Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges

Identifieur interne : 000536 ( Pmc/Corpus ); précédent : 000535; suivant : 000537

Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges

Auteurs : Cole G. Easson ; Robert W. Thacker

Source :

RBID : PMC:4201110

Abstract

Sponges (Porifera) can host diverse and abundant communities of microbial symbionts that make crucial contributions to host metabolism. Although these communities are often host-specific and hypothesized to co-evolve with their hosts, correlations between host phylogeny and microbiome community structure are rarely tested. As part of the Earth Microbiome Project (EMP), we surveyed the microbiomes associated with 20 species of tropical marine sponges collected over a narrow geographic range. We tested whether (1) univariate metrics of microbiome diversity displayed significant phylogenetic signal across the host phylogeny; (2) host identity and host phylogeny were significant factors in multivariate analyses of taxonomic and phylogenetic dissimilarity; and (3) different minimum read thresholds impacted these results. We observed significant differences in univariate metrics of diversity among host species for all read thresholds, with strong phylogenetic signal in the inverse Simpson's index of diversity (D). We observed a surprisingly wide range of variability in community dissimilarity within host species (4–73%); this variability was not related to microbial abundance within a host species. Taxonomic and phylogenetic dissimilarity were significantly impacted by host identity and host phylogeny when these factors were considered individually; when tested together, the effect of host phylogeny was reduced, but remained significant. In our dataset, this outcome is largely due to closely related host sponges harboring distinct microbial taxa. Host identity maintained a strong statistical signal at all minimum read thresholds. Although the identity of specific microbial taxa varied substantially among host sponges, closely related hosts tended to harbor microbial communities with similar patterns of relative abundance. We hypothesize that microbiomes with low D might be structured by regulation of the microbial community by the host or by the presence of competitively dominant symbionts that are themselves under selection for host specificity.


Url:
DOI: 10.3389/fmicb.2014.00532
PubMed: 25368606
PubMed Central: 4201110

Links to Exploration step

PMC:4201110

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges</title>
<author>
<name sortKey="Easson, Cole G" sort="Easson, Cole G" uniqKey="Easson C" first="Cole G." last="Easson">Cole G. Easson</name>
</author>
<author>
<name sortKey="Thacker, Robert W" sort="Thacker, Robert W" uniqKey="Thacker R" first="Robert W." last="Thacker">Robert W. Thacker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25368606</idno>
<idno type="pmc">4201110</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201110</idno>
<idno type="RBID">PMC:4201110</idno>
<idno type="doi">10.3389/fmicb.2014.00532</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000536</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges</title>
<author>
<name sortKey="Easson, Cole G" sort="Easson, Cole G" uniqKey="Easson C" first="Cole G." last="Easson">Cole G. Easson</name>
</author>
<author>
<name sortKey="Thacker, Robert W" sort="Thacker, Robert W" uniqKey="Thacker R" first="Robert W." last="Thacker">Robert W. Thacker</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in Microbiology</title>
<idno type="eISSN">1664-302X</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Sponges (Porifera) can host diverse and abundant communities of microbial symbionts that make crucial contributions to host metabolism. Although these communities are often host-specific and hypothesized to co-evolve with their hosts, correlations between host phylogeny and microbiome community structure are rarely tested. As part of the Earth Microbiome Project (EMP), we surveyed the microbiomes associated with 20 species of tropical marine sponges collected over a narrow geographic range. We tested whether (1) univariate metrics of microbiome diversity displayed significant phylogenetic signal across the host phylogeny; (2) host identity and host phylogeny were significant factors in multivariate analyses of taxonomic and phylogenetic dissimilarity; and (3) different minimum read thresholds impacted these results. We observed significant differences in univariate metrics of diversity among host species for all read thresholds, with strong phylogenetic signal in the inverse Simpson's index of diversity (
<italic>D</italic>
). We observed a surprisingly wide range of variability in community dissimilarity within host species (4–73%); this variability was not related to microbial abundance within a host species. Taxonomic and phylogenetic dissimilarity were significantly impacted by host identity and host phylogeny when these factors were considered individually; when tested together, the effect of host phylogeny was reduced, but remained significant. In our dataset, this outcome is largely due to closely related host sponges harboring distinct microbial taxa. Host identity maintained a strong statistical signal at all minimum read thresholds. Although the identity of specific microbial taxa varied substantially among host sponges, closely related hosts tended to harbor microbial communities with similar patterns of relative abundance. We hypothesize that microbiomes with low
<italic>D</italic>
might be structured by regulation of the microbial community by the host or by the presence of competitively dominant symbionts that are themselves under selection for host specificity.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, S A" uniqKey="Anderson S">S. A. Anderson</name>
</author>
<author>
<name sortKey="Northcote, P T" uniqKey="Northcote P">P. T. Northcote</name>
</author>
<author>
<name sortKey="Page, M J" uniqKey="Page M">M. J. Page</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blomberg, S P" uniqKey="Blomberg S">S. P. Blomberg</name>
</author>
<author>
<name sortKey="Garland, T" uniqKey="Garland T">T. Garland</name>
</author>
<author>
<name sortKey="Ives, A R" uniqKey="Ives A">A. R. Ives</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caporaso, J G" uniqKey="Caporaso J">J. G. Caporaso</name>
</author>
<author>
<name sortKey="Lauber, C L" uniqKey="Lauber C">C. L. Lauber</name>
</author>
<author>
<name sortKey="Walters, W A" uniqKey="Walters W">W. A. Walters</name>
</author>
<author>
<name sortKey="Berg Lyons, D" uniqKey="Berg Lyons D">D. Berg-Lyons</name>
</author>
<author>
<name sortKey="Huntley, J" uniqKey="Huntley J">J. Huntley</name>
</author>
<author>
<name sortKey="Fierer, N" uniqKey="Fierer N">N. Fierer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cleary, D F" uniqKey="Cleary D">D. F. Cleary</name>
</author>
<author>
<name sortKey="Becking, L E" uniqKey="Becking L">L. E. Becking</name>
</author>
<author>
<name sortKey="Voogd, N J" uniqKey="Voogd N">N. J. Voogd</name>
</author>
<author>
<name sortKey="Pires, A C" uniqKey="Pires A">A. C. Pires</name>
</author>
<author>
<name sortKey="Pol Nia, A R" uniqKey="Pol Nia A">A. R. Polónia</name>
</author>
<author>
<name sortKey="Egas, C" uniqKey="Egas C">C. Egas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Goeij, J M" uniqKey="De Goeij J">J. M. De Goeij</name>
</author>
<author>
<name sortKey="Van Oevelen, D" uniqKey="Van Oevelen D">D. Van Oevelen</name>
</author>
<author>
<name sortKey="Vermeij, M J" uniqKey="Vermeij M">M. J. Vermeij</name>
</author>
<author>
<name sortKey="Osinga, R" uniqKey="Osinga R">R. Osinga</name>
</author>
<author>
<name sortKey="Middelburg, J J" uniqKey="Middelburg J">J. J. Middelburg</name>
</author>
<author>
<name sortKey="De Goeij, A F" uniqKey="De Goeij A">A. F. De Goeij</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desantis, T Z" uniqKey="Desantis T">T. Z. DeSantis</name>
</author>
<author>
<name sortKey="Hugenholtz, P" uniqKey="Hugenholtz P">P. Hugenholtz</name>
</author>
<author>
<name sortKey="Larsen, N" uniqKey="Larsen N">N. Larsen</name>
</author>
<author>
<name sortKey="Rojas, M" uniqKey="Rojas M">M. Rojas</name>
</author>
<author>
<name sortKey="Brodie, E L" uniqKey="Brodie E">E. L. Brodie</name>
</author>
<author>
<name sortKey="Keller, K" uniqKey="Keller K">K. Keller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunn, C W" uniqKey="Dunn C">C. W. Dunn</name>
</author>
<author>
<name sortKey="Luo, X" uniqKey="Luo X">X. Luo</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erwin, P M" uniqKey="Erwin P">P. M. Erwin</name>
</author>
<author>
<name sortKey="L Pez Legentil, S" uniqKey="L Pez Legentil S">S. López-Legentil</name>
</author>
<author>
<name sortKey="Gonzalez Pech, R" uniqKey="Gonzalez Pech R">R. González-Pech</name>
</author>
<author>
<name sortKey="Turon, X" uniqKey="Turon X">X. Turon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erwin, P M" uniqKey="Erwin P">P. M. Erwin</name>
</author>
<author>
<name sortKey="Olson, J B" uniqKey="Olson J">J. B. Olson</name>
</author>
<author>
<name sortKey="Thacker, R W" uniqKey="Thacker R">R. W. Thacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erwin, P M" uniqKey="Erwin P">P. M. Erwin</name>
</author>
<author>
<name sortKey="Pita, L" uniqKey="Pita L">L. Pita</name>
</author>
<author>
<name sortKey="L Pez Legentil, S" uniqKey="L Pez Legentil S">S. López-Legentil</name>
</author>
<author>
<name sortKey="Turon, X" uniqKey="Turon X">X. Turon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erwin, P M" uniqKey="Erwin P">P. M. Erwin</name>
</author>
<author>
<name sortKey="Thacker, R W" uniqKey="Thacker R">R. W. Thacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeman, C J" uniqKey="Freeman C">C. J. Freeman</name>
</author>
<author>
<name sortKey="Thacker, R W" uniqKey="Thacker R">R. W. Thacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerce, B" uniqKey="Gerce B">B. Gerçe</name>
</author>
<author>
<name sortKey="Schwartz, T" uniqKey="Schwartz T">T. Schwartz</name>
</author>
<author>
<name sortKey="Syldatk, C" uniqKey="Syldatk C">C. Syldatk</name>
</author>
<author>
<name sortKey="Hausmann, R" uniqKey="Hausmann R">R. Hausmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giles, E C" uniqKey="Giles E">E. C. Giles</name>
</author>
<author>
<name sortKey="Kamke, J" uniqKey="Kamke J">J. Kamke</name>
</author>
<author>
<name sortKey="Moitinho Silva, L" uniqKey="Moitinho Silva L">L. Moitinho-Silva</name>
</author>
<author>
<name sortKey="Taylor, M W" uniqKey="Taylor M">M. W. Taylor</name>
</author>
<author>
<name sortKey="Hentschel, U" uniqKey="Hentschel U">U. Hentschel</name>
</author>
<author>
<name sortKey="Ravasi, T" uniqKey="Ravasi T">T. Ravasi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goff, S A" uniqKey="Goff S">S. A. Goff</name>
</author>
<author>
<name sortKey="Vaughn, M" uniqKey="Vaughn M">M. Vaughn</name>
</author>
<author>
<name sortKey="Mckay, S" uniqKey="Mckay S">S. Mckay</name>
</author>
<author>
<name sortKey="Lyons, E" uniqKey="Lyons E">E. Lyons</name>
</author>
<author>
<name sortKey="Stapleton, A E" uniqKey="Stapleton A">A. E. Stapleton</name>
</author>
<author>
<name sortKey="Gessler, D" uniqKey="Gessler D">D. Gessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haegeman, B" uniqKey="Haegeman B">B. Haegeman</name>
</author>
<author>
<name sortKey="Sen, B" uniqKey="Sen B">B. Sen</name>
</author>
<author>
<name sortKey="Godon, J J" uniqKey="Godon J">J.-J. Godon</name>
</author>
<author>
<name sortKey="Hamelin, J" uniqKey="Hamelin J">J. Hamelin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamady, M" uniqKey="Hamady M">M. Hamady</name>
</author>
<author>
<name sortKey="Knight, R" uniqKey="Knight R">R. Knight</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hardoim, C C" uniqKey="Hardoim C">C. C. Hardoim</name>
</author>
<author>
<name sortKey="Esteves, A I" uniqKey="Esteves A">A. I. Esteves</name>
</author>
<author>
<name sortKey="Pires, F R" uniqKey="Pires F">F. R. Pires</name>
</author>
<author>
<name sortKey="Goncalves, J M" uniqKey="Goncalves J">J. M. Gonçalves</name>
</author>
<author>
<name sortKey="Cox, C J" uniqKey="Cox C">C. J. Cox</name>
</author>
<author>
<name sortKey="Xavier, J R" uniqKey="Xavier J">J. R. Xavier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hentschel, U" uniqKey="Hentschel U">U. Hentschel</name>
</author>
<author>
<name sortKey="Fieseler, L" uniqKey="Fieseler L">L. Fieseler</name>
</author>
<author>
<name sortKey="Wehrl, M" uniqKey="Wehrl M">M. Wehrl</name>
</author>
<author>
<name sortKey="Gernert, C" uniqKey="Gernert C">C. Gernert</name>
</author>
<author>
<name sortKey="Steinert, M" uniqKey="Steinert M">M. Steinert</name>
</author>
<author>
<name sortKey="Hacker, J" uniqKey="Hacker J">J. Hacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hentschel, U" uniqKey="Hentschel U">U. Hentschel</name>
</author>
<author>
<name sortKey="Hopke, J" uniqKey="Hopke J">J. Hopke</name>
</author>
<author>
<name sortKey="Horn, M" uniqKey="Horn M">M. Horn</name>
</author>
<author>
<name sortKey="Friedrich, A B" uniqKey="Friedrich A">A. B. Friedrich</name>
</author>
<author>
<name sortKey="Wagner, M" uniqKey="Wagner M">M. Wagner</name>
</author>
<author>
<name sortKey="Hacker, J" uniqKey="Hacker J">J. Hacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hentschel, U" uniqKey="Hentschel U">U. Hentschel</name>
</author>
<author>
<name sortKey="Usher, K M" uniqKey="Usher K">K. M. Usher</name>
</author>
<author>
<name sortKey="Taylor, M W" uniqKey="Taylor M">M. W. Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hill, R T" uniqKey="Hill R">R. T. Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hooper, J N A" uniqKey="Hooper J">J. N. A. Hooper</name>
</author>
<author>
<name sortKey="Van Soest, R W M" uniqKey="Van Soest R">R. W. M. van Soest</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huse, S M" uniqKey="Huse S">S. M. Huse</name>
</author>
<author>
<name sortKey="Welch, D M" uniqKey="Welch D">D. M. Welch</name>
</author>
<author>
<name sortKey="Morrison, H G" uniqKey="Morrison H">H. G. Morrison</name>
</author>
<author>
<name sortKey="Sogin, M L" uniqKey="Sogin M">M. L. Sogin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katoh, K" uniqKey="Katoh K">K. Katoh</name>
</author>
<author>
<name sortKey="Misawa, K" uniqKey="Misawa K">K. Misawa</name>
</author>
<author>
<name sortKey="Kuma, K I" uniqKey="Kuma K">K. I. Kuma</name>
</author>
<author>
<name sortKey="Miyata, T" uniqKey="Miyata T">T. Miyata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kembel, S W" uniqKey="Kembel S">S. W. Kembel</name>
</author>
<author>
<name sortKey="Cowan, P D" uniqKey="Cowan P">P. D. Cowan</name>
</author>
<author>
<name sortKey="Helmus, M R" uniqKey="Helmus M">M. R. Helmus</name>
</author>
<author>
<name sortKey="Cornwell, W K" uniqKey="Cornwell W">W. K. Cornwell</name>
</author>
<author>
<name sortKey="Morlon, H" uniqKey="Morlon H">H. Morlon</name>
</author>
<author>
<name sortKey="Ackerly, D D" uniqKey="Ackerly D">D. D. Ackerly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, O O" uniqKey="Lee O">O. O. Lee</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Lafi, F F" uniqKey="Lafi F">F. F. Lafi</name>
</author>
<author>
<name sortKey="Al Suwailem, A" uniqKey="Al Suwailem A">A. Al-Suwailem</name>
</author>
<author>
