Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Data and monitoring needs for a more ecological agriculture

Identifieur interne : 000628 ( Istex/Corpus ); précédent : 000627; suivant : 000629

Data and monitoring needs for a more ecological agriculture

Auteurs : David P M. Zaks ; Christopher J. Kucharik

Source :

RBID : ISTEX:092840B4C18A423F07516A4364E2462EA5F2942D

Abstract

Information on the life-cycle environmental impacts of agricultural production is oftenlimited. As demands grow for increasing agricultural output while reducing its negativeenvironmental impacts, both existing and novel data sources can be leveraged to providemore information to producers, consumers, scientists and policy makers. We review thecomponents and organization of an agroecological sensor web that integrates remotesensing technologies and in situ sensors with models in order to provide decisionmakers with effective management options at useful spatial and temporal scales formaking more informed decisions about agricultural productivity while reducingenvironmental burdens. Several components of the system are already in place, but byincreasing the extent and accessibility of information, decision makers will have theopportunity to enhance food security and environmental quality. Potential roadblocks toimplementation include farmer acceptance, data transparency and technology deployment.

Url:
DOI: 10.1088/1748-9326/6/1/014017

Links to Exploration step

ISTEX:092840B4C18A423F07516A4364E2462EA5F2942D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Data and monitoring needs for a more ecological agriculture</title>
<author>
<name sortKey="Zaks, David P M" sort="Zaks, David P M" uniqKey="Zaks D" first="David P M" last="Zaks">David P M. Zaks</name>
<affiliation>
<mods:affiliation>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of WisconsinMadison, 1710 University Avenue, Madison, WI 53726, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Author to whom any correspondence should be addressed</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: zaks@wisc.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: davidzaks@gmail.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kucharik, Christopher J" sort="Kucharik, Christopher J" uniqKey="Kucharik C" first="Christopher J" last="Kucharik">Christopher J. Kucharik</name>
<affiliation>
<mods:affiliation>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of WisconsinMadison, 1710 University Avenue, Madison, WI 53726, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Agronomy, University of WisconsinMadison, 1575 Linden Drive, Madison, WI53706, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:092840B4C18A423F07516A4364E2462EA5F2942D</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1088/1748-9326/6/1/014017</idno>
<idno type="url">https://api.istex.fr/document/092840B4C18A423F07516A4364E2462EA5F2942D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000628</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Data and monitoring needs for a more ecological agriculture</title>
<author>
<name sortKey="Zaks, David P M" sort="Zaks, David P M" uniqKey="Zaks D" first="David P M" last="Zaks">David P M. Zaks</name>
<affiliation>
<mods:affiliation>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of WisconsinMadison, 1710 University Avenue, Madison, WI 53726, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Author to whom any correspondence should be addressed</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: zaks@wisc.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: davidzaks@gmail.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kucharik, Christopher J" sort="Kucharik, Christopher J" uniqKey="Kucharik C" first="Christopher J" last="Kucharik">Christopher J. Kucharik</name>
<affiliation>
<mods:affiliation>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of WisconsinMadison, 1710 University Avenue, Madison, WI 53726, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Agronomy, University of WisconsinMadison, 1575 Linden Drive, Madison, WI53706, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Environmental Research Letters</title>
<title level="j" type="abbrev">Environ. Res. Lett.</title>
<idno type="ISSN">1748-9326</idno>
<idno type="eISSN">1748-9326</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2011">2011</date>
<biblScope unit="volume">6</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="10">10</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
<idno type="ISSN">1748-9326</idno>
</series>
<idno type="istex">092840B4C18A423F07516A4364E2462EA5F2942D</idno>
<idno type="DOI">10.1088/1748-9326/6/1/014017</idno>
<idno type="PII">S1748-9326(11)74549-9</idno>
<idno type="articleID">374549</idno>
<idno type="articleNumber">014017</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1748-9326</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Information on the life-cycle environmental impacts of agricultural production is oftenlimited. As demands grow for increasing agricultural output while reducing its negativeenvironmental impacts, both existing and novel data sources can be leveraged to providemore information to producers, consumers, scientists and policy makers. We review thecomponents and organization of an agroecological sensor web that integrates remotesensing technologies and in situ sensors with models in order to provide decisionmakers with effective management options at useful spatial and temporal scales formaking more informed decisions about agricultural productivity while reducingenvironmental burdens. Several components of the system are already in place, but byincreasing the extent and accessibility of information, decision makers will have theopportunity to enhance food security and environmental quality. Potential roadblocks toimplementation include farmer acceptance, data transparency and technology deployment.</div>
</front>
</TEI>
<istex>
<corpusName>iop</corpusName>
<author>
<json:item>
<name>David P M Zaks</name>
<affiliations>
<json:string>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of WisconsinMadison, 1710 University Avenue, Madison, WI 53726, USA</json:string>
<json:string>Author to whom any correspondence should be addressed</json:string>
<json:string>E-mail: zaks@wisc.edu</json:string>
<json:string>E-mail: davidzaks@gmail.com</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christopher J Kucharik</name>
<affiliations>
<json:string>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of WisconsinMadison, 1710 University Avenue, Madison, WI 53726, USA</json:string>
<json:string>Department of Agronomy, University of WisconsinMadison, 1575 Linden Drive, Madison, WI53706, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>agriculture</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>environmental monitoring</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>science policy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>agroecology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>food security</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>letter</json:string>
</originalGenre>
<abstract>Information on the life-cycle environmental impacts of agricultural production is oftenlimited. As demands grow for increasing agricultural output while reducing its negativeenvironmental impacts, both existing and novel data sources can be leveraged to providemore information to producers, consumers, scientists and policy makers. We review thecomponents and organization of an agroecological sensor web that integrates remotesensing technologies and in situ sensors with models in order to provide decisionmakers with effective management options at useful spatial and temporal scales formaking more informed decisions about agricultural productivity while reducingenvironmental burdens. Several components of the system are already in place, but byincreasing the extent and accessibility of information, decision makers will have theopportunity to enhance food security and environmental quality. Potential roadblocks toimplementation include farmer acceptance, data transparency and technology deployment.</abstract>
<qualityIndicators>
<score>7.024</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1010</abstractCharCount>
<pdfWordCount>7568</pdfWordCount>
<pdfCharCount>48514</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>127</abstractWordCount>
</qualityIndicators>
<title>Data and monitoring needs for a more ecological agriculture</title>
<pii>
<json:string>S1748-9326(11)74549-9</json:string>
</pii>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>6</volume>
<publisherId>
<json:string>erl</json:string>
</publisherId>
<pages>
<total>10</total>
<last>10</last>
<first>1</first>
</pages>
<issn>
<json:string>1748-9326</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1748-9326</json:string>
</eissn>
<title>Environmental Research Letters</title>
</host>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1088/1748-9326/6/1/014017</json:string>
</doi>
<id>092840B4C18A423F07516A4364E2462EA5F2942D</id>
<score>0.11263665</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/092840B4C18A423F07516A4364E2462EA5F2942D/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/092840B4C18A423F07516A4364E2462EA5F2942D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/092840B4C18A423F07516A4364E2462EA5F2942D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Data and monitoring needs for a more ecological agriculture</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>IOP Publishing</publisher>
<availability>
<p>IOP Publishing Ltd</p>
</availability>
<date>2011</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Data and monitoring needs for a more ecological agriculture</title>
<author xml:id="author-1">
<persName>
<forename type="first">David P M</forename>
<surname>Zaks</surname>
</persName>
<email>zaks@wisc.edu</email>
<email>davidzaks@gmail.com</email>
<affiliation>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of WisconsinMadison, 1710 University Avenue, Madison, WI 53726, USA</affiliation>
<affiliation>Author to whom any correspondence should be addressed</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Christopher J</forename>
<surname>Kucharik</surname>
</persName>
<affiliation>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of WisconsinMadison, 1710 University Avenue, Madison, WI 53726, USA</affiliation>
<affiliation>Department of Agronomy, University of WisconsinMadison, 1575 Linden Drive, Madison, WI53706, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Environmental Research Letters</title>
<title level="j" type="abbrev">Environ. Res. Lett.</title>
<idno type="pISSN">1748-9326</idno>
<idno type="eISSN">1748-9326</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2011"></date>
<biblScope unit="volume">6</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="10">10</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
</monogr>
<idno type="istex">092840B4C18A423F07516A4364E2462EA5F2942D</idno>
<idno type="DOI">10.1088/1748-9326/6/1/014017</idno>
<idno type="PII">S1748-9326(11)74549-9</idno>
<idno type="articleID">374549</idno>
<idno type="articleNumber">014017</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Information on the life-cycle environmental impacts of agricultural production is oftenlimited. As demands grow for increasing agricultural output while reducing its negativeenvironmental impacts, both existing and novel data sources can be leveraged to providemore information to producers, consumers, scientists and policy makers. We review thecomponents and organization of an agroecological sensor web that integrates remotesensing technologies and in situ sensors with models in order to provide decisionmakers with effective management options at useful spatial and temporal scales formaking more informed decisions about agricultural productivity while reducingenvironmental burdens. Several components of the system are already in place, but byincreasing the extent and accessibility of information, decision makers will have theopportunity to enhance food security and environmental quality. Potential roadblocks toimplementation include farmer acceptance, data transparency and technology deployment.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>agriculture</term>
