Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation.

Identifieur interne : 000B85 ( Ncbi/Merge ); précédent : 000B84; suivant : 000B86

Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation.

Auteurs : Zehava Faltin [Israël] ; Doron Holland ; Margarita Velcheva ; Marina Tsapovetsky ; Patricia Roeckel-Drevet ; Avtar K. Handa ; Mohamad Abu-Abied ; Miriam Friedman-Einat ; Yuval Eshdat ; Avihai Perl

Source :

RBID : pubmed:20530511

English descriptors

Abstract

Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is overexpressed in plants under abiotic and biotic stress conditions that mediate oxidative stress. To study its biological role and its ability to confer stress resistance in plants, we tried to obtain transgenic plants overexpressing citrus (Citrus sinensis) PHGPx (cit-PHGPx). All attempts to obtain regenerated plants expressing this enzyme constitutively failed. However, when the enzyme's catalytic activity was abolished by active site-directed mutagenesis, transgenic plants constitutively expressing inactive cit-PHGPx were successfully regenerated. Constitutive expression of enzymatically active cit-PHGPx could only be obtained when transformation was based on non-regenerative processes. These results indicate that overexpression of the antioxidant enzyme PHGPx interferes with shoot organogenesis and suggests the involvement of reactive oxygen species (ROS) in this process. Using transgenic tobacco (Nicotiana tabacum) leaves obtained from plants transformed with a beta-estradiol-inducible promoter, time-dependent induction of cit-PHGPx expression was employed. A pronounced inhibitory effect of cit-PHGPx on shoot formation was found to be limited to the early stage of the regeneration process. Monitoring the ROS level during regeneration revealed that upon cit-PHGPx induction, the lowest level of ROS correlated with the maximal level of shoot inhibition. Our results clearly demonstrate the essential role of ROS in the early stages of in vitro shoot organogenesis and the possible involvement of PHGPx in maintaining ROS homeostasis at this point.