<name sortKey="Qian, P Y" uniqKey="Qian P">P.-Y. Qian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lesser, M P" uniqKey="Lesser M">M. P. Lesser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Magurran, A E" uniqKey="Magurran A">A. E. Magurran</name>
</author>
<author>
<name sortKey="Magurran, A E" uniqKey="Magurran A">A. E. Magurran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maldonado, M" uniqKey="Maldonado M">M. Maldonado</name>
</author>
<author>
<name sortKey="Ribes, M" uniqKey="Ribes M">M. Ribes</name>
</author>
<author>
<name sortKey="Van Duyl, F C" uniqKey="Van Duyl F">F. C. Van Duyl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcmurdie, P J" uniqKey="Mcmurdie P">P. J. McMurdie</name>
</author>
<author>
<name sortKey="Holmes, S" uniqKey="Holmes S">S. Holmes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moitinho Silva, L" uniqKey="Moitinho Silva L">L. Moitinho-Silva</name>
</author>
<author>
<name sortKey="Bayer, K" uniqKey="Bayer K">K. Bayer</name>
</author>
<author>
<name sortKey="Cannistraci, C V" uniqKey="Cannistraci C">C. V. Cannistraci</name>
</author>
<author>
<name sortKey="Giles, E C" uniqKey="Giles E">E. C. Giles</name>
</author>
<author>
<name sortKey="Ryu, T" uniqKey="Ryu T">T. Ryu</name>
</author>
<author>
<name sortKey="Seridi, L" uniqKey="Seridi L">L. Seridi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montalvo, N F" uniqKey="Montalvo N">N. F. Montalvo</name>
</author>
<author>
<name sortKey="Hill, R T" uniqKey="Hill R">R. T. Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oksanen, J" uniqKey="Oksanen J">J. Oksanen</name>
</author>
<author>
<name sortKey="Kindt, R" uniqKey="Kindt R">R. Kindt</name>
</author>
<author>
<name sortKey="Legendre, P" uniqKey="Legendre P">P. Legendre</name>
</author>
<author>
<name sortKey="O Hara, B" uniqKey="O Hara B">B. O'Hara</name>
</author>
<author>
<name sortKey="Stevens, M H H" uniqKey="Stevens M">M. H. H. Stevens</name>
</author>
<author>
<name sortKey="Oksanen, M J" uniqKey="Oksanen M">M. J. Oksanen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olson, J B" uniqKey="Olson J">J. B. Olson</name>
</author>
<author>
<name sortKey="Thacker, R W" uniqKey="Thacker R">R. W. Thacker</name>
</author>
<author>
<name sortKey="Gochfeld, D J" uniqKey="Gochfeld D">D. J. Gochfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pita, L" uniqKey="Pita L">L. Pita</name>
</author>
<author>
<name sortKey="Turon, X" uniqKey="Turon X">X. Turon</name>
</author>
<author>
<name sortKey="L Pez Legentil, S" uniqKey="L Pez Legentil S">S. López-Legentil</name>
</author>
<author>
<name sortKey="Erwin, P M" uniqKey="Erwin P">P. M. Erwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poppell, E" uniqKey="Poppell E">E. Poppell</name>
</author>
<author>
<name sortKey="Weisz, J" uniqKey="Weisz J">J. Weisz</name>
</author>
<author>
<name sortKey="Spicer, L" uniqKey="Spicer L">L. Spicer</name>
</author>
<author>
<name sortKey="Massaro, A" uniqKey="Massaro A">A. Massaro</name>
</author>
<author>
<name sortKey="Hill, A" uniqKey="Hill A">A. Hill</name>
</author>
<author>
<name sortKey="Hill, M" uniqKey="Hill M">M. Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Price, M N" uniqKey="Price M">M. N. Price</name>
</author>
<author>
<name sortKey="Dehal, P S" uniqKey="Dehal P">P. S. Dehal</name>
</author>
<author>
<name sortKey="Arkin, A P" uniqKey="Arkin A">A. P. Arkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Redmond, N E" uniqKey="Redmond N">N. E. Redmond</name>
</author>
<author>
<name sortKey="Morrow, C C" uniqKey="Morrow C">C. C. Morrow</name>
</author>
<author>
<name sortKey="Thacker, R W" uniqKey="Thacker R">R. W. Thacker</name>
</author>
<author>
<name sortKey="Diaz, M C" uniqKey="Diaz M">M. C. Díaz</name>
</author>
<author>
<name sortKey="Boury Esnault, N" uniqKey="Boury Esnault N">N. Boury-Esnault</name>
</author>
<author>
<name sortKey="Cardenas, P" uniqKey="Cardenas P">P. Cárdenas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reveillaud, J" uniqKey="Reveillaud J">J. Reveillaud</name>
</author>
<author>
<name sortKey="Maignien, L" uniqKey="Maignien L">L. Maignien</name>
</author>
<author>
<name sortKey="Eren, A M" uniqKey="Eren A">A. M. Eren</name>
</author>
<author>
<name sortKey="Huber, J A" uniqKey="Huber J">J. A. Huber</name>
</author>
<author>
<name sortKey="Apprill, A" uniqKey="Apprill A">A. Apprill</name>
</author>
<author>
<name sortKey="Sogin, M L" uniqKey="Sogin M">M. L. Sogin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronquist, F" uniqKey="Ronquist F">F. Ronquist</name>
</author>
<author>
<name sortKey="Teslenko, M" uniqKey="Teslenko M">M. Teslenko</name>
</author>
<author>
<name sortKey="Van Der Mark, P" uniqKey="Van Der Mark P">P. Van Der Mark</name>
</author>
<author>
<name sortKey="Ayres, D L" uniqKey="Ayres D">D. L. Ayres</name>
</author>
<author>
<name sortKey="Darling, A" uniqKey="Darling A">A. Darling</name>
</author>
<author>
<name sortKey="Hohna, S" uniqKey="Hohna S">S. Höhna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rutzler, K" uniqKey="Rutzler K">K. Rützler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schl Ppy, M L" uniqKey="Schl Ppy M">M.-L. Schläppy</name>
</author>
<author>
<name sortKey="Schottner, S I" uniqKey="Schottner S">S. I. Schöttner</name>
</author>
<author>
<name sortKey="Lavik, G" uniqKey="Lavik G">G. Lavik</name>
</author>
<author>
<name sortKey="Kuypers, M M" uniqKey="Kuypers M">M. M. Kuypers</name>
</author>
<author>
<name sortKey="De Beer, D" uniqKey="De Beer D">D. De Beer</name>
</author>
<author>
<name sortKey="Hoffmann, F" uniqKey="Hoffmann F">F. Hoffmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schloss, P D" uniqKey="Schloss P">P. D. Schloss</name>
</author>
<author>
<name sortKey="Westcott, S L" uniqKey="Westcott S">S. L. Westcott</name>
</author>
<author>
<name sortKey="Ryabin, T" uniqKey="Ryabin T">T. Ryabin</name>
</author>
<author>
<name sortKey="Hall, J R" uniqKey="Hall J">J. R. Hall</name>
</author>
<author>
<name sortKey="Hartmann, M" uniqKey="Hartmann M">M. Hartmann</name>
</author>
<author>
<name sortKey="Hollister, E B" uniqKey="Hollister E">E. B. Hollister</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmitt, S" uniqKey="Schmitt S">S. Schmitt</name>
</author>
<author>
<name sortKey="Angermeier, H" uniqKey="Angermeier H">H. Angermeier</name>
</author>
<author>
<name sortKey="Schiller, R" uniqKey="Schiller R">R. Schiller</name>
</author>
<author>
<name sortKey="Lindquist, N" uniqKey="Lindquist N">N. Lindquist</name>
</author>
<author>
<name sortKey="Hentschel, U" uniqKey="Hentschel U">U. Hentschel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmitt, S" uniqKey="Schmitt S">S. Schmitt</name>
</author>
<author>
<name sortKey="Tsai, P" uniqKey="Tsai P">P. Tsai</name>
</author>
<author>
<name sortKey="Bell, J" uniqKey="Bell J">J. Bell</name>
</author>
<author>
<name sortKey="Fromont, J" uniqKey="Fromont J">J. Fromont</name>
</author>
<author>
<name sortKey="Ilan, M" uniqKey="Ilan M">M. Ilan</name>
</author>
<author>
<name sortKey="Lindquist, N" uniqKey="Lindquist N">N. Lindquist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schottner, S" uniqKey="Schottner S">S. Schöttner</name>
</author>
<author>
<name sortKey="Hoffmann, F" uniqKey="Hoffmann F">F. Hoffmann</name>
</author>
<author>
<name sortKey="Cardenas, P" uniqKey="Cardenas P">P. Cárdenas</name>
</author>
<author>
<name sortKey="Rapp, H T" uniqKey="Rapp H">H. T. Rapp</name>
</author>
<author>
<name sortKey="Boetius, A" uniqKey="Boetius A">A. Boetius</name>
</author>
<author>
<name sortKey="Ramette, A" uniqKey="Ramette A">A. Ramette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simister, R L" uniqKey="Simister R">R. L. Simister</name>
</author>
<author>
<name sortKey="Deines, P" uniqKey="Deines P">P. Deines</name>
</author>
<author>
<name sortKey="Botte, E S" uniqKey="Botte E">E. S. Botté</name>
</author>
<author>
<name sortKey="Webster, N S" uniqKey="Webster N">N. S. Webster</name>
</author>
<author>
<name sortKey="Taylor, M W" uniqKey="Taylor M">M. W. Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sogin, M L" uniqKey="Sogin M">M. L. Sogin</name>
</author>
<author>
<name sortKey="Morrison, H G" uniqKey="Morrison H">H. G. Morrison</name>
</author>
<author>
<name sortKey="Huber, J A" uniqKey="Huber J">J. A. Huber</name>
</author>
<author>
<name sortKey="Welch, D M" uniqKey="Welch D">D. M. Welch</name>
</author>
<author>
<name sortKey="Huse, S M" uniqKey="Huse S">S. M. Huse</name>
</author>
<author>
<name sortKey="Neal, P R" uniqKey="Neal P">P. R. Neal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, M W" uniqKey="Taylor M">M. W. Taylor</name>
</author>
<author>
<name sortKey="Radax, R" uniqKey="Radax R">R. Radax</name>
</author>
<author>
<name sortKey="Steger, D" uniqKey="Steger D">D. Steger</name>
</author>
<author>
<name sortKey="Wagner, M" uniqKey="Wagner M">M. Wagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, M W" uniqKey="Taylor M">M. W. Taylor</name>
</author>
<author>
<name sortKey="Schupp, P J" uniqKey="Schupp P">P. J. Schupp</name>
</author>
<author>
<name sortKey="Dahllof, I" uniqKey="Dahllof I">I. Dahllöf</name>
</author>
<author>
<name sortKey="Kjelleberg, S" uniqKey="Kjelleberg S">S. Kjelleberg</name>
</author>
<author>
<name sortKey="Steinberg, P D" uniqKey="Steinberg P">P. D. Steinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, M W" uniqKey="Taylor M">M. W. Taylor</name>
</author>
<author>
<name sortKey="Tsai, P" uniqKey="Tsai P">P. Tsai</name>
</author>
<author>
<name sortKey="Simister, R L" uniqKey="Simister R">R. L. Simister</name>
</author>
<author>
<name sortKey="Deines, P" uniqKey="Deines P">P. Deines</name>
</author>
<author>
<name sortKey="Botte, E" uniqKey="Botte E">E. Botte</name>
</author>
<author>
<name sortKey="Ericson, G" uniqKey="Ericson G">G. Ericson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thacker, R W" uniqKey="Thacker R">R. W. Thacker</name>
</author>
<author>
<name sortKey="Freeman, C J" uniqKey="Freeman C">C. J. Freeman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V. Thiel</name>
</author>
<author>
<name sortKey="Leininger, S" uniqKey="Leininger S">S. Leininger</name>
</author>
<author>
<name sortKey="Schmaljohann, R" uniqKey="Schmaljohann R">R. Schmaljohann</name>
</author>
<author>
<name sortKey="Brummer, F" uniqKey="Brummer F">F. Brümmer</name>
</author>
<author>
<name sortKey="Imhoff, J F" uniqKey="Imhoff J">J. F. Imhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Soest, R W M" uniqKey="Van Soest R">R. W. M. Van Soest</name>
</author>
<author>
<name sortKey="Boury Esnault, N" uniqKey="Boury Esnault N">N. Boury-Esnault</name>
</author>
<author>
<name sortKey="Vacelet, J" uniqKey="Vacelet J">J. Vacelet</name>
</author>
<author>
<name sortKey="Dohrmann, M" uniqKey="Dohrmann M">M. Dohrmann</name>
</author>
<author>
<name sortKey="Erpenbeck, D" uniqKey="Erpenbeck D">D. Erpenbeck</name>
</author>
<author>
<name sortKey="De Voogd, N J" uniqKey="De Voogd N">N. J. De Voogd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webster, N S" uniqKey="Webster N">N. S. Webster</name>
</author>
<author>
<name sortKey="Taylor, M W" uniqKey="Taylor M">M. W. Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webster, N S" uniqKey="Webster N">N. S. Webster</name>
</author>
<author>
<name sortKey="Taylor, M W" uniqKey="Taylor M">M. W. Taylor</name>
</author>
<author>
<name sortKey="Behnam, F" uniqKey="Behnam F">F. Behnam</name>
</author>
<author>
<name sortKey="Lucker, S" uniqKey="Lucker S">S. Lücker</name>
</author>
<author>
<name sortKey="Rattei, T" uniqKey="Rattei T">T. Rattei</name>
</author>
<author>
<name sortKey="Whalan, S" uniqKey="Whalan S">S. Whalan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weisz, J B" uniqKey="Weisz J">J. B. Weisz</name>
</author>
<author>
<name sortKey="Lindquist, N" uniqKey="Lindquist N">N. Lindquist</name>
</author>
<author>
<name sortKey="Martens, C S" uniqKey="Martens C">C. S. Martens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weisz, J" uniqKey="Weisz J">J. Weisz</name>
</author>
<author>
<name sortKey="Hentschel, U" uniqKey="Hentschel U">U. Hentschel</name>
</author>
<author>
<name sortKey="Lindquist, N" uniqKey="Lindquist N">N. Lindquist</name>
</author>
<author>
<name sortKey="Martens, C" uniqKey="Martens C">C. Martens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, J R" uniqKey="White J">J. R. White</name>
</author>
<author>
<name sortKey="Patel, J" uniqKey="Patel J">J. Patel</name>
</author>
<author>
<name sortKey="Ottesen, A" uniqKey="Ottesen A">A. Ottesen</name>
</author>
<author>
<name sortKey="Arce, G" uniqKey="Arce G">G. Arce</name>
</author>
<author>
<name sortKey="Blackwelder, P" uniqKey="Blackwelder P">P. Blackwelder</name>
</author>
<author>
<name sortKey="Lopez, J V" uniqKey="Lopez J">J. V. Lopez</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Microbiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Microbiol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Microbiol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Microbiology</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-302X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25368606</article-id>
<article-id pub-id-type="pmc">4201110</article-id>
<article-id pub-id-type="doi">10.3389/fmicb.2014.00532</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Microbiology</subject>
<subj-group>
<subject>Original Research Article</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Easson</surname>
<given-names>Cole G.</given-names>
</name>
<uri xlink:type="simple" xlink:href="http://community.frontiersin.org/people/u/178058"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Thacker</surname>
<given-names>Robert W.</given-names>
</name>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://community.frontiersin.org/people/u/117130"></uri>
</contrib>
</contrib-group>
<aff>
<institution>Department of Biology, University of Alabama at Birmingham</institution>
<country>Birmingham, AL, USA</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Torsten Thomas, The University of New South Wales, Australia</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Susanna López-Legentil, University of North Carolina Wilmington, USA; Detmer Sipkema, Wageningen University, Netherlands</p>
</fn>
<corresp id="fn001">*Correspondence: Robert W. Thacker, Department of Biology, University of Alabama at Birmingham, 464 Campbell Hall, 1300 University Blvd., Birmingham, AL 35294-1170, USA e-mail:
<email xlink:type="simple">thacker@uab.edu</email>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>17</day>
<month>10</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<volume>5</volume>
<elocation-id>532</elocation-id>
<history>
<date date-type="received">
<day>30</day>
<month>7</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>9</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 Easson and Thacker.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Sponges (Porifera) can host diverse and abundant communities of microbial symbionts that make crucial contributions to host metabolism. Although these communities are often host-specific and hypothesized to co-evolve with their hosts, correlations between host phylogeny and microbiome community structure are rarely tested. As part of the Earth Microbiome Project (EMP), we surveyed the microbiomes associated with 20 species of tropical marine sponges collected over a narrow geographic range. We tested whether (1) univariate metrics of microbiome diversity displayed significant phylogenetic signal across the host phylogeny; (2) host identity and host phylogeny were significant factors in multivariate analyses of taxonomic and phylogenetic dissimilarity; and (3) different minimum read thresholds impacted these results. We observed significant differences in univariate metrics of diversity among host species for all read thresholds, with strong phylogenetic signal in the inverse Simpson's index of diversity (