</item>
<item>
<term>environmental monitoring</term>
</item>
<item>
<term>science policy</term>
</item>
<item>
<term>agroecology</term>
</item>
<item>
<term>food security</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/092840B4C18A423F07516A4364E2462EA5F2942D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus iop not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="ISO-8859-1"</istex:xmlDeclaration>
<istex:docType SYSTEM="http://ej.iop.org/dtd/iopv1_5_2.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article artid="erl374549">
<article-metadata>
<jnl-data jnlid="erl">
<jnl-fullname>Environmental Research Letters</jnl-fullname>
<jnl-abbreviation>Environ. Res. Lett.</jnl-abbreviation>
<jnl-shortname>ERL</jnl-shortname>
<jnl-issn>1748-9326</jnl-issn>
<jnl-coden>ERLNAL</jnl-coden>
<jnl-imprint>IOP Publishing</jnl-imprint>
<jnl-web-address>stacks.iop.org/ERL</jnl-web-address>
</jnl-data>
<volume-data>
<year-publication>2011</year-publication>
<volume-number>6</volume-number>
</volume-data>
<issue-data>
<issue-number>1</issue-number>
<coverdate>January-March 2011</coverdate>
</issue-data>
<article-data>
<article-type type="letter" sort="regular"></article-type>
<type-number type="letter" numbering="article" artnum="014017"></type-number>
<article-number>374549</article-number>
<first-page>1</first-page>
<last-page>10</last-page>
<length>10</length>
<pii>S1748-9326(11)74549-9</pii>
<doi>10.1088/1748-9326/6/1/014017</doi>
<copyright>IOP Publishing Ltd</copyright>
<ccc>1748-9326/11/014017 + 10$33.00</ccc>
<printed>Printed in the UK</printed>
</article-data>
</article-metadata>
<header>
<title-group>
<title>Data and monitoring needs for a more ecological agriculture</title>
<short-title>Data and monitoring needs for a more ecological agriculture </short-title>
<ej-title>Data and monitoring needs for a more ecological agriculture </ej-title>
</title-group>
<author-group>
<author address="erl374549ad1" alt-address="erl374549ad3" email="erl374549ea1 erl374549ea2">
<first-names>David P M</first-names>
<second-name>Zaks</second-name>
</author>
<author address="erl374549ad1 erl374549ad2">
<first-names>Christopher J</first-names>
<second-name>Kucharik</second-name>
</author>
<short-author-list>D P M Zaks and C J Kucharik</short-author-list>
</author-group>
<address-group>
<address id="erl374549ad1">
<orgname>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of Wisconsin–Madison</orgname>
, 1710 University Avenue, Madison, WI 53726,
<country>USA</country>
</address>
<address id="erl374549ad2">
<orgname>Department of Agronomy, University of Wisconsin–Madison</orgname>
, 1575 Linden Drive, Madison, WI 53706,
<country>USA</country>
</address>
<address id="erl374549ad3" alt="yes">Author to whom any correspondence should be addressed</address>
<e-address id="erl374549ea1">
<email mailto="zaks@wisc.edu">zaks@wisc.edu</email>
</e-address>
<e-address id="erl374549ea2">
<email mailto="davidzaks@gmail.com">davidzaks@gmail.com</email>
</e-address>
</address-group>
<history received="10 November 2010" accepted="7 March 2011" online="24 March 2011"></history>
<abstract-group>
<abstract>
<heading>Abstract</heading>
<p indent="no">Information on the life-cycle environmental impacts of agricultural production is often limited. As demands grow for increasing agricultural output while reducing its negative environmental impacts, both existing and novel data sources can be leveraged to provide more information to producers, consumers, scientists and policy makers. We review the components and organization of an agroecological sensor web that integrates remote sensing technologies and
<italic>in situ</italic>
sensors with models in order to provide decision makers with effective management options at useful spatial and temporal scales for making more informed decisions about agricultural productivity while reducing environmental burdens. Several components of the system are already in place, but by increasing the extent and accessibility of information, decision makers will have the opportunity to enhance food security and environmental quality. Potential roadblocks to implementation include farmer acceptance, data transparency and technology deployment.</p>
</abstract>
</abstract-group>
<classifications>
<keywords>
<keyword>agriculture</keyword>
<keyword>environmental monitoring</keyword>
<keyword>science policy</keyword>
<keyword>agroecology</keyword>
<keyword>food security</keyword>
</keywords>
</classifications>
</header>
<body refstyle="alphabetic">
<sec-level1 id="erl374549s1" label="1">
<heading>Introduction</heading>
<p indent="no">The global agricultural system has provided food, feed, fiber and fuel to a population that has quadrupled over the past century. While output of agricultural products has increased over time, so too have negative environmental impacts (
<cite linkend="erl374549bib53">MEA 2005</cite>
,
<cite linkend="erl374549bib28">Foley
<italic>et al</italic>
2005</cite>
). The market prices of most agricultural goods produced today do not reflect the life-cycle environmental impacts of production, transportation and consumption. Such information must be available if we are to have a more informed market, one that internalizes the environmental costs of agricultural production currently borne by society.</p>
<p>The challenge to provide for a larger, more affluent population in the coming decades while decreasing the environmental impacts of agriculture is increasingly clear to both scientists and policy makers (
<cite linkend="erl374549bib91">World Bank 2008</cite>
,
<cite linkend="erl374549bib27">Federoff
<italic>et al</italic>
2010</cite>
,
<cite linkend="erl374549bib33">Godfray
<italic>et al</italic>
2010</cite>
). Improved monitoring, cataloging, interpreting and dissemination of data about the status and trends of agroecosystems is needed if agricultural products are to be delivered with smaller environmental footprints and if their prices are to reflect the life-cycle costs of production.</p>
<p>Farmers and land managers have become the
<italic>de facto</italic>
managers of the largest anthrome, on earth—agroecosystems (
<cite linkend="erl374549bib24">Ellis and Ramankutty 2008</cite>
). Often they do not have the proper resources for managing agroecosystems to maximize productivity and deliver ecosystem services simultaneously. In most cases, farmers make management decisions based on assessment of local conditions, previous experience and desired outcomes. Their knowledge can be supplemented with management recommendations derived from satellites, on-the-ground sensors and computer models that monitor and help forecast environmental conditions and crop needs. These new observations are like an added ‘pair of eyes’ that can help improve management decisions (
<cite linkend="erl374549bib65">Porter
<italic>et al</italic>
2009</cite>
). Limited examples of this adaptive management cycle exist where precision agriculture (PA) tools have been adopted, but there is a need for improved monitoring and information dissemination infrastructure to aid in decision-making (
<cite linkend="erl374549bib12">Bramley 2009</cite>
,
<cite linkend="erl374549bib49">Lindenmayer and Likens 2010</cite>
).</p>
<p>While the whole structure of an improved agroecological monitoring system has yet to be designed, researchers in both public and private sectors are currently developing many elements. These elements bridge remote sensing and ground-based monitoring systems with real-time, smart, wireless, internet-connected sensor webs (
<cite linkend="erl374549bib72">Rundel
<italic>et al</italic>
2009</cite>
,
<cite linkend="erl374549bib1">Adamchuk
<italic>et al</italic>
2004</cite>
). New technologies can assist in analysis and reporting of spatial and temporal variability across the agroecological landscape, while models can be used to transform raw data into useful information assets in the decision-making process (
<cite linkend="erl374549bib51">McLaren
<italic>et al</italic>
2009</cite>
,
<cite linkend="erl374549bib35">Hale and Hollister 2009</cite>
). With these new data streams, systems must be designed to aggregate, coordinate, organize and synchronize within and between monitoring networks.</p>
<p>Expanding the current agroecological monitoring and analysis systems will not only require new technologies, but cooperation between governments, academia, private industries and farmers as well. Policy and economic incentives that explicitly value public goods will be vital to the success of any system. To overcome these challenges, an innovative multidisciplinary approach that leverages the available tools to deliver a more ecologically sound agriculture will be required. The momentum needed to implement this type of system can be initiated by policies to reduce the life-cycle impacts of agricultural production. This will require a more robust system to collect, analyze and disseminate data on the functioning of the agricultural system. Putting these data in the hands of decision makers has the potential to decrease environmental impact while increasing efficiency of production. In this context, we include a variety of actors in the term ‘decision maker’ whose choices can have an impact on the agroecological landscape.</p>
<p>There are many challenges related to sustainability to be addressed at the intersection of science, technology, agriculture, and policy. Availability of data on the dynamics of the agroecological system will be a necessary input toward information used in decision-making processes at the forefront of ensuring the sustainability of these systems. Here we review the state of on-going monitoring activities and propose pathways to implement an enhanced agroecological monitoring system that can assist producers, consumers, policy makers and scientists to make more informed decisions at the interface of the food system and environment.</p>
</sec-level1>
<sec-level1 id="erl374549s2" label="2">
<heading>Gaps in tools currently used to facilitate decisions in the agricultural sector</heading>
<p indent="no">Predicting the impact of the global food system on the environment requires data assets on system functioning, responses to change, and the potential impacts of management decisions. Development of extensive datasets and numerous models has been progressing, although enhancements in data collection methodology, aggregation and dissemination to decision makers at a range of scales are necessary to meet both production and environmental goals. Gaps in the patchwork of currently available data prohibit a broad evaluation of the current state and trends of environmental impacts from agriculture, and more effective responses could be implemented if adequately informed models and indicators were available to decision makers (
<cite linkend="erl374549bib58">O’Malley
<italic>et al</italic>
2009</cite>
). </p>
<sec-level2 id="erl374549s2.1" label="2.1">
<heading>Ground-based and remote data collection</heading>
<p indent="no">Observations of agroecosystems monitor changes in agricultural or ecosystem processes, but seldom both (
<cite linkend="erl374549bib50">Lovett
<italic>et al</italic>
2007</cite>
). Commonly collected production data include the crop type (
<cite linkend="erl374549bib52">McNairn
<italic>et al</italic>
2009</cite>
), phenology/crop progress (
<cite linkend="erl374549bib75">Sakamoto
<italic>et al</italic>
2005</cite>
), area covered (
<cite linkend="erl374549bib67">Ramankutty
<italic>et al</italic>
2008</cite>
), and yield (
<cite linkend="erl374549bib54">Monfreda
<italic>et al</italic>
