0002" affiliationRef="#grl8664-aff-0001">
<personName>
<givenNames>Andrew J.</givenNames>
<familyName>Weaver</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation type="organization" xml:id="grl8664-aff-0001">
<unparsedAffiliation>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="grl8664-para-0001">Three sub‐grid‐scale mixing parameterizations (lateral/vertical; isopycnal; Gent and McWilliams, 1990) are used in a global ocean model in an attempt to determine which yields the best ocean climate. Observed CFC‐11 distributions, in both the North and South Atlantic, are used in evaluating the model results. While the isopycnal mixing scheme does improve the deep ocean potential temperature and salinity distributions, when compared to results from the traditional lateral/vertical mixing scheme, the CFC‐11 distribution is worse in the upper ocean due to too much mixing. The Gent and McWilliams (1990) parameterization significantly improves the CFC‐11 distributions when compared to both of the other schemes. The main improvement comes from a reduction of CFC uptake in the southern ocean where the ‘bolus’ transport cancels the mean advection of tracers and hence causes the Deacon Cell to disappear. These results suggest that the asymmetric response found in CO
<sub>2</sub>
‐increase experiments, whereby the climate over the southern ocean does not warm as much as in the northern hemisphere, may be due to the particular mixing schemes used.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel Y.</namePart>
<namePart type="family">Robitaille</namePart>
<affiliation>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew J.</namePart>
<namePart type="family">Weaver</namePart>
<affiliation>School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">1995-11-01</dateIssued>
<dateCaptured encoding="w3cdtf">1995-03-30</dateCaptured>
<dateValid encoding="w3cdtf">1995-08-04</dateValid>
<edition>.</edition>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Three sub‐grid‐scale mixing parameterizations (lateral/vertical; isopycnal; Gent and McWilliams, 1990) are used in a global ocean model in an attempt to determine which yields the best ocean climate. Observed CFC‐11 distributions, in both the North and South Atlantic, are used in evaluating the model results. While the isopycnal mixing scheme does improve the deep ocean potential temperature and salinity distributions, when compared to results from the traditional lateral/vertical mixing scheme, the CFC‐11 distribution is worse in the upper ocean due to too much mixing. The Gent and McWilliams (1990) parameterization significantly improves the CFC‐11 distributions when compared to both of the other schemes. The main improvement comes from a reduction of CFC uptake in the southern ocean where the ‘bolus’ transport cancels the mean advection of tracers and hence causes the Deacon Cell to disappear. These results suggest that the asymmetric response found in CO2‐increase experiments, whereby the climate over the southern ocean does not warm as much as in the northern hemisphere, may be due to the particular mixing schemes used.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Geophysical Research Letters</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Geophys. Res. Lett.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">Oceanography: Physical</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4532">Oceanography: Physical: General circulation</topic>
</subject>
<identifier type="ISSN">0094-8276</identifier>
<identifier type="eISSN">1944-8007</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-8007</identifier>
<identifier type="PublisherID">GRL</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>21</number>
</detail>
<extent unit="pages">
<start>2917</start>
<end>2920</end>
<total>4</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">E86A6F045B52D610C7DCBFCC5F42367A49ADF188</identifier>
<identifier type="DOI">10.1029/95GL02651</identifier>
<identifier type="ArticleID">95GL02651</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 1995 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001507 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001507 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:E86A6F045B52D610C7DCBFCC5F42367A49ADF188
   |texte=   Validation of sub‐grid‐scale mixing schemes using CFCs in a global ocean model
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022