<italic>D</italic>
). We observed a surprisingly wide range of variability in community dissimilarity within host species (4–73%); this variability was not related to microbial abundance within a host species. Taxonomic and phylogenetic dissimilarity were significantly impacted by host identity and host phylogeny when these factors were considered individually; when tested together, the effect of host phylogeny was reduced, but remained significant. In our dataset, this outcome is largely due to closely related host sponges harboring distinct microbial taxa. Host identity maintained a strong statistical signal at all minimum read thresholds. Although the identity of specific microbial taxa varied substantially among host sponges, closely related hosts tended to harbor microbial communities with similar patterns of relative abundance. We hypothesize that microbiomes with low
<italic>D</italic>
might be structured by regulation of the microbial community by the host or by the presence of competitively dominant symbionts that are themselves under selection for host specificity.</p>
</abstract>
<kwd-group>
<kwd>coevolution</kwd>
<kwd>community ecology</kwd>
<kwd>diversity</kwd>
<kwd>microbial symbioses</kwd>
<kwd>phylogeny</kwd>
<kwd>Porifera</kwd>
</kwd-group>
<counts>
<fig-count count="5"></fig-count>
<table-count count="2"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="61"></ref-count>
<page-count count="11"></page-count>
<word-count count="8641"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="introduction" id="s1">
<title>Introduction</title>
<p>Marine sponges are globally distributed and perform critical ecological functions in benthic ecosystems (Rützler,
<xref rid="B41" ref-type="bibr">2012</xref>
; Van Soest et al.,
<xref rid="B54" ref-type="bibr">2012</xref>
). Sponges are active participants in the carbon, nitrogen, and sulfur cycles, performing aerobic and anaerobic processes that benefit the broader community (Taylor et al.,
<xref rid="B49" ref-type="bibr">2007</xref>
; Schläppy et al.,
<xref rid="B42" ref-type="bibr">2010</xref>
; Maldonado et al.,
<xref rid="B30" ref-type="bibr">2012</xref>
; Schöttner et al.,
<xref rid="B46" ref-type="bibr">2013</xref>
). In addition, sponges play a critical role in pelagic–benthic coupling, transferring pelagic carbon and nitrogen to benthic food webs (Lesser,
<xref rid="B28" ref-type="bibr">2006</xref>
; De Goeij et al.,
<xref rid="B5" ref-type="bibr">2013</xref>
). The diverse communities of microbial symbionts hosted by marine sponges are hypothesized to be the primary drivers of these essential nutrient cycles (Maldonado et al.,
<xref rid="B30" ref-type="bibr">2012</xref>
; Thacker and Freeman,
<xref rid="B52" ref-type="bibr">2012</xref>
). For example, approximately one-third of Caribbean reef sponges host photosynthetic symbionts (Erwin and Thacker,
<xref rid="B11" ref-type="bibr">2007</xref>
) that convert dissolved inorganic carbon to organic molecules that are available to heterotrophs, including the sponge host (Freeman and Thacker,
<xref rid="B12" ref-type="bibr">2011</xref>
). The diversity of sponge-associated microbiomes is unmatched by other invertebrate hosts, such that their complexity is frequently compared to that of mammalian gut microbiomes (Webster et al.,
<xref rid="B56" ref-type="bibr">2010</xref>
; Reveillaud et al.,
<xref rid="B39" ref-type="bibr">2014</xref>
).</p>
<p>Sponges can be broadly classified into two groups based on the abundance of their associated microbial communities. High microbial abundance (HMA) sponges contain diverse and abundant microbial communities that are distinct from the microbial communities found in the surrounding seawater (Hentschel et al.,
<xref rid="B19" ref-type="bibr">2003</xref>
). HMA sponges are also characterized by lower pumping rates and a higher frequency of hosting photosynthetic symbionts (Weisz et al.,
<xref rid="B58" ref-type="bibr">2007</xref>
). Conversely, low microbial abundance (LMA) sponges contain significantly lower abundances of associated microbes that tend to be more similar to the microbial communities found in the surrounding water column (Erwin et al.,
<xref rid="B9" ref-type="bibr">2011</xref>
; Giles et al.,
<xref rid="B14" ref-type="bibr">2013</xref>
). LMA sponges are also characterized by higher pumping rates, with a higher rate of heterotrophic feeding on particulate organic matter (Weisz et al.,
<xref rid="B57" ref-type="bibr">2008</xref>
; Schläppy et al.,
<xref rid="B42" ref-type="bibr">2010</xref>
; Freeman and Thacker,
<xref rid="B12" ref-type="bibr">2011</xref>
).</p>
<p>Recent work has blurred this distinction between HMA and LMA sponges, emphasizing instead the presence of “core” microbial taxa within symbiotic communities, containing microbiota that are widely shared across diverse sponge hosts, “variable” microbial taxa shared by at least two sponge species, and “host-specific” microbial taxa that are reported from a single sponge species (Schmitt et al.,
<xref rid="B45" ref-type="bibr">2011</xref>
). Studies using a variety of microbial community fingerprinting techniques [such as denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphisms (TRFLPs), and automated ribosomal intergenic spacer analysis (ARISA)] as well as clone library sequencing have reported a high degree of host-specificity in both HMA and LMA sponges (Anderson et al.,
<xref rid="B1" ref-type="bibr">2010</xref>
; Erwin et al.,
<xref rid="B9" ref-type="bibr">2011</xref>
,
<xref rid="B8" ref-type="bibr">2012a</xref>
; Pita et al.,
<xref rid="B36" ref-type="bibr">2013</xref>
; Schöttner et al.,
<xref rid="B46" ref-type="bibr">2013</xref>
; Olson et al.,
<xref rid="B35" ref-type="bibr">2014</xref>
). Quantitative analyses of ARISA data revealed a significant association between microbiome similarity and host sponge species and families (Schöttner et al.,
<xref rid="B46" ref-type="bibr">2013</xref>
), indicating that these communities have likely co-evolved with their hosts. Next generation sequencing (NGS) approaches have increased the precision and quantity of information sampled from sponge-associated microbial communities (Schmitt et al.,
<xref rid="B45" ref-type="bibr">2011</xref>
; Webster and Taylor,
<xref rid="B55" ref-type="bibr">2012</xref>
; Reveillaud et al.,
<xref rid="B39" ref-type="bibr">2014</xref>
). Multiple studies employing NGS approaches have also demonstrated that sponge microbiomes are largely host-specific, though some seasonal, environmental, and geographic variation has been noted within host species (Hardoim et al.,
<xref rid="B18" ref-type="bibr">2012</xref>
; White et al.,
<xref rid="B59" ref-type="bibr">2012</xref>
; Cleary et al.,
<xref rid="B4" ref-type="bibr">2013</xref>
).</p>
<p>Sponge-specific bacteria, defined as bacterial lineages found only in sponges and not in ambient seawater or sediments, were initially identified through clone library sequencing, but have also been documented using NGS approaches (Taylor et al.,
<xref rid="B49" ref-type="bibr">2007</xref>
,
<xref rid="B51" ref-type="bibr">2012</xref>
). Together with the direct observation of vertical transmission of some microbial symbionts, these sponge-specific lineages provide additional evidence for co-evolution, and potentially co-speciation, between host sponges and their microbial symbionts (Thacker and Freeman,
<xref rid="B52" ref-type="bibr">2012</xref>
). However, NGS approaches have also reported “sponge-specific” bacterial lineages from seawater (Taylor et al.,
<xref rid="B51" ref-type="bibr">2012</xref>
). Likewise, more thorough analyses of GenBank sequences have indicated that several bacterial taxa thought to be specific to sponges also occur in other habitats, such as sediment and in other host organisms (Simister et al.,
<xref rid="B47" ref-type="bibr">2012</xref>
; Taylor et al.,
<xref rid="B51" ref-type="bibr">2012</xref>
). While the absolute “sponge-specific” nature of these taxa is debatable, with a recent study suggesting the use of the term “sponge-enriched” instead (Moitinho-Silva et al.,
<xref rid="B32" ref-type="bibr">2014</xref>
), most studies have found the sponge host to be the single strongest influence on the composition of the associated bacterial community (Lee et al.,
<xref rid="B27" ref-type="bibr">2010</xref>
; Webster et al.,
<xref rid="B56" ref-type="bibr">2010</xref>
; Schmitt et al.,
<xref rid="B45" ref-type="bibr">2011</xref>
).</p>
<p>NGS datasets are often extremely large and difficult to manipulate using standard computing power. Limiting the size of the dataset can help remove error and noise, but can also remove meaningful information about rare members of the microbiome (Sogin et al.,
<xref rid="B48" ref-type="bibr">2006</xref>
; Huse et al.,
<xref rid="B24" ref-type="bibr">2010</xref>
). In addition, investigators quantifying the “rare biosphere” have reported evidence of host-specificity even in the extremely rare members of the sponge microbiome (Reveillaud et al.,
<xref rid="B39" ref-type="bibr">2014</xref>
). This pattern holds true even for LMA species, in which a single microbial lineage can dominate host-species-specific microbiomes (Giles et al.,
<xref rid="B14" ref-type="bibr">2013</xref>
).</p>
<p>In the current study, we characterized the diversity and dissimilarity of microbiomes associated with 20 species of tropical marine sponges to test whether host phylogeny significantly impacts symbiotic microbial community structure. We assessed host phylogenetic relatedness using DNA sequences obtained by the Porifera Tree of Life project (Redmond et al.,
<xref rid="B38" ref-type="bibr">2013</xref>
); this approach contrasts with previous comparative studies of sponge microbiomes that relied on taxonomic names to describe host relatedness (Schmitt et al.,
<xref rid="B45" ref-type="bibr">2011</xref>
; Schöttner et al.,
<xref rid="B46" ref-type="bibr">2013</xref>
). We focused our investigation over a relatively narrow geographic range to limit potential biogeographic effects on microbiome community structure. First, we tested whether univariate measures of the diversity of symbiotic microbial communities displayed significant phylogenetic signal across the host phylogeny. Second, we examined both host identity and host phylogenetic relatedness as factors in multivariate analyses of both taxonomic and phylogenetic dissimilarity among microbiomes to determine whether host relatedness influences microbiome community structure in addition to host identity. Finally, we investigated how measures of diversity and dissimilarity change when using different read count thresholds.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and methods</title>
<sec>
<title>Sample collection and DNA extraction</title>
<p>We collected tissues from 100 sponge specimens representing 20 host species (5 specimens per species) by snorkeling and using SCUBA at several shallow dive sites near Bocas del Toro, Panama, between 2006 and 2012 (Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">1</xref>
). Species identities were confirmed by microscopic examination of morphological characters (Hooper and van Soest,
<xref rid="B23" ref-type="bibr">2002</xref>
). Samples were collected into sterile bags, then preserved in 95% ethanol at the Smithsonian Tropical Research Institute (STRI) and stored at 4°C until extraction. DNA was extracted from combined ectosomal and choanosomal tissue using the PowerSoil DNA isolation kit (MoBio Laboratories, Inc.), following the standard EMP protocol (
<ext-link ext-link-type="uri" xlink:href="http://www.earthmicrobiome.org/emp-standard-protocols/dna-extraction-protocol/">http://www.earthmicrobiome.org/emp-standard-protocols/dna-extraction-protocol/</ext-link>
).</p>
</sec>
<sec>
<title>Next-generation sequencing</title>
<p>Sequencing of the samples in our study was completed in collaboration with other researchers as part of the EMP (
<ext-link ext-link-type="uri" xlink:href="http://www.earthmicrobiome.org/">http://www.earthmicrobiome.org/</ext-link>
). Our collaborators at EMP amplified and sequenced the V4 region of the 16s rRNA gene using the bacterial/archaeal primer pair 515F/860R and following previously published methods (Caporaso et al.,
<xref rid="B3" ref-type="bibr">2012</xref>
). Amplicons were fused to Illumina barcodes and sequencing was completed on an Illumina platform.</p>
</sec>
<sec>
<title>Quality control, filtering, and taxonomic assignments</title>
<p>Raw sequences were quality-filtered (average quality score = 30, window size = 5 bases, maximum number of homopolymers = 8) and trimmed to a minimum length of 100 base pairs. We removed 10 samples from our dataset that did not meet these quality standards. We aligned the sequences to a trimmed SILVA database (v102, trimmed to the V4 region 11894–25319; Schloss et al.,
<xref rid="B43" ref-type="bibr">2009</xref>
). The aligned sequences were then checked for chimeras, removing all that were found. Sample sequences were then classified based on the SILVA reference database, with a minimum cutoff of 60% identity. The classified sequences were clustered into operational taxonomic units (OTUs) using a 97% similarity cutoff, yielding a data table containing each sample and its respective OTUs.</p>
<p>We extracted the 90 samples specific to our study from the full EMP dataset using four custom Perl scripts (Supplementary File
<xref ref-type="supplementary-material" rid="SM5">1</xref>
). We used the first script (matchRows.pl) to extract specific rows (those containing the pertinent samples) from the full EMP dataset based on user-provided criteria. We used the second script (RemoveColumnByThreshold.pl) to remove all columns with a column sum of zero from the extracted rows (i.e., deleting OTUs that were not found in samples specific to the current study). Since the second script allowed users to set any value for column sums, we also used this script to reduce the dataset to specific sequence read thresholds. We used the third script (SavedOTUdatabase.pl) to match the new OTU occurrence matrix with the OTU database file obtained from mothur, generating a reduced OTU database file, which contained the OTU identifier, the OTU sequence, and the taxonomic classification of each OTU. Finally, we used a fourth script (deleteSpecificColumns.pl) to remove metadata columns not needed for analyses in
<italic>R</italic>
.</p>
<p>We performed statistical analyses on three versions of the same dataset, using minimum OTU read thresholds (i.e., the minimum number of reads required for a particular OTU to be included in the dataset) of 1, 5 (Supplementary File
<xref ref-type="supplementary-material" rid="SM6">2</xref>
), and 500 reads. To reduce the size of the dataset, and remove noise and potential error, we focus the remainder of the text on the analysis of the dataset with a minimum read threshold of 500 reads. The use of minimum read threshold values is considered a more conservative approach to standardizing an NGS dataset compared to approaches such as regularization and convex minimization (Dunn et al.,