2008</cite>
,
<cite linkend="erl374549bib90">Wang
<italic>et al</italic>
2010</cite>
,
<cite linkend="erl374549bib71">Ross
<italic>et al</italic>
2008</cite>
). The US Department of Agriculture’s Foreign Agriculture Service provides agrometeorological data through their Crop Explorer tool that integrates stations, models and satellites on a regional scale (USDA 2010). Other satellite systems, such as SPOT (Satellite Pour l’Observation de la Terre), can be contracted to provide imagery that assists in monitoring a range of agricultural parameters. The spatial and temporal scales at which remote sensing and ground-based monitoring are conducted are seldom coordinated, which can hamper efforts to synthesize crop data at regional and global scales.</p>
<p>Environmental field data most often collected include quantification of soil water (
<cite linkend="erl374549bib69">Robock
<italic>et al</italic>
2000</cite>
,
<cite linkend="erl374549bib92">Zhang
<italic>et al</italic>
2010</cite>
), greenhouse gases (
<cite linkend="erl374549bib5">Baldocchi 2008</cite>
,
<cite linkend="erl374549bib13">Bréon and Ciais 2010</cite>
) and nutrient cycling (
<cite linkend="erl374549bib7">Batjes 2009</cite>
). However, environmental data collection methods in agroecological landscapes vary based on the scale of interest and intended purpose. Irrigated areas can be detected from satellites, but on-farm water use data are best collected at the field scale. Fertilizer use (or run-off) can be calculated through production, sales data and application records, but these data are not often spatially referenced. Mapping of the global distribution of fertilized lands has only recently been accomplished (
<cite linkend="erl374549bib66">Potter
<italic>et al</italic>
2010</cite>
). Integrated monitoring of crop input needs and environmental variables is rarely undertaken in unison. A unified infrastructure of data assets has yet to emerge to organize the ongoing collection of ground-based and remotely sensed data. </p>
</sec-level2>
<sec-level2 id="erl374549s2.2" label="2.2">
<heading>Models</heading>
<p indent="no">Models are useful tools for synthesizing data, simulating the relationship between environmental conditions and agroecosystem variables, and exploring such scenarios as potential management decisions, climate change, increased atmospheric CO
<sub>2</sub>
, and their impacts. Model output can sometimes replace field data when data collection is too costly, impractical or time consuming. Models can also be used to project the end of season field conditions based on initialization with field data and scenarios of seasonal weather. Some models are designed on first principles and validated by field data, while others are designed to reproduce the variability seen in observations. Agronomic models that use input data (soils, climate, etc) in order to perform simulations rely both on the underlying structure of the model and on the quality of the input data. Therefore, if input data are limited or of poor quality, the model results may be inaccurate. Many models report a static set of results, but internet-based models can produce user-generated simulations on-the-fly (
<cite linkend="erl374549bib23">Eckman
<italic>et al</italic>
2009</cite>
).</p>
<p>There are three general modeling frameworks to simulate the components of the agricultural system that range in scale and complexity. Detailed crop models, like DSSAT (the Decision Support System for Agrotechnology Transfer), are used in both research and management activities (
<cite linkend="erl374549bib39">Jones
<italic>et al</italic>
2003</cite>
). Agroecosystem models, like Agro-IBIS (Integrated BIosphere Simulator) and LPJmL (Lund–Potsdam–Jena managed Land Dynamic Global Vegetation and Water Balance Model), incorporate crop specific modules into existing models designed to study the interactions of ecosystems with environmental drivers of change (
<cite linkend="erl374549bib47">Kucharik 2003</cite>
,
<cite linkend="erl374549bib11">Bondeau
<italic>et al</italic>
2007</cite>
). Integrated models, such as IMPACT (International Model for Policy Analysis of Agricultural Commodities and Trade) and BLS (Basic Linked System) World Food Model, incorporate socioeconomic parameters into environmental and agronomic relationships to simulate the broader food system (
<cite linkend="erl374549bib70">Rosegrant
<italic>et al</italic>
2008</cite>
,
<cite linkend="erl374549bib62">Parry
<italic>et al</italic>
2004</cite>
). Given this variety of tools, there are many opportunities to improve the data flow between agroecological sensors, models, and end-users. Tighter integration between models and decision support systems can provide added value to decision-making processes by providing timely, relevant information to the hands of decision makers. </p>
</sec-level2>
<sec-level2 id="erl374549s2.3" label="2.3">
<heading>Indicators</heading>
<p indent="no">In lieu of real-time data on the functioning of agroecosystems, a variety of indicators have been developed to relay information about the state of a system and how it might be changing. The
<cite linkend="erl374549bib36">Heinz Center (2008)</cite>
defines an indicator as ‘a specific, well-defined, and measurable variable that reflects some key characteristic that can be tracked through time to signal what is happening within and across ecosystems.’ These indicators include information on the extent, chemical, biological and physical characteristics, amongst other goods and services provided by agroecosystems. Data collected at various spatial and temporal scales are used as inputs for indicators, but the use of an indicator can mask the complexity of a system (
<cite linkend="erl374549bib63">Payraudeau and Van Der Werf 2005</cite>
). Current sets of indicators are useful, as they can assist in targeting regions and variables that are poorly monitored. The Heinz Center developed a thorough set of indicators for United States ecosystems, but adequate data existed to calculate only 30% of indicators, while another 30% had partial data, and 40% of indicators had insufficient data for calculation (
<cite linkend="erl374549bib36">Heinz Center 2008</cite>
). The Organisation for Economic Co-operation and Development (OECD) created a similar set of indicators for the
<cite linkend="erl374549bib36">Heinz Center (2008)</cite>
to provide information about the environmental performance of agriculture for their 30 member states (
<cite linkend="erl374549bib57">OECD 2001</cite>
). Of the 37 indicators they developed, only 20 (54 per cent) were deemed to be scientifically sound; on average, 18 of the 30 countries (60 per cent) had adequate data. The paucity of data available to activate indicators further highlights the need for improved data collection, standardization and distribution. </p>
</sec-level2>
</sec-level1>
<sec-level1 id="erl374549s3" label="3">
<heading>Improvements in agroecological monitoring systems</heading>
<p indent="no">Improved monitoring and integrated decision-making can help overcome many of the challenges that face the agroecological system. Many of these technologies are already available (
<cite linkend="erl374549bib32">Gebbers and Adamchuk 2010</cite>
), but have seldom been incorporated in a systematic manner. Benefits from enhanced observations are likely to emerge when monitoring networks, reporting across different spatial and temporal scales, are integrated so as to reveal novel system behaviors. We propose that relaying these data, trends and management recommendations to decision makers in the field, or those crafting policy can bring about a positive feedback loop which can help achieve desired production and environmental outcomes.</p>
<p>Agroecosystems not only have their own ecological behavior, they are embedded within ecologies at larger scales. We suggest that monitoring should encompass the nested scales at which decisions are made across agroecological systems. These systems respond to drivers across many dimensions of space and time; from daily variation in soil micronutrients within a field to changes in weather over days and seasons, and climatic changes over decades. Monitoring current conditions gives decision makers the ability to manage with greater precision, while documenting trends over a longer length of time can help reveal potential thresholds and discontinuities, and assist in both short-term forecasts (e.g. end of season yields) and long-term adaptations. On-farm monitoring systems and portable imaging systems should be able to capture differences within and between fields, while earth observing systems can obtain a broader perspective of changes. The integration of ground-based monitoring networks with remotely sensed data into Earth system models has the potential to offer added value to scientists and decision makers alike.</p>
<p>At the farm scale, data from enhanced monitoring will likely be used if it is presented in a form that is easily integrated into existing decision-making structures (
<cite linkend="erl374549bib44">Kitchen 2008</cite>
). If data from on-the-ground and remote systems is going to be utilized by several parties (e.g. farmers, scientists, policy makers, consumers), additional infrastructure will be needed to aggregate, process, model, store and disseminate data products. Wireless systems are already in place, at a small scale, to aggregate data from several monitors within a field (
<cite linkend="erl374549bib89">Wang
<italic>et al</italic>
2006</cite>
), and for satellite systems (
<cite linkend="erl374549bib22">Duveiller and Defourny 2010</cite>
). However, an integrated information infrastructure foundation will be needed to transform raw data into useful products, and thereby ensuring effectiveness. Standards-based data transfer protocols from Open Geospatial Consortium (
<cite linkend="erl374549bib55">Nash
<italic>et al</italic>
2009</cite>
,
<cite linkend="erl374549bib45">Kooistra
<italic>et al</italic>
2009</cite>
) have been developed to seamlessly integrate multiple data sources.</p>
<p>To be effective, an agroecological monitoring system must capture changes over a range of processes. While crops in different biomes have individual biotic and abiotic needs, a general framework for monitoring needs can still be assembled. Agricultural inputs including nutrients and water support productivity, which is usually measured as yield. Records of crop varieties, planting extent and timing are also useful to treat food security issues. Ecological indicators such as soil type and fertility and meteorological indicators such as solar radiation and humidity help us understand longer-term production and environmental changes.</p>
<p>These data are the basic building blocks needed to ensure that the timing, magnitude and location of management decisions have the desired agroecological outcomes. The spatial scale and frequency of data collection will vary depending on the needs of the manager, with more frequent temporal data and greater spatial resolution preferred. The regional to continental extent of monitoring activities must include well-managed, highly productive systems as well as those in sub-optimal locations or with limited management in order to capture the full range and responses of agronomic and environmental variables.</p>
<p>Environmental sensor technology has continued to improve because of increased availability and sensor capacity and decreased cost. Given the extensive nature of agriculture, sensors capable of providing data at spatial and temporal scales useful to on-the-ground managers have been increasingly adopted (
<cite linkend="erl374549bib48">Lamb
<italic>et al</italic>
2008</cite>
). These improved sensors take advantage of innovations in data collection technology, data transfer capabilities between sensors and to the internet, on-the-fly data processing, and renewable and energy efficiency technologies (e.g. 
