Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Generalized Manning Condensation Model Captures the RNA Ion Atmosphere

Identifieur interne : 000425 ( Pmc/Corpus ); précédent : 000424; suivant : 000426

Generalized Manning Condensation Model Captures the RNA Ion Atmosphere

Auteurs : Ryan L. Hayes ; Jeffrey K. Noel ; Ana Mandic ; Paul C. Whitford ; Karissa Y. Sanbonmatsu ; Udayan Mohanty ; José N. Onuchic

Source :

RBID : PMC:4833092

Abstract

RNA is highly sensitive to the ionic environment, and typically requires Mg2+ to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molecular dynamics simulation. The model treats Mg2+ ions explicitly to account for ion-ion correlations neglected by mean field theories. Since mean-field theories capture KCl well, it is treated implicitly by a generalized Manning counterion condensation model. The model extends Manning condensation to deal with arbitrary RNA conformations, non-limiting KCl concentrations, and the ion inaccessible volume of RNA. The model is tested against experimental measurements of the excess Mg2+ associated with the RNA, Γ2+, because Γ2+ is directly related to the Mg2+-RNA interaction free energy. The excellent agreement with experiment demonstrates the model captures the ionic dependence of the RNA free energy landscape.


Url:
DOI: 10.1103/PhysRevLett.114.258105
PubMed: 26197147
PubMed Central: 4833092