<xref rid="B7" ref-type="bibr">2013</xref>
).</p>
</sec>
<sec>
<title>Microbial community diversity</title>
<p>Using the R package vegan (Oksanen et al.,
<xref rid="B34" ref-type="bibr">2014</xref>
), we converted OTU abundance to relative abundance to minimize the possibility of false positives in our analyses (McMurdie and Holmes,
<xref rid="B31" ref-type="bibr">2014</xref>
). We also used vegan to calculate three univariate measures of the diversity of the microbial community associated with each host specimen: OTU richness (
<italic>S</italic>
), the Shannon–Weaver index (
<italic>H</italic>
′), and the inverse Simpson's index (
<italic>D</italic>
). We compared these metrics among host species using analyses of variance (ANOVA).</p>
</sec>
<sec>
<title>Phylogenetic reconstructions</title>
<p>We constructed a phylogeny of sponge hosts by obtaining sequences of the gene encoding the small subunit (18S) of nuclear ribosomal RNA for each host species from GenBank (Supplementary Table
<xref ref-type="supplementary-material" rid="SM2">2</xref>
). We aligned the sequences using the default options of MAFFT 7.017 (Katoh et al.,
<xref rid="B25" ref-type="bibr">2002</xref>
), as implemented in Geneious 6.1.6 (Biomatters Limited). We constructed the host phylogeny by implementing a relaxed-clock model in MrBayes version 3.2.1 (Ronquist et al.,
<xref rid="B40" ref-type="bibr">2012</xref>
), employing the computational resources of iPLANT (Goff et al.,
<xref rid="B15" ref-type="bibr">2011</xref>
). The options set in MrBayes included constraining the clade containing the genera
<italic>Aiolochroia, Aplysina</italic>
, and
<italic>Chondrilla</italic>
(all members of subclass Myxospongiae) as an outgroup and implementing the independent gamma rate relaxed clock model with a birth–death process. This analysis included three parallel runs of 10 million generations, each using four Markov chains and sampling every 100 generations. We assessed convergence of the chains by examining the average standard deviation of split frequencies, which reached a value of 0.003. Following a burn-in of 25%, we summarized the output of the three runs as a consensus phylogeny.</p>
<p>To enable analyses of microbiome phylogenetic dissimilarity, we constructed a maximum likelihood phylogeny of bacterial OTUs. We aligned OTU sequences using the default options of MAFFT and constructed the phylogeny using Fasttree2 (Price et al.,
<xref rid="B61" ref-type="bibr">2010</xref>
), as implemented by iPLANT, using the default settings.</p>
</sec>
<sec>
<title>Phylogenetic signal</title>
<p>Phylogenetic signal describes the degree to which more closely related organisms share more similar traits (Blomberg et al.,
<xref rid="B2" ref-type="bibr">2003</xref>
). We used the phylosignal function of the R package picante (Kembel et al.,
<xref rid="B26" ref-type="bibr">2010</xref>
) to test whether
<italic>D</italic>
displayed significant phylogenetic signal given the host sponge phylogeny (i.e., whether more similar values were associated with more closely related hosts more often than expected by chance).</p>
</sec>
<sec>
<title>Taxonomic and phylogenetic dissimilarity</title>
<p>We calculated microbial community taxonomic dissimilarity among specimens using the Bray–Curtis index of dissimilarity (BCD). We calculated mean BCD among specimens within host species to assess the variability of microbiomes within host species. We compared these values between LMA and HMA sponges using a
<italic>t</italic>
-test, designating LMA/HMA status based on previous studies (Weisz et al.,
<xref rid="B58" ref-type="bibr">2007</xref>
).</p>
<p>We used the R package picante (Kembel et al.,
<xref rid="B26" ref-type="bibr">2010</xref>
) to calculate phylogenetic dissimilarity among microbiomes, which reflects the genetic variation among the microbial OTUs present in each community. This analysis was only conducted on the two reduced datasets, as the original dataset yielded a phylogenetic distance matrix that exceeded the integer limit of R. We used the adonis function of the R package vegan (Oksanen et al.,
<xref rid="B34" ref-type="bibr">2014</xref>
) to quantify the impact of host species identity on BCD and phylogenetic dissimilarity. Since adonis could not simultaneously treat host identity and host phylogeny as factors, we used Mantel tests to assess the correlation between each of these individual factors and BCD, as well as a partial Mantel test to assess the effect of host phylogeny on BCD given host identity. We conducted similar Mantel tests to examine the correlations between host identity, host phylogeny, and microbial phylogenetic dissimilarity.</p>
<p>We calculated the percentage contribution to BCD of specific OTUs using SIMPER (Oksanen et al.,
<xref rid="B34" ref-type="bibr">2014</xref>
) for only the 390 OTUs present given a minimum threshold of 500 reads. Since SIMPER can only perform pairwise comparisons, the microbial community of each host species was compared to the microbial community of the remaining hosts pooled together, thereby contrasting an individual host species to all other hosts species and placing emphasis on the OTUs unique to each host. The output of this analysis revealed the percentage contribution of each OTU to this contrast. When employing lower minimum read thresholds, individual microbial OTUs excluded by the 500 read threshold contributed nearly zero percent to host species contrasts.</p>
</sec>
<sec>
<title>Effect of read thresholds</title>
<p>After filtering the dataset by using minimum read threshold values of 1, 5, 10, 50, 100, 500, 1000, and 5000, we used ANOVA to calculate the
<italic>F</italic>
-ratio associated with variation in
<italic>S</italic>
among host species. We used a polynomial regression to test whether these
<italic>F</italic>
-ratios were significantly related to threshold values.</p>
</sec>
<sec>
<title>Reproducibility of analyses</title>
<p>All statistical analyses were performed in R v. 3.1.1. Supplementary File 3 contains a set of R commands that allow the user to reproduce all of the analyses described in this manuscript.</p>
</sec>
</sec>
<sec sec-type="results" id="s3">
<title>Results</title>
<p>The raw data for this EMP study are available at
<ext-link ext-link-type="uri" xlink:href="http://www.earthmicrobiome.org/">http://www.earthmicrobiome.org/</ext-link>
. From the starting set of 100 sponge specimens, 90 specimens met all quality control standards, yielding 88,395 unique OTUs (defined as 97% sequence similarity) representing 20 bacterial phyla (based on SILVA classification), with a maximum of 8357 unique OTUs in a single host specimen. Minimum thresholds of 5 and 500 reads per OTU yielded 21,395 and 390 unique OTUs, respectively. Proteobacteria was the most abundant microbial phylum, accounting for approximately 47 % of all unique OTUs, consistent with previous studies investigating sponge microbial communities (Figure
<xref ref-type="fig" rid="F1">1</xref>
). Other notably abundant phyla included Actinobacteria, Chloroflexi, and Cyanobacteria. A few host species displayed surprisingly low phylum-level diversity, including
<italic>Iotrochota birotulata</italic>
,
<italic>Tedania ignis</italic>
, and
<italic>Lissodendoryx colombiensis</italic>
, while others hosted high phylum-level diversity, including the verongid species
<italic>Aiolochroia crassa</italic>
,
<italic>Aplysina cauliformis</italic>
, and
<italic>Aplysina fulva</italic>
. Classification of these microbial communities according to the criteria of Schmitt et al. (
<xref rid="B45" ref-type="bibr">2011</xref>
) revealed that only 1.5% of the community consisted of “core” taxa and only 11% could be considered “host-specific” taxa. The majority of the microbial community in our sample set occurred in several host species, but not ubiquitously. Interestingly, ten of the twenty host species contained no species-specific microbial OTUs, including four of the seven HMA species. In addition, within some host species, a relatively large percentage of OTUs were not classified when referencing the SILVA database. For example, at a minimum threshold of 500 reads, 91 of 390 OTUs (23%) were not classified. After referencing the Greengenes database (DeSantis et al.,
<xref rid="B6" ref-type="bibr">2006</xref>
), 10 of these 91 reads could be classified as Archaea, 67 as Bacteria, and 14 remained unclassified.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Mean relative abundance of microbial taxa within each host species</bold>
. Microbial phyla are displayed to the right of the chart, with the phylum Proteobacteria split into classes.</p>
</caption>
<graphic xlink:href="fmicb-05-00532-g0001"></graphic>
</fig>
<p>At a minimum threshold of 500 reads, the mean OTU richness (
<italic>S</italic>
) of sponge microbiomes ranged from 811 in
<italic>T. ignis</italic>
to 5263 in
<italic>Erylus formosus</italic>
(Table
<xref ref-type="table" rid="T1">1</xref>
; summaries for minimum thresholds of 1 and 5 reads are presented in Supplementary Tables
<xref ref-type="supplementary-material" rid="SM3">3</xref>
,
<xref ref-type="supplementary-material" rid="SM4">4</xref>
, respectively). Comparisons among host species revealed significant differences in
<italic>S</italic>
, (ANOVA:
<italic>df</italic>
= 19,
<italic>F</italic>
= 17.82,
<italic>P</italic>
< 0.001),
<italic>H</italic>
′ (ANOVA:
<italic>df</italic>
= 19,
<italic>F</italic>
= 24.46,
<italic>P</italic>
< 0.001), and
<italic>D</italic>
(ANOVA:
<italic>df</italic>
= 19,
<italic>F</italic>
= 14.31,
<italic>P</italic>
< 0.0001). We observed significant differences in these univariate metrics for all read thresholds (Supplementary File
<xref ref-type="supplementary-material" rid="SM6">2</xref>
). A plot of mean OTU richness vs. the inverse Simpson index (Figure
<xref ref-type="fig" rid="F2">2</xref>
) provided a visualization of the substantial variation in these metrics among host species. Four HMA host species with high values of these metrics were clearly separated from a cluster of LMA host species with low values; however, two HMA host species (
<italic>Chondrilla caribensis</italic>
and
<italic>Xestospongia bocatorensis</italic>
) were similar to the LMA host species. Notably, both of these host species contain abundant populations of photosynthetic bacteria (Erwin and Thacker,
<xref rid="B11" ref-type="bibr">2007</xref>
).</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>
<bold>Mean ± standard error of univariate measures of microbiome diversity for each host species, analyzed with a minimum threshold of 500 reads, and defining OTUs by 97% sequence similarity</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">
<bold>Species</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>
<italic>S</italic>
</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>
<italic>H</italic>
</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>
<italic>D</italic>
</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Within-host BCD</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>SIMPER OTUs</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>
<italic>n</italic>
</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Aiolochroia crassa</italic>
</td>
<td align="center" rowspan="1" colspan="1">132.2 ± 3.88</td>
<td align="center" rowspan="1" colspan="1">4.09 ± 0.07</td>
<td align="center" rowspan="1" colspan="1">39.91 ± 5.21</td>
<td align="center" rowspan="1" colspan="1">33.7 ± 7.9</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Amphimedon compressa</italic>
</td>
<td align="center" rowspan="1" colspan="1">70.4 ± 6.02</td>
<td align="center" rowspan="1" colspan="1">1.17 ± 0.28</td>
<td align="center" rowspan="1" colspan="1">1.76 ± 0.28</td>
<td align="center" rowspan="1" colspan="1">16.2 ± 5.1</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Amphimedon erina</italic>
</td>
<td align="center" rowspan="1" colspan="1">84.2 ± 18.74</td>
<td align="center" rowspan="1" colspan="1">0.91 ± 0.51</td>
<td align="center" rowspan="1" colspan="1">2.34 ± 1.2</td>
<td align="center" rowspan="1" colspan="1">33.7 ± 19.2</td>
<td align="center" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Aplysina cauliformis</italic>
</td>
<td align="center" rowspan="1" colspan="1">162.4 ± 3.50</td>
<td align="center" rowspan="1" colspan="1">4.39 ± 0.05</td>
<td align="center" rowspan="1" colspan="1">54.5 ± 5.38</td>
<td align="center" rowspan="1" colspan="1">26 ± 6</td>
<td align="center" rowspan="1" colspan="1">27</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Aplysina fulva</italic>
</td>
<td align="center" rowspan="1" colspan="1">150.6 ± 4.11</td>
<td align="center" rowspan="1" colspan="1">4.24 ± 0.04</td>
<td align="center" rowspan="1" colspan="1">47.95 ± 3.69</td>
<td align="center" rowspan="1" colspan="1">27.7 ± 6.6</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Chalinula molitba</italic>
</td>
<td align="center" rowspan="1" colspan="1">61.67 ± 1.45</td>
<td align="center" rowspan="1" colspan="1">2.77 ± 0.12</td>
<td align="center" rowspan="1" colspan="1">9.14 ± 1.06</td>
<td align="center" rowspan="1" colspan="1">24.1 ± 10.8</td>
<td align="center" rowspan="1" colspan="1">9</td>
<td align="center" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Chondrilla caribensis</italic>
</td>
<td align="center" rowspan="1" colspan="1">68.4 ± 9.10</td>
<td align="center" rowspan="1" colspan="1">2.71 ± 0.15</td>
<td align="center" rowspan="1" colspan="1">9.24 ± 2.35</td>
<td align="center" rowspan="1" colspan="1">29.2 ± 9.1</td>
<td align="center" rowspan="1" colspan="1">12</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Dysidea etheria</italic>
</td>
<td align="center" rowspan="1" colspan="1">90 ± 14.32</td>
<td align="center" rowspan="1" colspan="1">2.49 ± 0.30</td>
<td align="center" rowspan="1" colspan="1">8.16 ± 2.69</td>
<td align="center" rowspan="1" colspan="1">66.4 ± 15.8</td>
<td align="center" rowspan="1" colspan="1">15</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Ectyoplasia ferox</italic>
</td>
<td align="center" rowspan="1" colspan="1">95.2 ± 3.31</td>
<td align="center" rowspan="1" colspan="1">3.44 ± 0.07</td>
<td align="center" rowspan="1" colspan="1">21.98 ± 2.15</td>
<td align="center" rowspan="1" colspan="1">24.6 ± 6.2</td>
<td align="center" rowspan="1" colspan="1">17</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Erylus formosus</italic>
</td>
<td align="center" rowspan="1" colspan="1">172.2 ± 6.16</td>
<td align="center" rowspan="1" colspan="1">4.38 ± 0.12</td>
<td align="center" rowspan="1" colspan="1">53.48 ± 10.69</td>
<td align="center" rowspan="1" colspan="1">29.7 ± 7</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Haliclona tubifera</italic>
</td>
<td align="center" rowspan="1" colspan="1">76.25 ± 10.09</td>
<td align="center" rowspan="1" colspan="1">2.38 ± 0.46</td>
<td align="center" rowspan="1" colspan="1">7.38 ± 2.19</td>
<td align="center" rowspan="1" colspan="1">52.5 ± 18.3</td>
<td align="center" rowspan="1" colspan="1">9</td>
<td align="center" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Haliclona vansoesti</italic>
</td>
<td align="center" rowspan="1" colspan="1">54 ± 1.00</td>