<cite linkend="erl374549bib64">Pierce and Elliott 2008</cite>
,
<cite linkend="erl374549bib83">Sun
<italic>et al</italic>
2009</cite>
,
<cite linkend="erl374549bib17">Conover
<italic>et al</italic>
2009</cite>
). This portends reduced monitoring costs, increased data availability, better spatial and temporal measurement scales and the ability to monitor more components. </p>
<sec-level2 id="erl374549s3.1" label="3.1">
<heading>Soil physical and chemical properties</heading>
<p indent="no">Soil sensors to monitor nutrients, physical properties and sub-surface dynamics are already available. A range of sensors exist depending on the variable in question and includes electrical, optical, mechanical, acoustic, pneumatic and electrochemical types (
<cite linkend="erl374549bib1">Adamchuk
<italic>et al</italic>
2004</cite>
). Optical methods have shown the most promise for nutrient sensing (
<cite linkend="erl374549bib78">Sinfield
<italic>et al</italic>
2010</cite>
). Observation of the correlations between primary properties of optical sensing and quantities such as pH, cation exchange capacity and microbial activity have been documented (
<cite linkend="erl374549bib56">Nduwamungu
<italic>et al</italic>
2009</cite>
,
<cite linkend="erl374549bib2">Allen
<italic>et al</italic>
2007</cite>
). While the majority of soil sensors are ground-based, airborne hyperspectral imaging has been used to measure soil organic carbon (
<cite linkend="erl374549bib81">Stevens
<italic>et al</italic>
2010</cite>
). In comparison to traditional in-lab soil testing, these new approaches have been shown to reduce costs as much as 80% (
<cite linkend="erl374549bib56">Nduwamungu
<italic>et al</italic>
2009</cite>
,
<cite linkend="erl374549bib89">Wang
<italic>et al</italic>
2006</cite>
,
<cite linkend="erl374549bib43">Kim
<italic>et al</italic>
2009</cite>
), and do not require disturbing the soil structure (
<cite linkend="erl374549bib77">Serrano
<italic>et al</italic>
2010</cite>
). The accuracy of some measurements is not as great as their laboratory counterparts. For example,
<cite linkend="erl374549bib15">Christy (2008)</cite>
used an on-the-go near infrared reflectance spectroscopy sensor to map within-field soil organic matter with the laboratory measurements and sensor values that were in agreement with a RMSE of 0.52% and an
<italic>R</italic>
<sup>2</sup>
of 0.67. While not as accurate, the increase in sampling resolution, decrease in cost and synergy with other management activities has led to their increased acceptance. </p>
</sec-level2>
<sec-level2 id="erl374549s3.2" label="3.2">
<heading>Water</heading>
<p indent="no">Monitoring soil moisture status, coupled with vegetation vigor, is necessary in order to understand how cropping systems respond to highly variable soil moisture conditions (
<cite linkend="erl374549bib61">Ozdogan
<italic>et al</italic>
2010</cite>
). In irrigated systems, crop water needs require higher resolution data than those commonly used so that water is provided in a more efficient manner given heterogeneous soil conditions (
<cite linkend="erl374549bib34">Greenwood
<italic>et al</italic>
2010</cite>
,
<cite linkend="erl374549bib74">Sadler
<italic>et al</italic>
2005</cite>
). Soil moisture sensors have been developed for below-ground, above-ground and remote monitoring.
<cite linkend="erl374549bib14">Champagne
<italic>et al</italic>
(2010)</cite>
used a ground-based network to test the ability of a satellite-based passive microwave sensor with promising results. Data from in-ground soil moisture and temperature sensors in a cotton field were transmitted via radio frequency identification (RFID) chips to a central processor to assist in site-specific irrigation scheduling (
<cite linkend="erl374549bib88">Vellidis
<italic>et al</italic>
2008</cite>
). A ground-based optical remote sensing system was fixed to a center-pivot irrigation site to provide
<italic>in situ</italic>
measurements. These were used to compute a water deficit index, thus improving irrigation decisions (
<cite linkend="erl374549bib16">Colaizzi
<italic>et al</italic>
2003</cite>
). </p>
</sec-level2>
<sec-level2 id="erl374549s3.3" label="3.3">
<heading>Crop identification</heading>
<p indent="no">Crop identification and yield monitoring data can be used to advise markets on crop production and progress, and for food security related questions, input to models, and on-farm management (
<cite linkend="erl374549bib9">Blaes
<italic>et al</italic>
2005</cite>
,
<cite linkend="erl374549bib60">Ozdogan 2010</cite>
). Current approaches for crop identification across large areas use optical sensors, radar sensors, or a combination of the two (
<cite linkend="erl374549bib52">McNairn
<italic>et al</italic>
2009</cite>
). Jang
<italic>et al</italic>
(2009) used a series of Landsat images supplemented with the MODIS normalized difference vegetation index (NDVI) to discriminate between crop types with success.
<cite linkend="erl374549bib52">McNairn
<italic>et al</italic>
(2009)</cite>
used a combination of optical sensors and radar for individual crop classifications across Canada with accuracies of 80–90%. Yield can be estimated from monitoring sensors located on the tractor (
<cite linkend="erl374549bib71">Ross
<italic>et al</italic>
2008</cite>
), or combined with satellite images (which have been calibrated with
<italic>in situ</italic>
data) for a broader spatial coverage (
<cite linkend="erl374549bib21">Dobermann and Ping 2004</cite>
). Satellite remote sensing images can be used in conjunction with yield-forecasting models, but often need on-the-ground validation (
<cite linkend="erl374549bib90">Wang
<italic>et al</italic>
2010</cite>
). </p>
</sec-level2>
<sec-level2 id="erl374549s3.4" label="3.4">
<heading>Processing and visualization</heading>
<p indent="no">Data collected by
<italic>in situ</italic>
or remote sensors are rarely useful by themselves in decision-making either on or off the farm. Integrating this information with other observations and numerical models, and then effectively communicating it to the decision maker can help to fully leverage these new data sources. Emerging systems include features such as on-the-fly error correction and modeling and the distribution of results to the internet or cellular phones. The Intelligent Sensorweb for Integrated Earth Sensing combines
<italic>in situ</italic>
measurements, crop growth models and online maps of predicted crop and range yields and transmits the product to managers (
<cite linkend="erl374549bib85">Teillet
<italic>et al</italic>
2007</cite>
). In South Africa, where the internet is less accessible,
<cite linkend="erl374549bib79">Singels and Smith (2006)</cite>
report on a system to provide advice on irrigation scheduling to small-scale sugarcane farmers via cell phone, a technology that is much more readily available. Similarly,
<cite linkend="erl374549bib4">Antonopoulou
<italic>et al</italic>
(2009)</cite>
created a personalized spatial model that incorporates policy, market, environmental, and agronomic information to the user via cell phone in Greece. In areas where agroecological monitoring may not be available, web crawlers ‘mine’ data from websites to provide information on the changing state of the system (
<cite linkend="erl374549bib30">Galaz
<italic>et al</italic>
2009</cite>
). While these examples do not necessarily provide the backbone to a novel monitoring infrastructure, they highlight what is possible with existing data assets and push the boundaries for future innovations. </p>
</sec-level2>
<sec-level2 id="erl374549s3.5" label="3.5">
<heading>Agroecological sensor webs</heading>
<p indent="no">The monitoring systems described here have been deployed for decision-making at the farm and regional scales. The advent of internet-connected real-time wireless sensors presents a new opportunity to integrate data from a wide variety of sources and process them in a manner that the output is useful to decision makers. These sensor webs can reveal emergent biogeochemical properties of the agricultural system that may not have been otherwise observable with current monitoring infrastructure (
<cite linkend="erl374549bib87">Van Zyl
<italic>et al</italic>
2009</cite>
). New tools are required to build an agricultural information infrastructure for data organization, synthesis and integration as data become available from individual networks across the agroecological landscape (
<cite linkend="erl374549bib35">Hale and Hollister 2009</cite>
) (figure 
<figref linkend="erl374549fig1">1</figref>
).