DOI: 10.1093/pcp/pcq082
PubMed: 20530511

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20530511

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation.</title>
<author>
<name sortKey="Faltin, Zehava" sort="Faltin, Zehava" uniqKey="Faltin Z" first="Zehava" last="Faltin">Zehava Faltin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Science, Agricultural Research Organization, 50250 Bet Dagan, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Institute of Plant Science, Agricultural Research Organization, 50250 Bet Dagan</wicri:regionArea>
<wicri:noRegion>50250 Bet Dagan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holland, Doron" sort="Holland, Doron" uniqKey="Holland D" first="Doron" last="Holland">Doron Holland</name>
</author>
<author>
<name sortKey="Velcheva, Margarita" sort="Velcheva, Margarita" uniqKey="Velcheva M" first="Margarita" last="Velcheva">Margarita Velcheva</name>
</author>
<author>
<name sortKey="Tsapovetsky, Marina" sort="Tsapovetsky, Marina" uniqKey="Tsapovetsky M" first="Marina" last="Tsapovetsky">Marina Tsapovetsky</name>
</author>
<author>
<name sortKey="Roeckel Drevet, Patricia" sort="Roeckel Drevet, Patricia" uniqKey="Roeckel Drevet P" first="Patricia" last="Roeckel-Drevet">Patricia Roeckel-Drevet</name>
</author>
<author>
<name sortKey="Handa, Avtar K" sort="Handa, Avtar K" uniqKey="Handa A" first="Avtar K" last="Handa">Avtar K. Handa</name>
</author>
<author>
<name sortKey="Abu Abied, Mohamad" sort="Abu Abied, Mohamad" uniqKey="Abu Abied M" first="Mohamad" last="Abu-Abied">Mohamad Abu-Abied</name>
</author>
<author>
<name sortKey="Friedman Einat, Miriam" sort="Friedman Einat, Miriam" uniqKey="Friedman Einat M" first="Miriam" last="Friedman-Einat">Miriam Friedman-Einat</name>
</author>
<author>
<name sortKey="Eshdat, Yuval" sort="Eshdat, Yuval" uniqKey="Eshdat Y" first="Yuval" last="Eshdat">Yuval Eshdat</name>
</author>
<author>
<name sortKey="Perl, Avihai" sort="Perl, Avihai" uniqKey="Perl A" first="Avihai" last="Perl">Avihai Perl</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20530511</idno>
<idno type="pmid">20530511</idno>
<idno type="doi">10.1093/pcp/pcq082</idno>
<idno type="wicri:Area/PubMed/Corpus">000823</idno>
<idno type="wicri:Area/PubMed/Curation">000823</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000823</idno>
<idno type="wicri:Area/Ncbi/Merge">000B85</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation.</title>
<author>
<name sortKey="Faltin, Zehava" sort="Faltin, Zehava" uniqKey="Faltin Z" first="Zehava" last="Faltin">Zehava Faltin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Science, Agricultural Research Organization, 50250 Bet Dagan, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Institute of Plant Science, Agricultural Research Organization, 50250 Bet Dagan</wicri:regionArea>
<wicri:noRegion>50250 Bet Dagan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holland, Doron" sort="Holland, Doron" uniqKey="Holland D" first="Doron" last="Holland">Doron Holland</name>
</author>
<author>
<name sortKey="Velcheva, Margarita" sort="Velcheva, Margarita" uniqKey="Velcheva M" first="Margarita" last="Velcheva">Margarita Velcheva</name>
</author>
<author>
<name sortKey="Tsapovetsky, Marina" sort="Tsapovetsky, Marina" uniqKey="Tsapovetsky M" first="Marina" last="Tsapovetsky">Marina Tsapovetsky</name>
</author>
<author>
<name sortKey="Roeckel Drevet, Patricia" sort="Roeckel Drevet, Patricia" uniqKey="Roeckel Drevet P" first="Patricia" last="Roeckel-Drevet">Patricia Roeckel-Drevet</name>
</author>
<author>
<name sortKey="Handa, Avtar K" sort="Handa, Avtar K" uniqKey="Handa A" first="Avtar K" last="Handa">Avtar K. Handa</name>
</author>
<author>
<name sortKey="Abu Abied, Mohamad" sort="Abu Abied, Mohamad" uniqKey="Abu Abied M" first="Mohamad" last="Abu-Abied">Mohamad Abu-Abied</name>
</author>
<author>
<name sortKey="Friedman Einat, Miriam" sort="Friedman Einat, Miriam" uniqKey="Friedman Einat M" first="Miriam" last="Friedman-Einat">Miriam Friedman-Einat</name>
</author>
<author>
<name sortKey="Eshdat, Yuval" sort="Eshdat, Yuval" uniqKey="Eshdat Y" first="Yuval" last="Eshdat">Yuval Eshdat</name>
</author>
<author>
<name sortKey="Perl, Avihai" sort="Perl, Avihai" uniqKey="Perl A" first="Avihai" last="Perl">Avihai Perl</name>
</author>
</analytic>
<series>
<title level="j">Plant & cell physiology</title>
<idno type="eISSN">1471-9053</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Citrus (enzymology)</term>
<term>Gene Expression Regulation, Plant</term>
<term>Glutathione Peroxidase (metabolism)</term>
<term>Homeostasis</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Plant Shoots (growth & development)</term>
<term>Plants, Genetically Modified (growth & development)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Regeneration</term>
<term>Stress, Physiological</term>
<term>Tobacco (growth & development)</term>
<term>Tobacco (metabolism)</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione Peroxidase</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Citrus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Shoots</term>
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Homeostasis</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Regeneration</term>
<term>Stress, Physiological</term>
<term>Transformation, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is overexpressed in plants under abiotic and biotic stress conditions that mediate oxidative stress. To study its biological role and its ability to confer stress resistance in plants, we tried to obtain transgenic plants overexpressing citrus (Citrus sinensis) PHGPx (cit-PHGPx). All attempts to obtain regenerated plants expressing this enzyme constitutively failed. However, when the enzyme's catalytic activity was abolished by active site-directed mutagenesis, transgenic plants constitutively expressing inactive cit-PHGPx were successfully regenerated. Constitutive expression of enzymatically active cit-PHGPx could only be obtained when transformation was based on non-regenerative processes. These results indicate that overexpression of the antioxidant enzyme PHGPx interferes with shoot organogenesis and suggests the involvement of reactive oxygen species (ROS) in this process. Using transgenic tobacco (Nicotiana tabacum) leaves obtained from plants transformed with a beta-estradiol-inducible promoter, time-dependent induction of cit-PHGPx expression was employed. A pronounced inhibitory effect of cit-PHGPx on shoot formation was found to be limited to the early stage of the regeneration process. Monitoring the ROS level during regeneration revealed that upon cit-PHGPx induction, the lowest level of ROS correlated with the maximal level of shoot inhibition. Our results clearly demonstrate the essential role of ROS in the early stages of in vitro shoot organogenesis and the possible involvement of PHGPx in maintaining ROS homeostasis at this point.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20530511</PMID>