<td align="center" rowspan="1" colspan="1">2.95 ± 0.26</td>
<td align="center" rowspan="1" colspan="1">11.35 ± 5.52</td>
<td align="center" rowspan="1" colspan="1">23.9 ± 19.5</td>
<td align="center" rowspan="1" colspan="1">11</td>
<td align="center" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Iotrochota birotulata</italic>
</td>
<td align="center" rowspan="1" colspan="1">66 ± 5.02</td>
<td align="center" rowspan="1" colspan="1">0.4 ± 0.11</td>
<td align="center" rowspan="1" colspan="1">1.13 ± 0.04</td>
<td align="center" rowspan="1" colspan="1">4 ± 1.5</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Lissodendoryx colombiensis</italic>
</td>
<td align="center" rowspan="1" colspan="1">64 ± 10.28</td>
<td align="center" rowspan="1" colspan="1">1.2 ± 0.08</td>
<td align="center" rowspan="1" colspan="1">2.42 ± 0.25</td>
<td align="center" rowspan="1" colspan="1">42.4 ± 18.5</td>
<td align="center" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Mycale laevis</italic>
</td>
<td align="center" rowspan="1" colspan="1">76.8 ± 9.65</td>
<td align="center" rowspan="1" colspan="1">2.06 ± 0.26</td>
<td align="center" rowspan="1" colspan="1">5.72 ± 2.03</td>
<td align="center" rowspan="1" colspan="1">48.8 ± 15.6</td>
<td align="center" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Mycale laxissima</italic>
</td>
<td align="center" rowspan="1" colspan="1">82.8 ± 1.85</td>
<td align="center" rowspan="1" colspan="1">2.11 ± 0.18</td>
<td align="center" rowspan="1" colspan="1">4.26 ± 0.61</td>
<td align="center" rowspan="1" colspan="1">51.8 ± 13.2</td>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Niphates erecta</italic>
</td>
<td align="center" rowspan="1" colspan="1">79.2 ± 4.65</td>
<td align="center" rowspan="1" colspan="1">2.61 ± 0.12</td>
<td align="center" rowspan="1" colspan="1">7.72 ± 1.03</td>
<td align="center" rowspan="1" colspan="1">41.4 ± 10.4</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Placospongia intermedia</italic>
</td>
<td align="center" rowspan="1" colspan="1">69.25 ± 14.05</td>
<td align="center" rowspan="1" colspan="1">2.75 ± 0.47</td>
<td align="center" rowspan="1" colspan="1">15.15 ± 7.62</td>
<td align="center" rowspan="1" colspan="1">73 ± 21.8</td>
<td align="center" rowspan="1" colspan="1">17</td>
<td align="center" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Tedania ignis</italic>
</td>
<td align="center" rowspan="1" colspan="1">49 ± 4.38</td>
<td align="center" rowspan="1" colspan="1">1.08 ± 0.11</td>
<td align="center" rowspan="1" colspan="1">2.33 ± 0.34</td>
<td align="center" rowspan="1" colspan="1">35.5 ± 9.9</td>
<td align="center" rowspan="1" colspan="1">3</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Xestospongia bocatorensis</italic>
</td>
<td align="center" rowspan="1" colspan="1">62 ± 3.61</td>
<td align="center" rowspan="1" colspan="1">2.02 ± 0.50</td>
<td align="center" rowspan="1" colspan="1">5.95 ± 2.90</td>
<td align="center" rowspan="1" colspan="1">35.9 ± 17.8</td>
<td align="center" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1">3</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>S, OTU richness; H′, Shannon index; D, inverse Simpson index; within-host BCD, intraspecific percentage Bray–Curtis dissimilarity; SIMPER OTUs, number of OTUs explaining 40% of Bray–Curtis dissimilarity; n, sample size.</p>
</table-wrap-foot>
</table-wrap>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Scatterplot of mean (± SE) OTU richness (
<italic>S</italic>
) and inverse Simpson's index (
<italic>D</italic>
) for each sponge host</bold>
. High microbial abundance (HMA) and low microbial abundance (LMA) classifications are displayed as red and blue symbol colors, respectively.</p>
</caption>
<graphic xlink:href="fmicb-05-00532-g0002"></graphic>
</fig>
<p>The reconstructed phylogeny of host species (Figure
<xref ref-type="fig" rid="F3">3</xref>
) was a well-supported subset of the phylogeny presented by Redmond et al. (
<xref rid="B38" ref-type="bibr">2013</xref>
). We found significant phylogenetic signal in
<italic>D</italic>
(
<italic>K</italic>
= 0.591,
<italic>P</italic>
= 0.003, Figure
<xref ref-type="fig" rid="F3">3</xref>
), with three representatives of order Verongida (
<italic>A. cauliformis</italic>
,
<italic>A. crassa</italic>
, and
<italic>A. fulva</italic>
), along with
<italic>E. formosus</italic>
(order Astrophorida), all displaying relatively high values of
<italic>D</italic>
, while five representatives of order Poecilosclerida (
<italic>I. birotulata</italic>
,
<italic>L. colombiensis</italic>
,
<italic>Mycale</italic>
spp., and
<italic>T. ignis</italic>
) all displayed very low values of
<italic>D</italic>
.</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Phylogenetic signal in the inverse Simpson's index (
<italic>D</italic>
)</bold>
. The phylogeny of host sponge species is based on 18S rRNA gene sequences. The scale bar indicates the number of nucleotide substitutions per site, while circles at the nodes of the phylogeny indicate percentage Bayesian posterior probabilities (PP): black, 100% PP; gray, 95–99% PP; white, <95% PP. Circles at the tips of the phylogeny are sized in proportion to the average value of the inverse Simpson's index (
<italic>D</italic>
) for each host (Table
<xref ref-type="table" rid="T1">1</xref>
), which displayed significant phylogenetic signal (
<italic>K</italic>
= 0.591,
<italic>P</italic>
= 0.003).</p>
</caption>
<graphic xlink:href="fmicb-05-00532-g0003"></graphic>
</fig>
<p>We observed a wide range (4–73%) of within-host-species variability in BCD (Table
<xref ref-type="table" rid="T1">1</xref>
); surprisingly, this variability was not related to the HMA or LMA classification of the host species (mean ± SE, HMA: 29.5 ± 1.5, LMA: 39.5 ± 5.4;
<italic>t</italic>
= 1.768,
<italic>df</italic>
= 14,
<italic>P</italic>
= 0.099). LMA or HMA classification also had no effect on the number of unique OTUs found in a particular host species (mean ± SE, HMA: 2.4 ± 1.3, LMA: 1.9 ± 0.6;
<italic>t</italic>
= 0.35,
<italic>df</italic>
= 9,
<italic>P</italic>
= 0.737). We visualized variation in community structure among host species using both a heat map of the relative abundance of the 100 most abundant OTUs (Figure
<xref ref-type="fig" rid="F4">4</xref>
) and a hierarchical clustering dendrogram displaying average linkages among host species (Figure
<xref ref-type="fig" rid="F5">5</xref>
). Analysis using adonis provided strong support for the effect of host identity on BCD (adonis:
<italic>df</italic>
= 19,
<italic>F</italic>
= 10.241,
<italic>R</italic>
<sup>2</sup>
= 0.735,
<italic>P</italic>
< 0.001). We also used adonis to perform a
<italic>post-hoc</italic>
comparison of three verongid hosts (
<italic>A. cauliformis</italic>
,
<italic>A. crassa</italic>
, and
<italic>A. fulva</italic>
) that contained visually similar communities (Figure
<xref ref-type="fig" rid="F4">4</xref>
). Despite the high phylogenetic relatedness of these hosts, and their similar values of
<italic>D</italic>
(Figure
<xref ref-type="fig" rid="F3">3</xref>
), the microbiomes of these three host species displayed highly significant differences in BCD (adonis:
<italic>df</italic>
= 2,
<italic>F</italic>
= 4.62,
<italic>R</italic>
<sup>2</sup>
= 0.435,
<italic>P</italic>
< 0.001). Analysis using Mantel tests found that, when tested individually, host identity (Mantel:
<italic>r</italic>
= 0.422,
<italic>R</italic>
<sup>2</sup>
= 0.178,
<italic>P</italic>
< 0.001) and host phylogeny (Mantel:
<italic>r</italic>
= 0.602,
<italic>R</italic>
<sup>2</sup>
= 0.362,
<italic>P</italic>
< 0.001) each explained a significant amount of variability in BCD. Testing the effect of host phylogeny given host identity greatly reduced the explanatory power of phylogenetic relatedness, but remained significant (Partial Mantel:
<italic>r</italic>
= 0.182,
<italic>R</italic>
<sup>2</sup>
= 0.033,
<italic>P</italic>
< 0.001).</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>Mean relative abundance heat map of the 100 most abundant microbial OTUs in each host sponge species</bold>
. These data are square-root transformed for ease of visualization. OTUs are grouped by phylum across the top of the figure, with the exception of Proteobacteria, which is split into classes. The host sponge phylogeny is displayed to the left of the heat map for ease of reference.</p>
</caption>
<graphic xlink:href="fmicb-05-00532-g0004"></graphic>
</fig>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>Dendrogram displaying Bray–Curtis dissimilarity among host sponge species</bold>
. Host species exhibited varying degrees of dissimilarity from one another, but all hosts were significantly different from each other (adonis:
<italic>df</italic>
= 19,
<italic>F</italic>
= 10.241,
<italic>R</italic>
<sup>2</sup>
= 0.735,
<italic>P</italic>
< 0.001).</p>
</caption>
<graphic xlink:href="fmicb-05-00532-g0005"></graphic>
</fig>
<p>The phylogeny of microbial OTUs (Supplementary File 4) constructed for analyses of phylogenetic dissimilarity is not the true phylogeny of these microbial taxa, but instead represents the genetic variation present in the microbial communities and is appropriate for analyses of beta-diversity (Hamady and Knight,
<xref rid="B17" ref-type="bibr">2009</xref>
). Microbial phylogenetic dissimilarity was significantly impacted by host identity (adonis:
<italic>df</italic>
= 19,
<italic>F</italic>
= 57.541,
<italic>R</italic>
<sup>2</sup>
= 0.940,
<italic>P</italic>
< 0.001, Table
<xref ref-type="table" rid="T2">2</xref>
). Analysis using Mantel tests revealed that when tested individually, host identity (Mantel:
<italic>r</italic>
= 0.331,
<italic>R</italic>
<sup>2</sup>
= 0.109,
<italic>P</italic>
< 0.001) and host phylogeny (Mantel:
<italic>r</italic>
= 0.382,
<italic>R</italic>
<sup>2</sup>
= 0.146,
<italic>P</italic>
< 0.001) each explained a significant amount of phylogenetic dissimilarity. Testing the effect of host phylogeny given host identity reduced the explanatory power of phylogenetic relatedness, but remained significant (Partial Mantel:
<italic>r</italic>
= 0.268,
<italic>R</italic>
<sup>2</sup>
= 0.072,
<italic>P</italic>
< 0.001). BCD and phylogenetic dissimilarity are not necessarily independent of one another, and these two metrics were significantly correlated (Mantel test,
<italic>r</italic>
= 0.660,
<italic>R</italic>
<sup>2</sup>
= 0.436,
<italic>P</italic>
< 0.001). SIMPER analyses revealed the OTUs specific to each host species that were the primary drivers of the observed differences in BCD and phylogenetic dissimilarity (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM7">1</xref>
). The number of bacterial taxa comprising 40% of the observed BCD variation ranged from 1 to 30 OTUs among host species and reflected observed trends in
<italic>D</italic>
(Table
<xref ref-type="table" rid="T1">1</xref>
).</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>
<bold>Analyses of Bray–Curtis dissimilarity and phylogenetic dissimilarity among host species using the
<italic>R</italic>
function adonis</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1">
<bold>
<italic>df</italic>
</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Sum of squares</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Mean squares</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>
<italic>F</italic>
-ratio</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>
<italic>R</italic>
<sup>2</sup>
</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>
<italic>P</italic>
-value</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="7" rowspan="1">
<bold>BRAY–CURTIS DISSIMILARITY</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Host species identity</td>
<td align="center" rowspan="1" colspan="1">19</td>
<td align="center" rowspan="1" colspan="1">28.47</td>
<td align="center" rowspan="1" colspan="1">1.498</td>
<td align="center" rowspan="1" colspan="1">10.241</td>
<td align="center" rowspan="1" colspan="1">0.735</td>
<td align="center" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Residuals</td>
<td align="center" rowspan="1" colspan="1">70</td>
<td align="center" rowspan="1" colspan="1">10.242</td>
<td align="center" rowspan="1" colspan="1">0.146</td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">0.265</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" colspan="7" rowspan="1">
<bold>PHYLOGENETIC DISSIMILARITY</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Host species identity</td>
<td align="center" rowspan="1" colspan="1">19</td>
<td align="center" rowspan="1" colspan="1">1.72162</td>
<td align="center" rowspan="1" colspan="1">0.091</td>
<td align="center" rowspan="1" colspan="1">57.541</td>
<td align="center" rowspan="1" colspan="1">0.940</td>
<td align="center" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Residuals</td>
<td align="center" rowspan="1" colspan="1">70</td>
<td align="center" rowspan="1" colspan="1">0.166</td>
<td align="center" rowspan="1" colspan="1">0.0023</td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">0.088</td>
<td rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</table-wrap>
<p>We observed significant differences in
<italic>S</italic>
among host species across an array of minimum read thresholds, and the
<italic>F</italic>
-ratio of this test was significantly impacted by minimum read threshold (polynomial regression:
<italic>df</italic>
= 2,
<italic>F</italic>
= 24.03,
<italic>P</italic>
= 0.006; Supplementary Figure
<xref ref-type="supplementary-material" rid="SM8">2</xref>
). In all cases,
<italic>S</italic>
displayed a significant amount of variability among hosts, indicating that the effect of host identity on
<italic>S</italic>
is robust. The significance of the
<italic>F</italic>
-ratio varied among minimum read thresholds across all three diversity indices, but was most substantial when comparing
<italic>S</italic>
. The effect of host species identity was highest for all diversity metrics at a minimum threshold equal to or greater than 500 reads (Supplementary File
<xref ref-type="supplementary-material" rid="SM6">2</xref>
).</p>
</sec>
<sec sec-type="discussion" id="s4">
<title>Discussion</title>
<p>Previous researchers have used a wide variety of techniques to document that sponge-associated microbial communities are largely host specific (e.g., Erwin et al.,
<xref rid="B8" ref-type="bibr">2012a</xref>
; Reveillaud et al.,
<xref rid="B39" ref-type="bibr">2014</xref>
), but host phylogenetic relatedness has only rarely been included as a specific factor influencing microbiome community structure (Schöttner et al.,
<xref rid="B46" ref-type="bibr">2013</xref>
). Our analysis of the microbiomes of 20 host taxa over a narrow geographic range adds further evidence to the high degree of host specificity observed in these microbial communities. Host identity and host phylogeny were each significant individual influences on Bray–Curtis dissimilarity (BCD) and phylogenetic dissimilarity; however, when examined together, host identity explained much more variance than host phylogeny. In our dataset, this outcome is largely due to closely related host taxa harboring extremely different microbiomes. Despite these striking differences in microbial community composition, one aspect of community structure, the inverse Simpson index of diversity (
<italic>D</italic>
), displayed significant phylogenetic signal across the host phylogeny.