<figure id="erl374549fig1" parts="single" width="page" position="float" printstyle="normal" orientation="port">
<graphic>
<graphic-file version="print" format="EPS" scale="100" filename="images/7454901.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" filename="images/7454901.jpg"></graphic-file>
</graphic>
<caption id="erl374549fc1" type="figure" label="Figure 1">
<p indent="no">Major components of the agroecological sensor web and information infrastructure. Individual sensors including remote (e.g. satellite, aircraft, unmanned drone), automated
<italic>in situ</italic>
and direct human observations collect data at multiple spatial scales. These data are processed for quality control and data from multiple networks across spatial scales are aggregated. These data are used as inputs to agronomic, agroecological and integrated models. The output of the models can be used by producers for real-time management and long-term planning, consumers to discriminate products based on their environmental footprints, scientists to study the dynamics of agroecosystems and policy makers to guide policies to further reduce environmental impacts of agricultural production. Image credits (L to R): DPMZ and Flickr users stawarz, ostrosky and ciat.</p>
</caption>
</figure>
</p>
<p>As the amount of data produced by environmental and ecological sensor systems has grown, techniques in database management, informatics, statistics, spatial processing and visualization have emerged to meet the challenge of data handling, processing and storage (e.g. 
<cite linkend="erl374549bib51">McLaren
<italic>et al</italic>
2009</cite>
,
<cite linkend="erl374549bib86">Uslaender
<italic>et al</italic>
2010</cite>
,
<cite linkend="erl374549bib6">Ball
<italic>et al</italic>
2008</cite>
,
<cite linkend="erl374549bib40">Jurdak
<italic>et al</italic>
2008</cite>
). For the most part, these new techniques have emerged at the fringes of traditional disciplines, for example, by bringing together biologists and computer scientists to contribute new tools (
<cite linkend="erl374549bib8">Benson
<italic>et al</italic>
2010</cite>
). Many of these tools can be applied to building an agroecological sensor web if these data are used as model input, and the model output is rapidly disseminated directly to the decision maker in a form that is deemed useful for the specific context (e.g. policy or land management). </p>
</sec-level2>
</sec-level1>
<sec-level1 id="erl374549s4" label="4">
<heading>Discussion</heading>
<p indent="no">The limitation to implementing an enhanced agroecological monitoring infrastructure is not the sensor technology; rather it is leveraging the output data for decision-making on several levels that would reduce the negative impacts of agriculture on the environment. Unlike the current approach of precision agriculture, agroecological data must be paired with innovative policies to incentivize simultaneous production and environmental goals. There are many potential users of enhanced agroecological data, and there is no one-size-fits-all approach that incorporates data collection, processing and dissemination. The challenge ahead is not purely technical, as there are potential social barriers, such as privacy concerns, to data collection and dissemination. Designing useful products from such a system will require input from end-users to ensure their applicability and relevance to the challenges at hand. Information and decision support tools from agroecological monitoring can be used throughout the supply chain of products, from producers and consumers to policy makers and scientists. </p>
<sec-level2 id="erl374549s4.1" label="4.1">
<heading>Producers</heading>
<p indent="no">Technology vendors, scientists and policy makers can extol the virtues of sensor web technology ad nauseam, but results will be limited to scientific results until a significant proportion of the agricultural community adopts it. For producers in developing countries, here is an opportunity to leapfrog the traditional development pathways and adopt the latest methods and technologies. But the acceptance of precision agriculture technology has been relatively slow thus far (
<cite linkend="erl374549bib18">Daberkow and McBride 2003</cite>
,
<cite linkend="erl374549bib82">Sumberg 2005</cite>
). One strategy to avoid falling from the ‘peak of inflated expectations’ to the ‘trough of disillusionment’ of technology adoption, as described by
<cite linkend="erl374549bib48">Lamb
<italic>et al</italic>
(2008)</cite>
is to ensure the delivery of decision-relevant information to the producer, compared to raw data which has limited usefulness. Before too much hype is made about the many potential benefits of agroecological sensor webs, the systems sensor data need to be incorporated into decision support systems that allow the producer to explicitly understand potential trade-offs between management decisions and ecological and production outcomes (
<cite linkend="erl374549bib29">Fountas
<italic>et al</italic>
2006</cite>
). Some elements of this can be seen in precision agriculture systems currently deployed, although many systems lack the ability to provide real-time information on trade-offs related to economic and environmental outcomes of management decisions. Access to this type of management information can decrease costs for producers as agricultural inputs could be targeted. While some systems are in development, additional work is needed to ensure the transparency, reliability and ease-of-use of the software and its integration into current agricultural management tools. Once these objectives are met, there is a higher likelihood that a rapid adoption of agroecological sensor webs will ensue. </p>
</sec-level2>
<sec-level2 id="erl374549s4.2" label="4.2">
<heading>Consumers</heading>
<p indent="no">Informed consumers have the ability to shift markets through changes in their purchasing habits. Eco-labels and certifications are emerging as an approach to inform consumers about the products they purchase. Labels for products such as organic foods, sustainable wood products and energy-saving appliances have been growing in recent years (
<cite linkend="erl374549bib38">Ibanez and Grolleau 2008</cite>
,
<cite linkend="erl374549bib46">Kotchen 2006</cite>
). Additional food labels provide information on how the items were produced, such as fair-trade, shade-grown or dry-farmed (
<cite linkend="erl374549bib37">Howard and Allen 2010</cite>
). While comparisons can currently be made between products with eco-labels and those without, little specific information is communicated to the consumer about the life-cycle impacts. As supply chains shift to increase the transparency of their products, data from agroecological sensor webs can be used to communicate the back-story of the product to the consumer (
<cite linkend="erl374549bib59">Opara and Mazaud 2001</cite>
). Building on the success of other eco-labels,
<cite linkend="erl374549bib26">Faludi (2007)</cite>
proposed ‘eco-nutrition’ labels that mimic the current labels on food products (figure 
<figref linkend="erl374549fig2">2</figref>
). These labels would communicate energy, resource, water, toxins and social scores of the product’s life-cycle to the user and would allow for more in-depth comparisons among products. Similar graded eco-labels can provide consumers with information on multiple environmental performance indicators (
<cite linkend="erl374549bib10">Bleda and Valente 2009</cite>
). Labels like these could be improved with enhanced agroecological sensor web technology.