Links to Exploration step

PMC:4833092

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Generalized Manning Condensation Model Captures the RNA Ion Atmosphere</title>
<author>
<name sortKey="Hayes, Ryan L" sort="Hayes, Ryan L" uniqKey="Hayes R" first="Ryan L." last="Hayes">Ryan L. Hayes</name>
<affiliation>
<nlm:aff id="A1">Center for Theoretical Biological Physics and Department of Physics & Astronomy, Rice University, Houston, TX</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Noel, Jeffrey K" sort="Noel, Jeffrey K" uniqKey="Noel J" first="Jeffrey K." last="Noel">Jeffrey K. Noel</name>
<affiliation>
<nlm:aff id="A1">Center for Theoretical Biological Physics and Department of Physics & Astronomy, Rice University, Houston, TX</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mandic, Ana" sort="Mandic, Ana" uniqKey="Mandic A" first="Ana" last="Mandic">Ana Mandic</name>
<affiliation>
<nlm:aff id="A2">Department of Biomedical Engineering, University of Houston, Houston, TX</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Whitford, Paul C" sort="Whitford, Paul C" uniqKey="Whitford P" first="Paul C." last="Whitford">Paul C. Whitford</name>
<affiliation>
<nlm:aff id="A3">Department of Physics, Northeastern University, Boston, MA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sanbonmatsu, Karissa Y" sort="Sanbonmatsu, Karissa Y" uniqKey="Sanbonmatsu K" first="Karissa Y." last="Sanbonmatsu">Karissa Y. Sanbonmatsu</name>
<affiliation>
<nlm:aff id="A4">Theoretic Biology and Biophysics, Theoretic Division, Los Alamos National Labs, Los Alamos, NM</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mohanty, Udayan" sort="Mohanty, Udayan" uniqKey="Mohanty U" first="Udayan" last="Mohanty">Udayan Mohanty</name>
<affiliation>
<nlm:aff id="A5">Department of Chemistry, Boston College, Chestnut Hill, MA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Onuchic, Jose N" sort="Onuchic, Jose N" uniqKey="Onuchic J" first="José N." last="Onuchic">José N. Onuchic</name>
<affiliation>
<nlm:aff id="A1">Center for Theoretical Biological Physics and Department of Physics & Astronomy, Rice University, Houston, TX</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26197147</idno>
<idno type="pmc">4833092</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833092</idno>
<idno type="RBID">PMC:4833092</idno>
<idno type="doi">10.1103/PhysRevLett.114.258105</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000425</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Generalized Manning Condensation Model Captures the RNA Ion Atmosphere</title>
<author>
<name sortKey="Hayes, Ryan L" sort="Hayes, Ryan L" uniqKey="Hayes R" first="Ryan L." last="Hayes">Ryan L. Hayes</name>
<affiliation>
<nlm:aff id="A1">Center for Theoretical Biological Physics and Department of Physics & Astronomy, Rice University, Houston, TX</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Noel, Jeffrey K" sort="Noel, Jeffrey K" uniqKey="Noel J" first="Jeffrey K." last="Noel">Jeffrey K. Noel</name>
<affiliation>
<nlm:aff id="A1">Center for Theoretical Biological Physics and Department of Physics & Astronomy, Rice University, Houston, TX</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mandic, Ana" sort="Mandic, Ana" uniqKey="Mandic A" first="Ana" last="Mandic">Ana Mandic</name>
<affiliation>
<nlm:aff id="A2">Department of Biomedical Engineering, University of Houston, Houston, TX</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Whitford, Paul C" sort="Whitford, Paul C" uniqKey="Whitford P" first="Paul C." last="Whitford">Paul C. Whitford</name>
<affiliation>
<nlm:aff id="A3">Department of Physics, Northeastern University, Boston, MA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sanbonmatsu, Karissa Y" sort="Sanbonmatsu, Karissa Y" uniqKey="Sanbonmatsu K" first="Karissa Y." last="Sanbonmatsu">Karissa Y. Sanbonmatsu</name>
<affiliation>
<nlm:aff id="A4">Theoretic Biology and Biophysics, Theoretic Division, Los Alamos National Labs, Los Alamos, NM</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mohanty, Udayan" sort="Mohanty, Udayan" uniqKey="Mohanty U" first="Udayan" last="Mohanty">Udayan Mohanty</name>
<affiliation>
<nlm:aff id="A5">Department of Chemistry, Boston College, Chestnut Hill, MA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Onuchic, Jose N" sort="Onuchic, Jose N" uniqKey="Onuchic J" first="José N." last="Onuchic">José N. Onuchic</name>
<affiliation>
<nlm:aff id="A1">Center for Theoretical Biological Physics and Department of Physics & Astronomy, Rice University, Houston, TX</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physical review letters</title>
<idno type="ISSN">0031-9007</idno>
<idno type="eISSN">1079-7114</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">RNA is highly sensitive to the ionic environment, and typically requires Mg
<sup>2+</sup>
to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molecular dynamics simulation. The model treats Mg
<sup>2+</sup>
ions explicitly to account for ion-ion correlations neglected by mean field theories. Since mean-field theories capture KCl well, it is treated implicitly by a generalized Manning counterion condensation model. The model extends Manning condensation to deal with arbitrary RNA conformations, non-limiting KCl concentrations, and the ion inaccessible volume of RNA. The model is tested against experimental measurements of the excess Mg
<sup>2+</sup>
associated with the RNA, Γ
<sub>2+</sub>
, because Γ
<sub>2+</sub>
is directly related to the Mg
<sup>2+</sup>
-RNA interaction free energy. The excellent agreement with experiment demonstrates the model captures the ionic dependence of the RNA free energy landscape.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">0401141</journal-id>
<journal-id journal-id-type="pubmed-jr-id">21217</journal-id>
<journal-id journal-id-type="nlm-ta">Phys Rev Lett</journal-id>
<journal-id journal-id-type="iso-abbrev">Phys. Rev. Lett.</journal-id>
<journal-title-group>
<journal-title>Physical review letters</journal-title>
</journal-title-group>
<issn pub-type="ppub">0031-9007</issn>
<issn pub-type="epub">1079-7114</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26197147</article-id>
<article-id pub-id-type="pmc">4833092</article-id>
<article-id pub-id-type="doi">10.1103/PhysRevLett.114.258105</article-id>
<article-id pub-id-type="manuscript">NIHMS755796</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Generalized Manning Condensation Model Captures the RNA Ion Atmosphere</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Hayes</surname>
<given-names>Ryan L.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Noel</surname>
<given-names>Jeffrey K.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mandic</surname>
<given-names>Ana</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Whitford</surname>
<given-names>Paul C.</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sanbonmatsu</surname>
<given-names>Karissa Y.</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mohanty</surname>
<given-names>Udayan</given-names>
</name>
<xref ref-type="aff" rid="A5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Onuchic</surname>
<given-names>José N.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Center for Theoretical Biological Physics and Department of Physics & Astronomy, Rice University, Houston, TX</aff>
<aff id="A2">
<label>2</label>
Department of Biomedical Engineering, University of Houston, Houston, TX</aff>
<aff id="A3">
<label>3</label>
Department of Physics, Northeastern University, Boston, MA</aff>
<aff id="A4">
<label>4</label>
Theoretic Biology and Biophysics, Theoretic Division, Los Alamos National Labs, Los Alamos, NM</aff>
<aff id="A5">
<label>5</label>
Department of Chemistry, Boston College, Chestnut Hill, MA</aff>
<pub-date pub-type="nihms-submitted">
<day>4</day>
<month>3</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>26</day>
<month>6</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<day>26</day>
<month>6</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>15</day>
<month>4</month>
<year>2016</year>
</pub-date>
<volume>114</volume>
<issue>25</issue>
<fpage>258105</fpage>
<lpage>258105</lpage>
<pmc-comment>elocation-id from pubmed: 10.1103/PhysRevLett.114.258105</pmc-comment>
<abstract>
<p id="P1">RNA is highly sensitive to the ionic environment, and typically requires Mg
<sup>2+</sup>
to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molecular dynamics simulation. The model treats Mg
<sup>2+</sup>
ions explicitly to account for ion-ion correlations neglected by mean field theories. Since mean-field theories capture KCl well, it is treated implicitly by a generalized Manning counterion condensation model. The model extends Manning condensation to deal with arbitrary RNA conformations, non-limiting KCl concentrations, and the ion inaccessible volume of RNA. The model is tested against experimental measurements of the excess Mg
<sup>2+</sup>
associated with the RNA, Γ
<sub>2+</sub>
, because Γ
<sub>2+</sub>
is directly related to the Mg
<sup>2+</sup>
-RNA interaction free energy. The excellent agreement with experiment demonstrates the model captures the ionic dependence of the RNA free energy landscape.</p>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000425 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000425 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4833092
   |texte=   Generalized Manning Condensation Model Captures the RNA Ion Atmosphere
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26197147" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CyberinfraV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024