<italic>D</italic>
is frequently described as an index of dominance because it is most strongly influenced by the relative abundance of the most common taxa in a community (Magurran and Magurran,
<xref rid="B29" ref-type="bibr">1988</xref>
; Haegeman et al.,
<xref rid="B16" ref-type="bibr">2014</xref>
). Thus, although the identity of specific microbial OTUs varied substantially among host sponges, more closely related sponge species tended to harbor microbial communities with more similar patterns of relative abundance and dominance.</p>
<p>Early studies of sponge-microbe associations investigated fewer host species and used methods such as clone library construction that identified fewer OTUs per host; however, several of these early studies proposed the hypothesis of a uniform microbial community associated with sponges (Hentschel et al.,
<xref rid="B20" ref-type="bibr">2002</xref>
,
<xref rid="B21" ref-type="bibr">2006</xref>
; Hill,
<xref rid="B22" ref-type="bibr">2004</xref>
; Montalvo and Hill,
<xref rid="B33" ref-type="bibr">2011</xref>
). Later studies proposed the occurrence of sponge-specific “sequence clusters” in phylogenies of microbial taxa (Taylor et al.,
<xref rid="B49" ref-type="bibr">2007</xref>
; Thiel et al.,
<xref rid="B53" ref-type="bibr">2007</xref>
; Webster et al.,
<xref rid="B56" ref-type="bibr">2010</xref>
; Simister et al.,
<xref rid="B47" ref-type="bibr">2012</xref>
), indicating that, in many cases, sponge-associated bacteria were found in monophyletic groups. Continued work on this topic has provided strong support for the hypothesis that microbial communities are largely host-species-specific (Taylor et al.,
<xref rid="B50" ref-type="bibr">2004</xref>
; Erwin et al.,
<xref rid="B10" ref-type="bibr">2012b</xref>
; Pita et al.,
<xref rid="B36" ref-type="bibr">2013</xref>
), while placing less emphasis on the occurrence of sponge-specific lineages and instead describing these taxa as “sponge-enriched” (Taylor et al.,
<xref rid="B51" ref-type="bibr">2012</xref>
; Moitinho-Silva et al.,
<xref rid="B32" ref-type="bibr">2014</xref>
). The host-specific nature of sponge-associated microbial communities is now well-established, and next-generation sequencing techniques continue to document this specificity in an increasing number of host taxa (Lee et al.,
<xref rid="B27" ref-type="bibr">2010</xref>
; Schmitt et al.,
<xref rid="B45" ref-type="bibr">2011</xref>
; Reveillaud et al.,
<xref rid="B39" ref-type="bibr">2014</xref>
).</p>
<p>In a strict sense, the terms HMA and LMA refer to the abundance of microbes resident within a sponge host, but these terms are often used to infer characteristics of diversity and microbial specificity (Weisz et al.,
<xref rid="B58" ref-type="bibr">2007</xref>
), with HMA sponges being associated with highly diverse communities (Schmitt et al.,
<xref rid="B44" ref-type="bibr">2008</xref>
; Erwin et al.,
<xref rid="B8" ref-type="bibr">2012a</xref>
) and highly specific communities (Hentschel et al.,
<xref rid="B19" ref-type="bibr">2003</xref>
; Schläppy et al.,
<xref rid="B42" ref-type="bibr">2010</xref>
; Gerçe et al.,
<xref rid="B13" ref-type="bibr">2011</xref>
). Furthermore, several LMA sponges have previously been hypothesized to be more reflective of the surrounding environment than HMA sponges (Weisz et al.,
<xref rid="B58" ref-type="bibr">2007</xref>
; Erwin et al.,
<xref rid="B9" ref-type="bibr">2011</xref>
). In our study, we were surprised to observe strong host specificity even in sponges characterized as LMA species. Giles et al. (
<xref rid="B14" ref-type="bibr">2013</xref>
) also found a large amount of specificity in LMA hosts. Our investigation demonstrated that several LMA sponge species harbor communities with moderately high OTU richness, while some HMA species host microbiomes with considerably lower OTU richness. The two HMA species hosting the lowest OTU richness,
<italic>C. caribensis</italic>
and
<italic>X. bocatorensis</italic>
, both host dense populations of photosynthetic cyanobacteria (
<italic>Synechococcus spongiarum</italic>
and
<italic>Oscillatoria spongeliae</italic>
, respectively; Thacker and Freeman,
<xref rid="B52" ref-type="bibr">2012</xref>
). However, it is unclear whether these photosymbionts can structure the remainder of the microbiome, since two other HMA species hosting
<italic>S. spongiarum</italic>
(
<italic>A. cauliformis</italic>
and
<italic>A. fulva</italic>
) displayed among the highest values of OTU richness. In addition, some LMA hosts displayed extremely low values of
<italic>D</italic>
, indicating that these sponges were not hosting a random microbial assemblage; instead, there seems to be strong evolutionary selection for some sponge lineages to host an extremely specific microbial community that is dominated by a relatively low number of OTUs. These results are similar to those of Poppell et al. (
<xref rid="B60" ref-type="bibr">2013</xref>
), who used DGGE banding patterns to assess diversity in a set of 8 HMA and 7 LMA species and observed significantly lower diversity (and values of
<italic>D</italic>
) in the LMA species.</p>
<p>We employed multivariate approaches to further explore the nature of these microbial associations. High levels of community dissimilarity are often noted between host sponges (Lee et al.,
<xref rid="B27" ref-type="bibr">2010</xref>
; Reveillaud et al.,
<xref rid="B39" ref-type="bibr">2014</xref>
), and although not often directly tested, dissimilarity often decreases within taxonomic and phylogenetic groupings. This observation is also suggestive of a phylogenetic signal in the structuring of microbiomes. Schöttner et al. (
<xref rid="B46" ref-type="bibr">2013</xref>
) tested this idea directly and noted a significant effect of host species and family on the types of microbial taxa found in specimens of species within the family Geodiidae. When testing the influence of phylogenetic or taxonomic relatedness, it is most appropriate to either test taxonomic groups as nested factors or to use a phylogenetic or taxonomic distance matrix as a factor (Kembel et al.,
<xref rid="B26" ref-type="bibr">2010</xref>
). We used adonis to assess the impact of host identity on microbiome community and phylogenetic dissimilarity, finding that this factor accounted for the majority of variation in these measures. However, adonis could not simultaneously estimate the impact of host identity and host phylogeny (or host relatedness). To assess the relative impact of these factors, we used a partial Mantel test, finding that host phylogeny explained very little variation in community dissimilarity after accounting for host identity. These data suggest that the strong selective forces for divergent microbiome community composition remain strong even among closely related hosts, suggesting that symbiotic microbes might play critical roles in niche differentiation among host species.</p>
<p>We observed an extremely wide range of intraspecific variability in community structure, with some LMA species displaying less than 5% BCD and others displaying more than 50% BCD among individuals. Surprisingly, this range was not correlated with the HMA or LMA classification of the host species. Thus, although some LMA species with extremely high intraspecific variability might be more reflective of the surrounding environment, other LMA species appear to be under strong selective pressures to limit membership in their microbiomes. Furthermore, our sampling strategy focused on representing both ectosomal and choanosomal tissue from each specimen. Species with high intraspecific variability, such as
<italic>Dysidea etheria</italic>
and
<italic>Placospongia intermedia</italic>
(Table
<xref ref-type="table" rid="T1">1</xref>
), might reflect zonation of microbial symbionts among microhabitats within the host. Future studies could explicitly test this hypothesis of microbiome zonation by carefully excising distinct tissue layers and cell types.</p>
<p>SIMPER analysis of BCD highlighted the wide variation in host-microbial associations. Host species with high values of
<italic>D</italic>
harbored more even communities, where no one OTU accounted for a large proportion of the BCD (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM7">1</xref>
). Conversely, some host species were dominated by one or a few microbial taxa, and these specific OTUs contributed to a large proportion of the contrast of BCD among species (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM7">1</xref>
). Indeed, the 5 highest proportional contributions of single OTUs were observed in 5 LMA species (
<italic>A. compressa, A. erina, I. birotulata, L. colombiensis</italic>
, and
<italic>T. ignis</italic>
). Importantly, these proportional contributions are not necessarily related to unique membership in a particular community. Though all of the sponge species in our study hosted significantly dissimilar communities, half of these species possessed no “species-specific” microbial taxa. Given the strong statistical signal for host identity, our results suggest that the observed significant dissimilarity among host species was largely driven by differences in relative abundance, with each host species harboring specific microbial assemblages rather than strictly unique OTUs. This pattern was also reported by an earlier study by Erwin et al. (
<xref rid="B8" ref-type="bibr">2012a</xref>
), which described this type of community structure as a “specific mix of generalists.”</p>
<p>We found that host identity maintained a strong statistical signal at all minimum read thresholds tested in our study. The significance of host identity decreased with lower minimum read thresholds, revealing that the microbial OTUs that distinguish hosts from one another, although not necessarily unique to a particular host, are often among the most dominant members of their community. This finding suggests that removing OTUs with lower abundance reduced noise in our dataset, likely due to the presence of microbes found more broadly in the community. Additionally, increasing the minimum read threshold added confidence to our analysis by ensuring that the observed taxa are of biological origin, and not a product of error (Reveillaud et al.,
<xref rid="B39" ref-type="bibr">2014</xref>
). The relevance of rare microbial OTUs in large NGS datasets is still an area of much debate and the use of minimum read thresholds is considered a conservative way to reduce false positives while maintaining the majority of the biological diversity (Dunn et al.,
<xref rid="B7" ref-type="bibr">2013</xref>
).</p>
<p>In addition to the statistical advantages of using minimum read thresholds, some practical issues must be considered when analyzing NGS datasets, since these data are often extremely large and are potentially unmanageable without significant computing power. In our dataset, limiting the minimum read threshold to 5 reads reduced the number of OTUs by 76%. This reduction not only reduced the amount of computing power needed to process these data, but it also permitted us to conduct community phylogenetic analyses in
<italic>R</italic>
. Although the full dataset generated phylogenetic distance matrices that far exceeded
<italic>R</italic>
's current integer limit (R Development Core Team,
<xref rid="B37" ref-type="bibr">2008</xref>
), analyses of the reduced dataset still exceeds most standard computing power. Our study made use of the cyber-infrastructure provided by iPlant to perform analyses on a super-computing platform. As Internet-based tools such as iPlant become more widely available, these limitations will become less important, but the practical processing of these large datasets remains a challenge today.</p>
<p>Our results lead us to consider the designations LMA and HMA to reflect two ends of a continuum in sponge microbiome community structure. Although the four highest values of
<italic>S</italic>
and
<italic>D</italic>
were found in four of the seven HMA species in our study, two HMA species displayed very low values of
<italic>D</italic>
. Both of these sponges host photosymbionts, so these low values of
<italic>D</italic>
potentially reflect strong selection for the nutritional benefits received from these partners (Thacker and Freeman,
<xref rid="B52" ref-type="bibr">2012</xref>
). Similar host selection for symbiont-derived benefits might also occur for other microbial OTUs in LMA sponges that display lower values of
<italic>D</italic>
. We observed strong phylogenetic signal for
<italic>D</italic>
, but BCD and phylogenetic dissimilarity were influenced more by host species identity than host phylogenetic relatedness. In contrast to previous studies, we found a low number of species-specific microbial OTUs, as well as an unexpectedly large range of intraspecific variation in BCD. In future research on these microbiomes, these metrics of community structure can be used in combination with microbial abundance to assess trends in the evolution of microbiomes. Based on our current dataset, broad-scale microbial diversity within a host sponge appears to be strongly influenced by host phylogeny, but the specific members of each host's microbial community appear to be structured by unique interactions within each host species.</p>
<sec>
<title>Conflict of interest statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We thank Torsten Thomas, Nicole Webster, and Joe Lopez for coordinating the submission of sponge specimens to the Earth Microbiome Project (EMP), in addition to our colleagues at EMP who conducted the Illumina sequencing of these materials. We also thank Lucas Moitinho-Silva and Ute Hentschel for completing the initial mothur processing and distribution of these data to the sponge EMP team. We thank Chris Freeman, Kenan Matterson, and the staff of the Smithsonian Tropical Research Institute Bocas del Toro Research Station for their assistance in the field, as well as the participants in the Bocas del Toro Sponge Courses from 2006 to 2012. We thank Megan Zappe for laboratory assistance, Luke Harmon for guidance on comparative analyses, and Puri Bangalore and Tony Skjellum for valuable feedback on Perl scripts. This work was supported by grants from the U.S. National Science Foundation, Division of Environmental Biology (grant numbers 0829986 and 1208310 awarded to Robert W. Thacker).</p>
</ack>
<sec sec-type="supplementary-material" id="s5">
<title>Supplementary material</title>
<p>The Supplementary Material for this article can be found online at:
<ext-link ext-link-type="uri" xlink:href="http://www.frontiersin.org/journal/10.3389/fmicb.2014.00532/abstract">http://www.frontiersin.org/journal/10.3389/fmicb.2014.00532/abstract</ext-link>
</p>
<supplementary-material content-type="local-data" id="SM1">
<media xlink:href="Table1.DOCX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM2">
<media xlink:href="Table2.DOCX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM3">
<media xlink:href="Table3.DOCX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM4">
<media xlink:href="Table4.DOCX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM5">
<media xlink:href="DataSheet1.ZIP">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM6">
<media xlink:href="DataSheet2.DOCX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM7">
<label>Supplementary Figure 1</label>
<caption>
<p>
<bold>Mean percentage contribution of the 103 OTUs contributing at least 40% of the SIMPER contrast of Bray–Curtis dissimilarity among host species</bold>
. These data are square-root transformed for ease of visualization. OTUs are grouped by phylum across the top of the figure, with the exception of Proteobacteria, which is split into classes. The host sponge phylogeny is displayed to the left of the heat map for ease of reference.</p>
</caption>
<media xlink:href="Image1.TIF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM8">
<label>Supplementary Figure 2</label>
<caption>
<p>
<bold>
<italic>F</italic>
-ratio of OTU richness across host species plotted against an array of minimum read thresholds</bold>
. The
<italic>F</italic>
-ratio was significantly influenced by minimum read threshold (polynomial regression:
<italic>df</italic>
= 2,
<italic>F</italic>
= 24.03,
<italic>P</italic>
= 0.006).</p>
</caption>
<media xlink:href="Image2.TIF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Northcote</surname>
<given-names>P. T.</given-names>
</name>
<name>
<surname>Page</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Spatial and temporal variability of the bacterial community in different chemotypes of the New Zealand marine sponge
<italic>Mycale hentscheli</italic>
</article-title>
.