<figure id="erl374549fig2" parts="single" width="column" position="float" printstyle="normal" orientation="port">
<graphic>
<graphic-file version="print" format="EPS" scale="100" filename="images/7454902.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" filename="images/7454902.jpg"></graphic-file>
</graphic>
<caption id="erl374549fc2" type="figure" label="Figure 2">
<p indent="no">A representation of an eco-label that integrates data from several monitoring sources and clearly communicates the life-cycle environmental impacts of the product to the consumer. Figure adapted with permission from Faludi J 2007
<italic>The Eco-Nutrition Label</italic>
(available at
<webref url="http://www.worldchanging.com/archives/007256.html">http://www.worldchanging.com/archives/007256.html</webref>
).</p>
</caption>
</figure>
</p>
</sec-level2>
<sec-level2 id="erl374549s4.3" label="4.3">
<heading>Science</heading>
<p indent="no">Many of the models that simulate crops, ecosystems and economies are hampered by a scarcity of data about the system of interest. Limitations in computing power to run the simulations are being lifted as computers have become cheaper and more powerful. Integration of new data at higher spatial and temporal resolution, supplemented by historical data, can improve the precision and accuracy of model output. In addition, new streams of multivariate and multidisciplinary data will require the expertise of many disciplines to unravel the agroecological complexities veiled under the many new layers of information.</p>
<p>While new data streams, such as those from an agroecological sensor web, may assist in further refining these models, they can also help to elucidate previously unknown or poorly understood relationships within the modeled system. Some newly collected data may not even fit into the structure of current models, and in this case new models will need to be built that can harness an input dataset with increased dimensionality over time and space. These new models can also help to create links between disciplines, especially in the physical and social sciences that are needed to solve problems and produce solutions for policy makers. These systems can also help to strengthen partnerships between developed and developing countries and foster the co-development of new models and knowledge sharing. </p>
</sec-level2>
<sec-level2 id="erl374549s4.4" label="4.4">
<heading>Policy</heading>
<p indent="no">At the most basic level, the interactions between policy makers and the agricultural system occur both at the marketplace and through the regulatory structure. Broad polices such as the US Department of Agriculture Conservation Reserve Program and markets for ecosystem goods and services have similar goals of striking a balance between production of agricultural goods and protection of vital ecosystem services. However, they must often rely on generalized information that lacks a connection between a parcel of land and its delivery of ecosystem goods and services. By incorporating data from agroecological sensor webs into a policy framework, a structure can be developed to provide incentives for lands that produce a suite of ecosystem goods and services, as well as the ability to value these services separately. These incentives can be modified according to updated data, an improvement on a program that values all areas equally. Performance-based incentives can reward producers for meeting environmental targets while decreasing the environmental burdens of production. Monitoring compliance for this type of incentive would be streamlined through the use of sensor web data.</p>
<p>In the near term, the fundamental data gap in need of attention is the monitoring of greenhouse gases (GHG) from agricultural lands. As policies are negotiated to reduce GHGs across the US economy, emissions from agriculture may be excluded from a cap-and-trade system because they are hard to measure, monitor and verify (
<cite linkend="erl374549bib80">Smith
<italic>et al</italic>
2007</cite>
,
<cite linkend="erl374549bib19">Dale and Polasky 2007</cite>
). The added transaction costs, and uncertainty in emissions reductions, have marginalized the 7 per cent of US GHGs emitted by agricultural activities (
<cite linkend="erl374549bib25">EPA 2010</cite>
). Improved monitoring of carbon dioxide, nitrous oxide and methane from agriculture could provide the information and incentives necessary for carbon markets, policy makers and farmers to reduce emissions from the production life-cycle. </p>
</sec-level2>
<sec-level2 id="erl374549s4.5" label="4.5">
<heading>Getting from here to there: innovation, investment and transparency</heading>
<p indent="no">Many of the technologies highlighted here have yet to be deployed at the scale necessary to display the emergent properties of an agroecological sensor web (table 
<tabref linkend="erl374549tab1">1</tabref>
). As the focus on agricultural innovation shifts to incorporate both production and environmental objectives, information and communications technologies (ICT) are likely to play a larger role. As investments and technological breakthroughs in ICT have generally been focused on sectors other than agriculture, there is tremendous potential to apply the technology already available to agroecological uses (
<cite linkend="erl374549bib76">Sassenrath
<italic>et al</italic>
2008</cite>
). Important advances are likely in approaches to transmit, store, process and aggregate data from multiple sources to aid in site-specific decision-making.</p>
<table id="erl374549tab1" width="42pc">
<caption id="tc1" label="Table 1">
<p indent="no">Summary of the current and potential future components of an agroecological sensor web.</p>
</caption>
<tgroup cols="3">
<colspec colnum="1" colname="col1" align="left"></colspec>
<colspec colnum="2" colname="col2" align="left"></colspec>
<colspec colnum="3" colname="col3" align="left"></colspec>
<thead>
<row>
<entry></entry>
<entry>Current</entry>
<entry>Future</entry>
</row>
</thead>
<tbody>
<row>
<entry>Markets for food, carbon and other EGS</entry>
<entry>Carbon markets limited by lack of available data: nutrient markets in their infancy</entry>
<entry>Markets informed by data from agroecological sensor web</entry>
</row>
<row>
<entry>
<italic>In situ</italic>
 and remote monitoring</entry>
<entry>Yield monitoring becoming common in high-input system, remote sensing algorithm output not explicitly designed for agricultural users</entry>
<entry>Access to data available to on-farm decision makers via internet and cellular phones in real-time</entry>
</row>
<row>
<entry>Data transparency</entry>
<entry>Limited public availability of data</entry>
<entry>Agricultural sousveillance joins other energing monitoring systems</entry>
</row>
<row>
<entry>Product labeling</entry>
<entry>Product certification labeling lacks differentiation between impact categories</entry>
<entry>Products assigned grades based on water, carbon, nutrient, biodiversity impacts</entry>
</row>
<row>
<entry>Scientific models</entry>
<entry>Models driven and validated by limited observations</entry>
<entry>Social economic and environmental data streams used to constantly update model validation and modify projections</entry>
</row>
<row>
<entry>Impacts of production</entry>
<entry>60% of ecosystem services negatively impacted by agriculture</entry>
<entry>Reduced environmental impacts, increased food security</entry>
</row>
<row>
<entry>Social and environmental costs of production</entry>
<entry>External to product cost</entry>
<entry>Internalized in product cost</entry>
</row>
</tbody>
</tgroup>
</table>
<p>Sensor webs have already emerged at several spatial scales. Examples include the Global Earth Observing System of Systems (
<cite linkend="erl374549bib41">Justice and Becker-Reshef 2007</cite>
), National Ecological Observatory Network (
<cite linkend="erl374549bib42">Keller
<italic>et al</italic>
2008</cite>
) and Chesapeake Bay Environmental Observatory (
<cite linkend="erl374549bib6">Ball
<italic>et al</italic>
2008</cite>
). These systems are driven by their own science questions and can serve as useful building blocks to address new agroecological questions. Like these examples, an agroecological sensor web will require the buy-in and support from many entities, expanding beyond the public sector. While the metrics for success will be variable, explicit goal setting amongst sensor web partners will be necessary to avoid unrealistic or unattainable goals.</p>
<p>The cost of installing an agroecological monitoring system is likely to vary as a function of the area covered, the variables tracked and the degree of integration with other systems. The diversity of potential stakeholders and end-users of the data introduces a variety of actors to help burden the cost of such a system and help bring it to fruition. Even with high initial capital costs, the benefits are likely to be high. Private benefits can include increased yields and decreased costs from inputs; public benefits include increased availability of ecosystem services from biodiversity, carbon sequestration, and water infiltration. Public and private investments will be essential to realize these benefits (
<cite linkend="erl374549bib3">Alston
<italic>et al</italic>
2009</cite>
).</p>
<p>The availability of data on how management decisions affect the provision of ecosystem goods and services can help to inform markets and offset the costs of monitoring (
<cite linkend="erl374549bib84">Swinton
<italic>et al</italic>
2007</cite>
,
<cite linkend="erl374549bib19">Dale and Polasky 2007</cite>
). Tracking changes in production and ecosystem service delivery facilitates the internalization of costs from agriculture that were previously external. While developing these markets will require outside capital, as markets grow they should provide returns that help to build additional monitoring capacity.</p>
<p>The increased availability in wireless monitoring devices is not limited to the agricultural sector, but examples can be found in cell phone photography and closed caption television systems (
<cite linkend="erl374549bib20">Dennis 2008</cite>
). The public availability of these new data streams has had a positive social benefit since they act as a deterrent for ‘anti-social behaviors’ (
<cite linkend="erl374549bib31">Ganascia 2010</cite>
). The rise of sousveillance, where societal monitoring activities are becoming widespread and data are publicly available, has yet to be explored for agricultural applications. If the maximum benefit of sensor web technology is to be realized, then the data collected will need to have both on- and off-farm uses.</p>
<p>To date, most data collected on-farm for management purposes is not used in other ways and scientific and census data are usually collected independently. For example, The US National Agricultural Statistics Survey (NASS) promotes ‘confidentiality and data security’ in regard to data about agricultural production. With additional production and environmental data being potentially readily available, making all collected data publicly available and transparent has its merits. Consumers will be able to trace the origins of their products and monitor the conditions under which they were produced. This will compel producers to improve the environmental performance of their products. Increased transparency in the agricultural system can close the gap between producers and consumers through the monitoring and open distribution of agroecological data. </p>
</sec-level2>
</sec-level1>
<sec-level1 id="erl374549s5" label="5">
<heading>Conclusions</heading>
<p indent="no">The grand challenge for agriculture over the next generation is to reduce its environmental impact while producing enough food, feed and fiber for a larger and wealthier population (
<cite linkend="erl374549bib68">Robertson and Swinton 2005</cite>
). While the first green revolution brought increases in productivity, these carried environmental costs and the next generation of farmers will be in the vanguard to reduce those impacts. This cohort will be an increasingly digitally connected group and will have access to unprecedented numbers of novel tools. As new farmers will be recruited into an occupation that has steadily decreased in size over the past generation, the image of the farmer needs to be recast as a 21st century steward of the land, equipped with digital tools, knowledge and skills to meet increasingly stringent multi-functional demands.</p>