<DateCreated>
<Year>2010</Year>
<Month>7</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>10</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2010</Year>
<Month>7</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-9053</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>51</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant & cell physiology</Title>
<ISOAbbreviation>Plant Cell Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation.</ArticleTitle>
<Pagination>
<MedlinePgn>1151-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/pcp/pcq082</ELocationID>
<Abstract>
<AbstractText>Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is overexpressed in plants under abiotic and biotic stress conditions that mediate oxidative stress. To study its biological role and its ability to confer stress resistance in plants, we tried to obtain transgenic plants overexpressing citrus (Citrus sinensis) PHGPx (cit-PHGPx). All attempts to obtain regenerated plants expressing this enzyme constitutively failed. However, when the enzyme's catalytic activity was abolished by active site-directed mutagenesis, transgenic plants constitutively expressing inactive cit-PHGPx were successfully regenerated. Constitutive expression of enzymatically active cit-PHGPx could only be obtained when transformation was based on non-regenerative processes. These results indicate that overexpression of the antioxidant enzyme PHGPx interferes with shoot organogenesis and suggests the involvement of reactive oxygen species (ROS) in this process. Using transgenic tobacco (Nicotiana tabacum) leaves obtained from plants transformed with a beta-estradiol-inducible promoter, time-dependent induction of cit-PHGPx expression was employed. A pronounced inhibitory effect of cit-PHGPx on shoot formation was found to be limited to the early stage of the regeneration process. Monitoring the ROS level during regeneration revealed that upon cit-PHGPx induction, the lowest level of ROS correlated with the maximal level of shoot inhibition. Our results clearly demonstrate the essential role of ROS in the early stages of in vitro shoot organogenesis and the possible involvement of PHGPx in maintaining ROS homeostasis at this point.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Faltin</LastName>
<ForeName>Zehava</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Science, Agricultural Research Organization, 50250 Bet Dagan, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holland</LastName>
<ForeName>Doron</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Velcheva</LastName>
<ForeName>Margarita</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsapovetsky</LastName>
<ForeName>Marina</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roeckel-Drevet</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Handa</LastName>
<ForeName>Avtar K</ForeName>
<Initials>AK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Abu-Abied</LastName>
<ForeName>Mohamad</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Friedman-Einat</LastName>
<ForeName>Miriam</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eshdat</LastName>
<ForeName>Yuval</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perl</LastName>
<ForeName>Avihai</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>Jun</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>Plant Cell Physiol</MedlineTA>
<NlmUniqueID>9430925</NlmUniqueID>
<ISSNLinking>0032-0781</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002957" MajorTopicYN="N">Citrus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012038" MajorTopicYN="N">Regeneration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20530511</ArticleId>
<ArticleId IdType="pii">pcq082</ArticleId>
<ArticleId IdType="doi">10.1093/pcp/pcq082</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Abu Abied, Mohamad" sort="Abu Abied, Mohamad" uniqKey="Abu Abied M" first="Mohamad" last="Abu-Abied">Mohamad Abu-Abied</name>
<name sortKey="Eshdat, Yuval" sort="Eshdat, Yuval" uniqKey="Eshdat Y" first="Yuval" last="Eshdat">Yuval Eshdat</name>
<name sortKey="Friedman Einat, Miriam" sort="Friedman Einat, Miriam" uniqKey="Friedman Einat M" first="Miriam" last="Friedman-Einat">Miriam Friedman-Einat</name>
<name sortKey="Handa, Avtar K" sort="Handa, Avtar K" uniqKey="Handa A" first="Avtar K" last="Handa">Avtar K. Handa</name>
<name sortKey="Holland, Doron" sort="Holland, Doron" uniqKey="Holland D" first="Doron" last="Holland">Doron Holland</name>
<name sortKey="Perl, Avihai" sort="Perl, Avihai" uniqKey="Perl A" first="Avihai" last="Perl">Avihai Perl</name>
<name sortKey="Roeckel Drevet, Patricia" sort="Roeckel Drevet, Patricia" uniqKey="Roeckel Drevet P" first="Patricia" last="Roeckel-Drevet">Patricia Roeckel-Drevet</name>
<name sortKey="Tsapovetsky, Marina" sort="Tsapovetsky, Marina" uniqKey="Tsapovetsky M" first="Marina" last="Tsapovetsky">Marina Tsapovetsky</name>
<name sortKey="Velcheva, Margarita" sort="Velcheva, Margarita" uniqKey="Velcheva M" first="Margarita" last="Velcheva">Margarita Velcheva</name>
</noCountry>
<country name="Israël">
<noRegion>
<name sortKey="Faltin, Zehava" sort="Faltin, Zehava" uniqKey="Faltin Z" first="Zehava" last="Faltin">Zehava Faltin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000B85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:20530511
   |texte=   Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:20530511" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024