<source>FEMS Microbiol. Ecol</source>
.
<volume>72</volume>
,
<fpage>328</fpage>
<lpage>342</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1574-6941.2010.00869.x</pub-id>
<pub-id pub-id-type="pmid">20412301</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blomberg</surname>
<given-names>S. P.</given-names>
</name>
<name>
<surname>Garland</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ives</surname>
<given-names>A. R.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Testing for phylogenetic signal in comparative data: behavioral traits are more labile</article-title>
.
<source>Evolution</source>
<volume>57</volume>
,
<fpage>717</fpage>
<lpage>745</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.0014-3820.2003.tb00285.x</pub-id>
<pub-id pub-id-type="pmid">12778543</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caporaso</surname>
<given-names>J. G.</given-names>
</name>
<name>
<surname>Lauber</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Walters</surname>
<given-names>W. A.</given-names>
</name>
<name>
<surname>Berg-Lyons</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Huntley</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fierer</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms</article-title>
.
<source>ISME J</source>
.
<volume>6</volume>
,
<fpage>1621</fpage>
<lpage>1624</lpage>
.
<pub-id pub-id-type="doi">10.1038/ismej.2012.8</pub-id>
<pub-id pub-id-type="pmid">22402401</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cleary</surname>
<given-names>D. F.</given-names>
</name>
<name>
<surname>Becking</surname>
<given-names>L. E.</given-names>
</name>
<name>
<surname>Voogd</surname>
<given-names>N. J.</given-names>
</name>
<name>
<surname>Pires</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Polónia</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Egas</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Habitat-and host-related variation in sponge bacterial symbiont communities in Indonesian waters</article-title>
.
<source>FEMS Microbiol. Ecol</source>
.
<volume>85</volume>
,
<fpage>465</fpage>
<lpage>482</lpage>
.
<pub-id pub-id-type="doi">10.1111/1574-6941.12135</pub-id>
<pub-id pub-id-type="pmid">23607753</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Goeij</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Van Oevelen</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Vermeij</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Osinga</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Middelburg</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>De Goeij</surname>
<given-names>A. F.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Surviving in a marine desert: the sponge loop retains resources within coral reefs</article-title>
.
<source>Science</source>
<volume>342</volume>
,
<fpage>108</fpage>
<lpage>110</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1241981</pub-id>
<pub-id pub-id-type="pmid">24092742</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeSantis</surname>
<given-names>T. Z.</given-names>
</name>
<name>
<surname>Hugenholtz</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Larsen</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Rojas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Brodie</surname>
<given-names>E. L.</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB</article-title>
.
<source>Appl. Environ. Microb</source>
.
<volume>72</volume>
,
<fpage>5069</fpage>
<lpage>5072</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.03006-05</pub-id>
<pub-id pub-id-type="pmid">16820507</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dunn</surname>
<given-names>C. W.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Phylogenetic analysis of gene expression</article-title>
.
<source>Integr. Comp. Biol</source>
.
<volume>53</volume>
,
<fpage>847</fpage>
<lpage>856</lpage>
.
<pub-id pub-id-type="doi">10.1093/icb/ict068</pub-id>
<pub-id pub-id-type="pmid">23748631</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Erwin</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>López-Legentil</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>González-Pech</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Turon</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2012a</year>
).
<article-title>A specific mix of generalists: bacterial symbionts in Mediterranean Ircinia spp</article-title>
.
<source>FEMS Microbiol. Ecol</source>
.
<volume>79</volume>
,
<fpage>619</fpage>
<lpage>637</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1574-6941.2011.01243.x</pub-id>
<pub-id pub-id-type="pmid">22092516</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Erwin</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Olson</surname>
<given-names>J. B.</given-names>
</name>
<name>
<surname>Thacker</surname>
<given-names>R. W.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico</article-title>
.
<source>PLoS ONE</source>
<volume>6</volume>
:
<fpage>e26806</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0026806</pub-id>
<pub-id pub-id-type="pmid">22073197</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Erwin</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Pita</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>López-Legentil</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Turon</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2012b</year>
).
<article-title>Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance</article-title>
.
<source>Appl. Environ. Microbiol</source>
.
<volume>78</volume>
,
<fpage>7358</fpage>
<lpage>7368</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.02035-12</pub-id>
<pub-id pub-id-type="pmid">22885741</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Erwin</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Thacker</surname>
<given-names>R. W.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages</article-title>
.
<source>J. Mar. Biol. Assoc. U.K</source>
.
<volume>87</volume>
,
<fpage>1683</fpage>
<lpage>1692</lpage>
.
<pub-id pub-id-type="doi">10.1017/S0025315407058213</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freeman</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Thacker</surname>
<given-names>R. W.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Complex interactions between marine sponges and their symbiotic microbial communities</article-title>
.
<source>Limnol. Oceanogr</source>
.
<volume>56</volume>
,
<fpage>1577</fpage>
<lpage>1586</lpage>
.
<pub-id pub-id-type="doi">10.4319/lo.2011.56.5.1577</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerçe</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Syldatk</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hausmann</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Differences between bacterial communities associated with the surface or tissue of Mediterranean sponge species</article-title>
.
<source>Microb. Ecol</source>
.
<volume>61</volume>
,
<fpage>769</fpage>
<lpage>782</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00248-011-9802-2</pub-id>
<pub-id pub-id-type="pmid">21246194</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giles</surname>
<given-names>E. C.</given-names>
</name>
<name>
<surname>Kamke</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Moitinho-Silva</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>M. W.</given-names>
</name>
<name>
<surname>Hentschel</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Ravasi</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Bacterial community profiles in low microbial abundance sponges</article-title>
.
<source>FEMS Microbiol. Ecol</source>
.
<volume>83</volume>
,
<fpage>232</fpage>
<lpage>241</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1574-6941.2012.01467.x</pub-id>
<pub-id pub-id-type="pmid">22882238</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goff</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Vaughn</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mckay</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lyons</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Stapleton</surname>
<given-names>A. E.</given-names>
</name>
<name>
<surname>Gessler</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>The iPlant collaborative: cyberinfrastructure for plant biology</article-title>
.
<source>Front. Plant Sci</source>
.
<volume>2</volume>
:
<issue>34</issue>
.
<pub-id pub-id-type="doi">10.3389/fpls.2011.00034</pub-id>
<pub-id pub-id-type="pmid">22645531</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haegeman</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Godon</surname>
<given-names>J.-J.</given-names>
</name>
<name>
<surname>Hamelin</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Only Simpson diversity can be estimated accurately from microbial community fingerprints</article-title>
.
<source>Microb. Ecol</source>
.
<volume>68</volume>
,
<fpage>169</fpage>
<lpage>172</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00248-014-0394-5</pub-id>
<pub-id pub-id-type="pmid">25037265</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamady</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Knight</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Microbial community profiling for human microbiome projects: tools, techniques, and challenges</article-title>
.
<source>Genome Res</source>
.
<volume>19</volume>
,
<fpage>1141</fpage>
<lpage>1152</lpage>
.
<pub-id pub-id-type="doi">10.1101/gr.085464.108</pub-id>
<pub-id pub-id-type="pmid">19383763</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hardoim</surname>
<given-names>C. C.</given-names>
</name>
<name>
<surname>Esteves</surname>
<given-names>A. I.</given-names>
</name>
<name>
<surname>Pires</surname>
<given-names>F. R.</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Xavier</surname>
<given-names>J. R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Phylogenetically and spatially close marine sponges harbour divergent bacterial communities</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
:
<fpage>e53029</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0053029</pub-id>
<pub-id pub-id-type="pmid">23300853</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hentschel</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Fieseler</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wehrl</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gernert</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Steinert</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hacker</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2003</year>
).
<article-title>Microbial diversity of marine sponges</article-title>
, in
<source>Sponges (Porifera)</source>
, ed
<person-group person-group-type="editor">
<name>
<surname>Müller</surname>
<given-names>W. E. G.</given-names>
</name>
</person-group>
(
<publisher-loc>Berlin</publisher-loc>
:
<publisher-name>Springer</publisher-name>
),
<fpage>59</fpage>
<lpage>88</lpage>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hentschel</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Hopke</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Horn</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Friedrich</surname>
<given-names>A. B.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hacker</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2002</year>
).
<article-title>Molecular evidence for a uniform microbial community in sponges from different oceans</article-title>
.
<source>Appl. Environ. Microbiol</source>
.
<volume>68</volume>
,
<fpage>4431</fpage>
<lpage>4440</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.68.9.4431-4440.2002</pub-id>
<pub-id pub-id-type="pmid">12200297</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hentschel</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Usher</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>M. W.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Marine sponges as microbial fermenters</article-title>
.
<source>FEMS Microbiol. Ecol</source>
.
<volume>55</volume>
,
<fpage>167</fpage>
<lpage>177</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1574-6941.2005.00046.x</pub-id>
<pub-id pub-id-type="pmid">16420625</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hill</surname>
<given-names>R. T.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery</article-title>
, in
<source>Microbial Diversity and Bioprospecting</source>
, ed
<person-group person-group-type="editor">
<name>
<surname>Bull</surname>
<given-names>A. T.</given-names>
</name>
</person-group>
(
<publisher-loc>Washington, DC</publisher-loc>
:
<publisher-name>ASM Press</publisher-name>
),
<fpage>177</fpage>
<lpage>190</lpage>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hooper</surname>
<given-names>J. N. A.</given-names>
</name>
<name>
<surname>van Soest</surname>
<given-names>R. W. M.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<source>Systema Porifera</source>
.
<publisher-loc>New York, NY</publisher-loc>
:
<publisher-name>Kluwer Academic/Plenum Publishers</publisher-name>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huse</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Welch</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Morrison</surname>
<given-names>H. G.</given-names>
</name>
<name>
<surname>Sogin</surname>
<given-names>M. L.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Ironing out the wrinkles in the rare biosphere through improved OTU clustering</article-title>
.
<source>Environ. Microb</source>
.
<volume>12</volume>
,
<fpage>1889</fpage>
<lpage>1898</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1462-2920.2010.02193.x</pub-id>
<pub-id pub-id-type="pmid">20236171</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katoh</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Misawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kuma</surname>
<given-names>K. I.</given-names>
</name>
<name>
<surname>Miyata</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform</article-title>
.
<source>Nucleic Acids Res</source>
.
<volume>30</volume>
,
<fpage>3059</fpage>
<lpage>3066</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkf436</pub-id>
<pub-id pub-id-type="pmid">12136088</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kembel</surname>
<given-names>S. W.</given-names>
</name>
<name>
<surname>Cowan</surname>
<given-names>P. D.</given-names>
</name>
<name>
<surname>Helmus</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Cornwell</surname>
<given-names>W. K.</given-names>
</name>
<name>
<surname>Morlon</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ackerly</surname>
<given-names>D. D.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Picante: R tools for integrating phylogenies and ecology</article-title>
.
