Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000310 ( Pmc/Corpus ); précédent : 0003099; suivant : 0003110 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling of Peptide Adsorption Interactions with a Poly(lactic acid) Surface</title>
<author>
<name sortKey="O Brien, C P" sort="O Brien, C P" uniqKey="O Brien C" first="C. P." last="O'Brien">C. P. O'Brien</name>
</author>
<author>
<name sortKey="Stuart, S J" sort="Stuart, S J" uniqKey="Stuart S" first="S. J." last="Stuart">S. J. Stuart</name>
</author>
<author>
<name sortKey="Bruce, D A" sort="Bruce, D A" uniqKey="Bruce D" first="D. A." last="Bruce">D. A. Bruce</name>
</author>
<author>
<name sortKey="Latour, R A" sort="Latour, R A" uniqKey="Latour R" first="R. A." last="Latour">R. A. Latour</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19360943</idno>
<idno type="pmc">2771889</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771889</idno>
<idno type="RBID">PMC:2771889</idno>
<date when="2008">2008</date>
<idno type="wicri:Area/Pmc/Corpus">000310</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Modeling of Peptide Adsorption Interactions with a Poly(lactic acid) Surface</title>
<author>
<name sortKey="O Brien, C P" sort="O Brien, C P" uniqKey="O Brien C" first="C. P." last="O'Brien">C. P. O'Brien</name>
</author>
<author>
<name sortKey="Stuart, S J" sort="Stuart, S J" uniqKey="Stuart S" first="S. J." last="Stuart">S. J. Stuart</name>
</author>
<author>
<name sortKey="Bruce, D A" sort="Bruce, D A" uniqKey="Bruce D" first="D. A." last="Bruce">D. A. Bruce</name>
</author>
<author>
<name sortKey="Latour, R A" sort="Latour, R A" uniqKey="Latour R" first="R. A." last="Latour">R. A. Latour</name>
</author>
</analytic>
<series>
<title level="j">Langmuir : the ACS journal of surfaces and colloids</title>
<idno type="ISSN">0743-7463</idno>
<idno type="eISSN">1520-5827</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">The biocompatibility of implanted materials and devices is governed by the conformation, orientation, and composition of the layer of proteins that adsorb to the surface of the material immediately upon implantation, so an understanding of this adsorbed protein layer is essential to the rigorous and methodical design of implant materials. In this study, novel molecular dynamics techniques were employed in order to determine the change in free energy for the adsorption of a solvated nine-residue peptide (GGGG-K-GGGG) to a crystalline polylactide surface in an effort to elucidate the fundamental mechanisms that govern protein adsorption. This system, like many others, involves two distinct types of sampling problems: a spatial sampling problem, which arises due to entropic effects creating barriers in the free energy profile, and a conformational sampling problem, which occurs due to barriers in the potential energy landscape. In a two-step process that addresses each sampling problem in turn, the technique of biased replica exchange molecular dynamics was refined and applied in order to overcome these sampling problems and, using the information available at the atomic level of detail afforded by molecular simulation, both quantify and characterize the interactions between the peptide and a relevant biomaterial surface. The results from these simulations predict a fairly strong adsorption response with an adsorption free energy of -2.5 ± 0.6 kcal/mol (mean ±95% confidence interval), with adsorption primarily due to hydrophobic interactions between the nonpolar groups of the peptide and the PLA surface. As part of a larger and ongoing effort involving both simulation and experimental investigations, this work contributes to the goal of transforming the engineering of biomaterials from one dominated by trial-and-error to one which is guided by an atomic-level understanding of the interactions that occur at the tissue-biomaterial interface.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">9882736</journal-id>
<journal-id journal-id-type="pubmed-jr-id">22883</journal-id>
<journal-id journal-id-type="nlm-ta">Langmuir</journal-id>
<journal-title>Langmuir : the ACS journal of surfaces and colloids</journal-title>
<issn pub-type="ppub">0743-7463</issn>
<issn pub-type="epub">1520-5827</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19360943</article-id>
<article-id pub-id-type="pmc">2771889</article-id>
<article-id pub-id-type="manuscript">NIHMS86484</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Modeling of Peptide Adsorption Interactions with a Poly(lactic acid) Surface</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>O'Brien</surname>
<given-names>C. P.</given-names>
</name>
<aff id="A1">Department of Bioengineering, Clemson University</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stuart</surname>
<given-names>S. J.</given-names>
</name>
<aff id="A2">Department of Chemistry, Clemson University</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bruce</surname>
<given-names>D. A.</given-names>
</name>
<aff id="A3">Department of Chemical and Biomolecular Engineering, Clemson University</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Latour</surname>
<given-names>R. A.</given-names>
</name>
<aff id="A4">Department of Bioengineering, Clemson University</aff>
</contrib>
</contrib-group>
<pub-date pub-type="nihms-submitted">
<day>8</day>
<month>1</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="ppub">
<day>16</day>
<month>12</month>
<year>2008</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>16</day>
<month>12</month>
<year>2009</year>
</pub-date>
<volume>24</volume>
<issue>24</issue>
<fpage>14115</fpage>
<lpage>14124</lpage>
<abstract>
<p id="P1">The biocompatibility of implanted materials and devices is governed by the conformation, orientation, and composition of the layer of proteins that adsorb to the surface of the material immediately upon implantation, so an understanding of this adsorbed protein layer is essential to the rigorous and methodical design of implant materials. In this study, novel molecular dynamics techniques were employed in order to determine the change in free energy for the adsorption of a solvated nine-residue peptide (GGGG-K-GGGG) to a crystalline polylactide surface in an effort to elucidate the fundamental mechanisms that govern protein adsorption. This system, like many others, involves two distinct types of sampling problems: a spatial sampling problem, which arises due to entropic effects creating barriers in the free energy profile, and a conformational sampling problem, which occurs due to barriers in the potential energy landscape. In a two-step process that addresses each sampling problem in turn, the technique of biased replica exchange molecular dynamics was refined and applied in order to overcome these sampling problems and, using the information available at the atomic level of detail afforded by molecular simulation, both quantify and characterize the interactions between the peptide and a relevant biomaterial surface. The results from these simulations predict a fairly strong adsorption response with an adsorption free energy of -2.5 ± 0.6 kcal/mol (mean ±95% confidence interval), with adsorption primarily due to hydrophobic interactions between the nonpolar groups of the peptide and the PLA surface. As part of a larger and ongoing effort involving both simulation and experimental investigations, this work contributes to the goal of transforming the engineering of biomaterials from one dominated by trial-and-error to one which is guided by an atomic-level understanding of the interactions that occur at the tissue-biomaterial interface.</p>
</abstract>
<contract-num rid="GM1">R01 GM074511-03 ||GM</contract-num>
<contract-num rid="EB1">R01 EB006163-03 ||EB</contract-num>
<contract-num rid="EB1">P41 EB001046-06 ||EB</contract-num>
<contract-sponsor id="GM1">National Institute of General Medical Sciences : NIGMS</contract-sponsor>
<contract-sponsor id="EB1">National Institute of Biomedical Imaging and Bioengineering : NIBIB</contract-sponsor>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000310  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000310  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024