<p>Moving enhanced agroecological monitoring infrastructure from research lab to farm field will take commitments and investments from a diverse array of stakeholders (
<cite linkend="erl374549bib73">Sachs
<italic>et al</italic>
2010</cite>
). Not only are there many technical elements in need of further development in the proposed system, but also the agricultural sector has been slow to adopt other potentially important innovations. Therefore the social, economic and environmental stakeholders in the system will need to be on board before a successful introduction is possible.</p>
<p>The opportunity to establish a global agroecological monitoring infrastructure along with information dissemination tools comes at a time when increasing agricultural demands and reducing environmental impacts from production have gained attention at the highest political levels. While this is a formidable challenge, we have recently entered an era where monitoring, data processing, numerical modeling and communications technologies have the ability to give agroecological decision-making new dimensions. Policies that provide incentives to create these new data streams and leverage their data to put an objective value on the ecosystem goods and services connected to agriculture are paramount. While the investment needed for such a system is large, the return on investment, as measured by agricultural productivity and reduced environmental impacts, can be great as well.</p>
</sec-level1>
<acknowledgment>
<heading>Acknowledgments</heading>
<p indent="no">The authors would like to thank George Allez, Sam Batzli, Carol Barford, Molly Jahn and the two anonymous reviewers for their useful comments and suggestions, and Jeremy Faludi for allowing us to adapt a version of figure 
<figref linkend="erl374549fig2">2</figref>
for use in the manuscript. Images from figure 
<figref linkend="erl374549fig1">1</figref>
are credited (from L to R): DPMZ, and Flickr users stawarz, ostrosky and ciat under the Creative Commons license. DPMZ was supported by the National Science Foundation grant 144-144PT71 and CJK was supported by the National Aeronautics and Space Administration’s Interdisciplinary Earth Science Program. </p>
</acknowledgment>
</body>
<back>
<references>
<heading>References</heading>
<reference-list type="alphabetic">
<journal-ref id="erl374549bib1" author="Adamchuk et al" year-label="2004">
<authors>
<au>
<second-name>Adamchuk</second-name>
<first-names>V</first-names>
</au>
<au>
<second-name>Hummel</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Morgan</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Upadhyaya</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2004</year>
<art-title>On-the-go soil sensors for precision agriculture</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>44</volume>
<pages>71–91</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2004.03.002</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib2" author="Allen et al" year-label="2007">
<authors>
<au>
<second-name>Allen</second-name>
<first-names>M F</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2007</year>
<art-title>Soil sensor technology: life within a pixel</art-title>
<jnl-title>Bioscience</jnl-title>
<volume>57</volume>
<pages>859–67</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1641/B571008</cr_doi>
<cr_issn type="print">0006-3568</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib3" author="Alston et al" year-label="2009">
<authors>
<au>
<second-name>Alston</second-name>
<first-names>J M</first-names>
</au>
<au>
<second-name>Beddow</second-name>
<first-names>J M</first-names>
</au>
<au>
<second-name>Pardey</second-name>
<first-names>P G</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Agricultural research, productivity, and food prices in the long run</art-title>
<jnl-title>Science</jnl-title>
<volume>325</volume>
<pages>1209–10</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1126/science.1170451</cr_doi>
<cr_issn type="print">0036-8075</cr_issn>
<cr_issn type="electronic">1095-9203</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib4" author="Antonopoulou et al" year-label="2009">
<authors>
<au>
<second-name>Antonopoulou</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>Karetsos</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Maliappis</second-name>
<first-names>M</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Web and mobile technologies in a prototype DSS for major field crops</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>70</volume>
<pages>292–301</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2009.07.024</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib5" author="Baldocchi" year-label="2008">
<authors>
<au>
<second-name>Baldocchi</second-name>
<first-names>D</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems</art-title>
<jnl-title>Aust. J. Bot.</jnl-title>
<volume>56</volume>
<pages>1–26</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1071/BT07151</cr_doi>
<cr_issn type="print">0067-1924</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib6" author="Ball et al" year-label="2008">
<authors>
<au>
<second-name>Ball</second-name>
<first-names>W P</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2008</year>
<art-title>Prototype system for multidisciplinary shared cyberinfrastructure: Chesapeake Bay environmental observatory</art-title>
<jnl-title>J. Hydrol. Eng.</jnl-title>
<volume>13</volume>
<pages>960–70</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1061/(ASCE)1084-0699(2008)13:10(960)</cr_doi>
<cr_issn type="print">10840699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib7" author="Batjes" year-label="2009">
<authors>
<au>
<second-name>Batjes</second-name>
<first-names>N H</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Harmonized soil profile data for applications at global and continental scales: updates to the WISE database</art-title>
<jnl-title>Soil Use Manage.</jnl-title>
<volume>25</volume>
<pages>124–7</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1111/j.1475-2743.2009.00202.x</cr_doi>
<cr_issn type="print">02660032</cr_issn>
<cr_issn type="electronic">14752743</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib8" author="Benson et al" year-label="2010">
<authors>
<au>
<second-name>Benson</second-name>
<first-names>B J</first-names>
</au>
<au>
<second-name>Bond</second-name>
<first-names>B J</first-names>
</au>
<au>
<second-name>Hamilton</second-name>
<first-names>M P</first-names>
</au>
<au>
<second-name>Monson</second-name>
<first-names>R K</first-names>
</au>
<au>
<second-name>Hans</second-name>
<first-names>R</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Perspectives on next-generation technology for environmental sensor networks</art-title>
<jnl-title>Front. Ecol. Environ.</jnl-title>
<volume>8</volume>
<pages>193–200</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1890/080130</cr_doi>
<cr_issn type="print">1540-9295</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib9" author="Blaes et al" year-label="2005">
<authors>
<au>
<second-name>Blaes</second-name>
<first-names>X</first-names>
</au>
<au>
<second-name>Vanhalle</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Defourny</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Efficiency of crop identification based on optical and SAR image time series</art-title>
<jnl-title>Remote Sens. Environ.</jnl-title>
<volume>96</volume>
<pages>352–65</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.rse.2005.03.010</cr_doi>
<cr_issn type="print">00344257</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib10" author="Bleda and Valente" year-label="2009">
<authors>
<au>
<second-name>Bleda</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Valente</second-name>
<first-names>M</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Graded eco-labels: a demand-oriented approach to reduce pollution</art-title>
<jnl-title>Technol. Forecast. Soc. Change</jnl-title>
<volume>76</volume>
<pages>512–24</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.techfore.2008.05.003</cr_doi>
<cr_issn type="print">00401625</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib11" author="Bondeau et al" year-label="2007">
<authors>
<au>
<second-name>Bondeau</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Smith</second-name>
<first-names>P C</first-names>
</au>
<au>
<second-name>Zaehle</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Schaphoff</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Lucht</second-name>
<first-names>W</first-names>
</au>
<au>
<second-name>Cramer</second-name>
<first-names>W</first-names>
</au>
<au>
<second-name>Gerten</second-name>
<first-names>D</first-names>
</au>
</authors>
<year>2007</year>
<art-title>Modelling the role of agriculture for the 20th century global terrestrial carbon balance</art-title>
<jnl-title>Glob. Change Biol.</jnl-title>
<volume>13</volume>
<pages>679–706</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1111/j.1365-2486.2006.01305.x</cr_doi>
<cr_issn type="print">1354-1013</cr_issn>
<cr_issn type="electronic">1365-2486</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib12" author="Bramley" year-label="2009">
<authors>
<au>
<second-name>Bramley</second-name>
<first-names>R G V</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application</art-title>
<jnl-title>Crop. Pasture. Sci.</jnl-title>
<volume>60</volume>
<pages>197–217</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1071/CP08304</cr_doi>
<cr_issn type="print">1836-0947</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib13" author="Bréon and Ciais" year-label="2010">
<authors>
<au>
<second-name>Bréon</second-name>
<first-names>F-M</first-names>
</au>
<au>
<second-name>Ciais</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Spaceborne remote sensing of greenhouse gas concentrations</art-title>
<jnl-title>C. R. Geosci.</jnl-title>
<volume>342</volume>
<pages>412–24</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.crte.2009.09.012</cr_doi>
<cr_issn type="print">16310713</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib14" author="Champagne et al" year-label="2010">
<authors>
<au>
<second-name>Champagne</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Berg</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Belanger</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Mcnairn</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>De Jeu</second-name>
<first-names>R</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Evaluation of soil moisture derived from passive microwave remote sensing over agricultural sites in Canada using ground-based soil moisture monitoring networks</art-title>
<jnl-title>Int. J. Remote Sens.</jnl-title>
<volume>31</volume>
<pages>3669–90</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1080/01431161.2010.483485</cr_doi>
<cr_issn type="print">0143-1161</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib15" author="Christy" year-label="2008">
<authors>
<au>
<second-name>Christy</second-name>
<first-names>C D</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>61</volume>
<pages>10–9</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2007.02.010</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib16" author="Colaizzi et al" year-label="2003">
<authors>
<au>
<second-name>Colaizzi</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Barnes</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>Clarke</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Choi</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Waller</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Haberland</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Kostrzewski</second-name>
<first-names>M</first-names>
</au>
</authors>
<year>2003</year>
<art-title>Water stress detection under high frequency sprinkler irrigation with water deficit index</art-title>
<jnl-title>J. Irrig. Drain. Eng.</jnl-title>
<volume>129</volume>
<pages>36–43</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1061/(ASCE)0733-9437(2003)129:1(36)</cr_doi>