<source>Bioinformatics</source>
<volume>26</volume>
,
<fpage>1463</fpage>
<lpage>1464</lpage>
.
<pub-id pub-id-type="doi">10.1093/bioinformatics/btq166</pub-id>
<pub-id pub-id-type="pmid">20395285</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>O. O.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lafi</surname>
<given-names>F. F.</given-names>
</name>
<name>
<surname>Al-Suwailem</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>P.-Y.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea</article-title>
.
<source>ISME J</source>
.
<volume>5</volume>
,
<fpage>650</fpage>
<lpage>664</lpage>
.
<pub-id pub-id-type="doi">10.1038/ismej.2010.165</pub-id>
<pub-id pub-id-type="pmid">21085196</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lesser</surname>
<given-names>M. P.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Benthic-pelagic coupling on coral reefs: feeding and growth of Caribbean sponges</article-title>
.
<source>J. Exp. Mar. Biol. Ecol</source>
.
<volume>328</volume>
,
<fpage>277</fpage>
<lpage>288</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jembe.2005.07.010</pub-id>
<pub-id pub-id-type="pmid">24244563</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Magurran</surname>
<given-names>A. E.</given-names>
</name>
<name>
<surname>Magurran</surname>
<given-names>A. E.</given-names>
</name>
</person-group>
(
<year>1988</year>
).
<source>Ecological Diversity and Its Measurement</source>
.
<publisher-loc>Berlin</publisher-loc>
:
<publisher-name>Springer</publisher-name>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maldonado</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ribes</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Van Duyl</surname>
<given-names>F. C.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Nutrient fluxes through sponges: biology, budgets, and ecological implications</article-title>
.
<source>Adv. Mar. Biol</source>
.
<volume>62</volume>
,
<fpage>113</fpage>
<lpage>167</lpage>
.
<pub-id pub-id-type="doi">10.1016/B978-0-12-394283-8.00003-5</pub-id>
<pub-id pub-id-type="pmid">22664122</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McMurdie</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Waste not, want not: why rarefying microbiome data is inadmissible</article-title>
.
<source>PLoS Comput. Biol</source>
.
<volume>10</volume>
:
<fpage>e1003531</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pcbi.1003531</pub-id>
<pub-id pub-id-type="pmid">24699258</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moitinho-Silva</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bayer</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Cannistraci</surname>
<given-names>C. V.</given-names>
</name>
<name>
<surname>Giles</surname>
<given-names>E. C.</given-names>
</name>
<name>
<surname>Ryu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Seridi</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea</article-title>
.
<source>Mol. Ecol</source>
.
<volume>23</volume>
,
<fpage>1348</fpage>
<lpage>1363</lpage>
.
<pub-id pub-id-type="doi">10.1111/mec.12365</pub-id>
<pub-id pub-id-type="pmid">23957633</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Montalvo</surname>
<given-names>N. F.</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>R. T.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts</article-title>
.
<source>Appl. Environ. Microbiol</source>
.
<volume>77</volume>
,
<fpage>7207</fpage>
<lpage>7216</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.05285-11</pub-id>
<pub-id pub-id-type="pmid">21856832</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="webpage">
<person-group person-group-type="author">
<name>
<surname>Oksanen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kindt</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Legendre</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>O'Hara</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>M. H. H.</given-names>
</name>
<name>
<surname>Oksanen</surname>
<given-names>M. J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<source>Vegan: Community Ecology Package</source>
. Avaliable online at:
<ext-link ext-link-type="uri" xlink:href="http://cran.r-project.org/web/packages/vegan">http://cran.r-project.org/web/packages/vegan</ext-link>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olson</surname>
<given-names>J. B.</given-names>
</name>
<name>
<surname>Thacker</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Gochfeld</surname>
<given-names>D. J.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Molecular community profiling reveals impacts of time, space, and disease status on the bacterial community associated with the Caribbean sponge
<italic>Aplysina cauliformis</italic>
</article-title>
.
<source>FEMS Microbiol. Ecol</source>
.
<volume>87</volume>
,
<fpage>268</fpage>
<lpage>279</lpage>
.
<pub-id pub-id-type="doi">10.1111/1574-6941.12222</pub-id>
<pub-id pub-id-type="pmid">24112035</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pita</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Turon</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>López-Legentil</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Erwin</surname>
<given-names>P. M.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Host rules: spatial stability of bacterial communities associated with marine sponges (
<italic>Ircinia</italic>
spp.) in the Western Mediterranean Sea</article-title>
.
<source>FEMS Microbiol. Ecol</source>
.
<volume>86</volume>
,
<fpage>268</fpage>
<lpage>276</lpage>
.
<pub-id pub-id-type="doi">10.1111/1574-6941.12159</pub-id>
<pub-id pub-id-type="pmid">23837533</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poppell</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Weisz</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Spicer</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Massaro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges</article-title>
.
<source>Mar. Ecol</source>
.
<pub-id pub-id-type="doi">10.1111/maec.12098</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Price</surname>
<given-names>M. N.</given-names>
</name>
<name>
<surname>Dehal</surname>
<given-names>P. S.</given-names>
</name>
<name>
<surname>Arkin</surname>
<given-names>A. P.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>FastTree 2–approximately maximum-likelihood trees for large alignments</article-title>
.
<source>PLoS ONE</source>
<volume>5</volume>
:
<fpage>e9490</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0009490</pub-id>
<pub-id pub-id-type="pmid">20224823</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<collab>R Development Core Team.</collab>
</person-group>
(
<year>2008</year>
).
<source>R: A Language and Environment for Statistical Computing</source>
.
<publisher-loc>Vienna</publisher-loc>
:
<publisher-name>R foundation for Statistical Computing</publisher-name>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Redmond</surname>
<given-names>N. E.</given-names>
</name>
<name>
<surname>Morrow</surname>
<given-names>C. C.</given-names>
</name>
<name>
<surname>Thacker</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Díaz</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Boury-Esnault</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Cárdenas</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Phylogeny and systematics of demospongiae in light of new small-subunit ribosomal DNA (18S) sequences</article-title>
.
<source>Integr. Comp. Biol</source>
.
<volume>53</volume>
,
<fpage>388</fpage>
<lpage>415</lpage>
.
<pub-id pub-id-type="doi">10.1093/icb/ict078</pub-id>
<pub-id pub-id-type="pmid">23793549</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reveillaud</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Maignien</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Eren</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Apprill</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sogin</surname>
<given-names>M. L.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Host-specificity among abundant and rare taxa in the sponge microbiome</article-title>
.
<source>ISME J</source>
.
<volume>8</volume>
,
<fpage>1198</fpage>
<lpage>1209</lpage>
<pub-id pub-id-type="doi">10.1038/ismej.2013.227</pub-id>
<pub-id pub-id-type="pmid">24401862</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ronquist</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Teslenko</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Van Der Mark</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ayres</surname>
<given-names>D. L.</given-names>
</name>
<name>
<surname>Darling</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Höhna</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space</article-title>
.
<source>Syst. Biol</source>
.
<volume>61</volume>
,
<fpage>539</fpage>
<lpage>542</lpage>
.
<pub-id pub-id-type="doi">10.1093/sysbio/sys029</pub-id>
<pub-id pub-id-type="pmid">22357727</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rützler</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>The role of sponges in the Mesoamerican Barrier-Reef Ecosystem, Belize</article-title>
.
<source>Adv. Mar. Biol</source>
.
<volume>61</volume>
,
<fpage>211</fpage>
.
<pub-id pub-id-type="doi">10.1016/B978-0-12-387787-1.00002-7</pub-id>
<pub-id pub-id-type="pmid">22560779</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schläppy</surname>
<given-names>M.-L.</given-names>
</name>
<name>
<surname>Schöttner</surname>
<given-names>S. I.</given-names>
</name>
<name>
<surname>Lavik</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kuypers</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>De Beer</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Evidence of nitrification and denitrification in high and low microbial abundance sponges</article-title>
.
<source>Mar. Biol</source>
.
<volume>157</volume>
,
<fpage>593</fpage>
<lpage>602</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00227-009-1344-5</pub-id>
<pub-id pub-id-type="pmid">24391241</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schloss</surname>
<given-names>P. D.</given-names>
</name>
<name>
<surname>Westcott</surname>
<given-names>S. L.</given-names>
</name>
<name>
<surname>Ryabin</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Hartmann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hollister</surname>
<given-names>E. B.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities</article-title>
.
<source>Appl. Environ. Microbiol</source>
.
<volume>75</volume>
,
<fpage>7537</fpage>
<lpage>7541</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.01541-09</pub-id>
<pub-id pub-id-type="pmid">19801464</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmitt</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Angermeier</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Schiller</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lindquist</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Hentschel</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts</article-title>
.
<source>Appl. Environ. Microbiol</source>
.
<volume>74</volume>
,
<fpage>7694</fpage>
<lpage>7708</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.00878-08</pub-id>
<pub-id pub-id-type="pmid">18820053</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmitt</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bell</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fromont</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ilan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lindquist</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges</article-title>
.
<source>ISME J</source>
.
<volume>6</volume>
,
<fpage>564</fpage>
<lpage>576</lpage>
.
<pub-id pub-id-type="doi">10.1038/ismej.2011.116</pub-id>
<pub-id pub-id-type="pmid">21993395</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schöttner</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Cárdenas</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Rapp</surname>
<given-names>H. T.</given-names>
</name>
<name>
<surname>Boetius</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ramette</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges</article-title>
.
<source>PLoS ONE</source>
<volume>8</volume>
:
<fpage>e55505</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0055505</pub-id>
<pub-id pub-id-type="pmid">23393586</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simister</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Deines</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Botté</surname>
<given-names>E. S.</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>N. S.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>M. W.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms</article-title>
.
<source>Environ. Microbiol</source>
.
<volume>14</volume>
,
<fpage>517</fpage>
<lpage>524</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1462-2920.2011.02664.x</pub-id>
<pub-id pub-id-type="pmid">22151434</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sogin</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Morrison</surname>
<given-names>H. G.</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Welch</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Huse</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Neal</surname>
<given-names>P. R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Microbial diversity in the deep sea and the underexplored “rare biosphere.”</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A</source>
.
<volume>103</volume>
,
<fpage>12115</fpage>
<lpage>12120</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0605127103</pub-id>
<pub-id pub-id-type="pmid">16880384</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>M. W.</given-names>
</name>
<name>
<surname>Radax</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Steger</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Sponge associated microorganisms: evolution, ecology, and biotechnological potential</article-title>
.
<source>Microbiol. Mol. Biol. Rev</source>
.
<volume>71</volume>
,
<fpage>295</fpage>
<lpage>347</lpage>
.
<pub-id pub-id-type="doi">10.1128/MMBR.00040-06</pub-id>
<pub-id pub-id-type="pmid">17554047</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>M. W.</given-names>
</name>
<name>
<surname>Schupp</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Dahllöf</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kjelleberg</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Steinberg</surname>
<given-names>P. D.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity</article-title>
.
<source>Environ. Microbiol</source>
.
<volume>6</volume>
,
<fpage>121</fpage>
<lpage>130</lpage>
.
<pub-id pub-id-type="doi">10.1046/j.1462-2920.2003.00545.x</pub-id>
<pub-id pub-id-type="pmid">14756877</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>M. W.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Simister</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Deines</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Botte</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ericson</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>‘Sponge-specific’ bacteria are widespread (but rare) in diverse marine environments</article-title>
.
<source>ISME J</source>
.
<volume>7</volume>
,
<fpage>438</fpage>
<lpage>443</lpage>
.
<pub-id pub-id-type="doi">10.1038/ismej.2012.111</pub-id>
<pub-id pub-id-type="pmid">23038173</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thacker</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>C. J.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Sponge-microbe symbioses: recent advances and new directions</article-title>
.
<source>Adv. Mar. Biol</source>
.
<volume>62</volume>
,
<fpage>57</fpage>
<lpage>112</lpage>
.
<pub-id pub-id-type="doi">10.1016/B978-0-12-394283-8.00002-3</pub-id>
<pub-id pub-id-type="pmid">22664121</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thiel</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Leininger</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Schmaljohann</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Brümmer</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Imhoff</surname>
<given-names>J. F.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Sponge-specific bacterial associations of the Mediterranean sponge
<italic>Chondrilla nucula</italic>
(Demospongiae, Tetractinomorpha)</article-title>
.
<source>Microb. Ecol</source>
.
<volume>54</volume>
,
<fpage>101</fpage>
<lpage>111</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00248-006-9177-y</pub-id>
<pub-id pub-id-type="pmid">17364249</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Soest</surname>
<given-names>R. W. M.</given-names>
</name>
<name>
<surname>Boury-Esnault</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Vacelet</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dohrmann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Erpenbeck</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>De Voogd</surname>
<given-names>N. J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Global diversity of sponges (Porifera)</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
:
<fpage>e35105</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0035105</pub-id>
<pub-id pub-id-type="pmid">22558119</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webster</surname>
<given-names>N. S.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>M. W.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Marine sponges and their microbial symbionts: love and other relationships</article-title>
.
<source>Environ. Microbiol</source>
.
<volume>14</volume>
,
<fpage>335</fpage>
<lpage>346</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1462-2920.2011.02460.x</pub-id>
<pub-id pub-id-type="pmid">21443739</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webster</surname>
<given-names>N. S.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>M. W.</given-names>
</name>
<name>
<surname>Behnam</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Lücker</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rattei</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Whalan</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts</article-title>
.
<source>Environ. Microbiol</source>
.
<volume>12</volume>
,
<fpage>2070</fpage>
<lpage>2082</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1462-2920.2009.02065.x</pub-id>
<pub-id pub-id-type="pmid">21966903</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weisz</surname>
<given-names>J. B.</given-names>
</name>
<name>
<surname>Lindquist</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Martens</surname>
<given-names>C. S.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Do associated microbial abundances impact marine demosponge pumping rates and tissue densities?</article-title>
<source>Oecologia</source>
<volume>155</volume>
,
<fpage>367</fpage>
<lpage>376</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00442-007-0910-0</pub-id>
<pub-id pub-id-type="pmid">18030495</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weisz</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hentschel</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Lindquist</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Martens</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges</article-title>
.
<source>Mar. Biol</source>
.
<volume>152</volume>
,
<fpage>475</fpage>
<lpage>483</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00227-007-0708-y</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ottesen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Arce</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Blackwelder</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lopez</surname>
<given-names>J. V.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Pyrosequencing of bacterial symbionts within
<italic>Axinella corrugata</italic>
sponges: diversity and seasonal variability</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
:
<fpage>e38204</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0038204</pub-id>
<pub-id pub-id-type="pmid">22701613</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000536 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000536 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4201110
   |texte=   Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25368606" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CyberinfraV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024