<cr_issn type="print">07339437</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib17" author="Conover et al" year-label="2009">
<authors>
<au>
<second-name>Conover</second-name>
<first-names>H</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2009</year>
<art-title>Using sensor web protocols for environmental data acquisition and management</art-title>
<jnl-title>Ecol. Inform.</jnl-title>
<volume>5</volume>
<pages>32–41</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.ecoinf.2009.08.009</cr_doi>
<cr_issn type="print">15749541</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib18" author="Daberkow and McBride" year-label="2003">
<authors>
<au>
<second-name>Daberkow</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>McBride</second-name>
<first-names>W</first-names>
</au>
</authors>
<year>2003</year>
<art-title>Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US</art-title>
<jnl-title>Precis. Agric.</jnl-title>
<volume>4</volume>
<pages>163–77</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1023/A:1024557205871</cr_doi>
<cr_issn type="print">13852256</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib19" author="Dale and Polasky" year-label="2007">
<authors>
<au>
<second-name>Dale</second-name>
<first-names>V</first-names>
</au>
<au>
<second-name>Polasky</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2007</year>
<art-title>Measures of the effects of agricultural practices on ecosystem services</art-title>
<jnl-title>Ecol. Econom.</jnl-title>
<volume>64</volume>
<pages>286–96</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.ecolecon.2007.05.009</cr_doi>
<cr_issn type="print">09218009</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib20" author="Dennis" year-label="2008">
<authors>
<au>
<second-name>Dennis</second-name>
<first-names>K</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Keeping a close watch—the rise of self-surveillance and the threat of digital exposure</art-title>
<jnl-title>Sociol. Rev.</jnl-title>
<volume>56</volume>
<pages>347–57</pages>
</journal-ref>
<journal-ref id="erl374549bib21" author="Dobermann and Ping" year-label="2004">
<authors>
<au>
<second-name>Dobermann</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Ping</second-name>
<first-names>J</first-names>
</au>
</authors>
<year>2004</year>
<art-title>Geostatistical integration of yield monitor data and remote sensing improves yield maps</art-title>
<jnl-title>Agron. J.</jnl-title>
<volume>96</volume>
<pages>285–97</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.2134/agronj2004.0285</cr_doi>
<cr_issn type="print"></cr_issn>
<cr_issn type="electronic">1435-0645</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib22" author="Duveiller and Defourny" year-label="2010">
<authors>
<au>
<second-name>Duveiller</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Defourny</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>2010</year>
<art-title>A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing</art-title>
<jnl-title>Remote Sens. Environ.</jnl-title>
<volume>114</volume>
<pages>2637–50</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.rse.2010.06.001</cr_doi>
<cr_issn type="print">00344257</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib23" author="Eckman et al" year-label="2009">
<authors>
<au>
<second-name>Eckman</second-name>
<first-names>B</first-names>
</au>
<au>
<second-name>West</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Barford</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Raber</second-name>
<first-names>G</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Intuitive simulation, querying, and visualization for river basin policy and management</art-title>
<jnl-title>IBM J. Res. Dev.</jnl-title>
<volume>53</volume>
<pages>3</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1147/JRD.2009.5429020</cr_doi>
<cr_issn type="print">0018-8646</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib24" author="Ellis and Ramankutty" year-label="2008">
<authors>
<au>
<second-name>Ellis</second-name>
<first-names>E C</first-names>
</au>
<au>
<second-name>Ramankutty</second-name>
<first-names>N</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Putting people in the map: anthropogenic biomes of the world</art-title>
<jnl-title>Front Ecol. Environ.</jnl-title>
<volume>6</volume>
<pages>439–47</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1890/070062</cr_doi>
<cr_issn type="print">1540-9295</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<book-ref id="erl374549bib25" author="EPA" year-label="2010">
<authors>
<corporate>EPA</corporate>
</authors>
<year>2010</year>
<book-title>Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2008</book-title>
<publication>
<place>Washington, DC</place>
<publisher>US EPA</publisher>
</publication>
</book-ref>
<misc-ref id="erl374549bib26" author="Faludi" year-label="2007">
<authors>
<au>
<second-name>Faludi</second-name>
<first-names>J</first-names>
</au>
</authors>
<year>2007</year>
<misc-title>The Eco-Nutrition Label</misc-title>
<misc-text>(available online
<webref url="http://www.worldchanging.com/archives/007256.html">http://www.worldchanging.com/archives/007256.html</webref>
)</misc-text>
</misc-ref>
<journal-ref id="erl374549bib27" author="Federoff et al" year-label="2010">
<authors>
<au>
<second-name>Federoff</second-name>
<first-names>N</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2010</year>
<art-title>Radically rethinking agriculture for the 21st century</art-title>
<jnl-title>Science</jnl-title>
<volume>327</volume>
<pages>833–4</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1126/science.1186834</cr_doi>
<cr_issn type="print">0036-8075</cr_issn>
<cr_issn type="electronic">1095-9203</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib28" author="Foley et al" year-label="2005">
<authors>
<au>
<second-name>Foley</second-name>
<first-names>J</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2005</year>
<art-title>Global consequences of land use</art-title>
<jnl-title>Science</jnl-title>
<volume>309</volume>
<pages>570–4</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1126/science.1111772</cr_doi>
<cr_issn type="print">0036-8075</cr_issn>
<cr_issn type="electronic">1095-9203</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib29" author="Fountas et al" year-label="2006">
<authors>
<au>
<second-name>Fountas</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Wulfsohn</second-name>
<first-names>D</first-names>
</au>
<au>
<second-name>Blackmore</second-name>
<first-names>B</first-names>
</au>
<au>
<second-name>Jacobsen</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Pedersen</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2006</year>
<art-title>A model of decision-making and information flows for information-intensive agriculture</art-title>
<jnl-title>Agric. Syst.</jnl-title>
<volume>87</volume>
<pages>192–210</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.agsy.2004.12.003</cr_doi>
<cr_issn type="print">0308521X</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib30" author="Galaz et al" year-label="2009">
<authors>
<au>
<second-name>Galaz</second-name>
<first-names>V</first-names>
</au>
<au>
<second-name>Crona</second-name>
<first-names>B</first-names>
</au>
<au>
<second-name>Daw</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Bodin</second-name>
<first-names>Ö</first-names>
</au>
<au>
<second-name>Nyström</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Olsson</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Can web crawlers revolutionize ecological monitoring?</art-title>
<jnl-title>Front. Ecol. Environ.</jnl-title>
<volume>8</volume>
<pages>99–104</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1890/070204</cr_doi>
<cr_issn type="print">1540-9295</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib31" author="Ganascia" year-label="2010">
<authors>
<au>
<second-name>Ganascia</second-name>
<first-names>J</first-names>
</au>
</authors>
<year>2010</year>
<art-title>The generalized sousveillance society</art-title>
<jnl-title>Soc. Sci. Info.</jnl-title>
<volume>49</volume>
<pages>489</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1177/0539018410371027</cr_doi>
<cr_issn type="print">0539-0184</cr_issn>
<cr_issn type="electronic">1461-7412</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib32" author="Gebbers and Adamchuk" year-label="2010">
<authors>
<au>
<second-name>Gebbers</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Adamchuk</second-name>
<first-names>V I</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Precision agriculture and food security</art-title>
<jnl-title>Science</jnl-title>
<volume>327</volume>
<pages>828–31</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1126/science.1183899</cr_doi>
<cr_issn type="print">0036-8075</cr_issn>
<cr_issn type="electronic">1095-9203</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib33" author="Godfray et al" year-label="2010">
<authors>
<au>
<second-name>Godfray</second-name>
<first-names>H</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2010</year>
<art-title>Food security: the challenge of feeding 9 billion people</art-title>
<jnl-title>Science</jnl-title>
<volume>327</volume>
<pages>812–818</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1126/science.1185383</cr_doi>
<cr_issn type="print">0036-8075</cr_issn>
<cr_issn type="electronic">1095-9203</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib34" author="Greenwood et al" year-label="2010">
<authors>
<au>
<second-name>Greenwood</second-name>
<first-names>D J</first-names>
</au>
<au>
<second-name>Zhang</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Hilton</second-name>
<first-names>H W</first-names>
</au>
<au>
<second-name>Thompson</second-name>
<first-names>A J</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology</art-title>
<jnl-title>J. Agric. Sci.</jnl-title>
<volume>148</volume>
<pages>1–16</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1017/S0021859609990487</cr_doi>
<cr_issn type="print">0021-8596</cr_issn>
<cr_issn type="electronic">1469-5146</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib35" author="Hale and Hollister" year-label="2009">
<authors>
<au>
<second-name>Hale</second-name>
<first-names>S S</first-names>
</au>
<au>
<second-name>Hollister</second-name>
<first-names>J W</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Beyond data management: how ecoinformatics can benefit environmental monitoring programs</art-title>
<jnl-title>Environ. Monit. Assess.</jnl-title>
<volume>150</volume>
<pages>227–35</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1007/s10661-008-0675-x</cr_doi>
<cr_issn type="print">0167-6369</cr_issn>
<cr_issn type="electronic">1573-2959</cr_issn>
</crossref>
</journal-ref>
<book-ref id="erl374549bib36" author="Heinz Center" year-label="2008">
<authors>
<au>
<second-name>Heinz Center</second-name>
<first-names></first-names>
</au>
</authors>
<year>2008</year>
<book-title>The State of the Nation’s Ecosystems: Measuring the Lands, Waters, and Living Resources of the United States</book-title>
<publication>
<place>Washington, DC</place>
<publisher>Island</publisher>
</publication>
<pages>p 368</pages>
</book-ref>
<journal-ref id="erl374549bib37" author="Howard and Allen" year-label="2010">
<authors>
<au>
<second-name>Howard</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Allen</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Beyond organic and fair trade? An analysis of ecolabel preferences in the United States</art-title>
<jnl-title>Rural Soc.</jnl-title>
<volume>75</volume>
<pages>244–69</pages>
</journal-ref>
<journal-ref id="erl374549bib38" author="Ibanez and Grolleau" year-label="2008">
<authors>
<au>
<second-name>Ibanez</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Grolleau</second-name>
<first-names>G</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Can ecolabeling schemes preserve the environment?</art-title>
<jnl-title>Environ. Res. Econ.</jnl-title>
<volume>40</volume>
<pages>233–49</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1007/s10640-007-9150-3</cr_doi>
<cr_issn type="print">0924-6460</cr_issn>
<cr_issn type="electronic">1573-1502</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib39" author="Jones et al" year-label="2003">
<authors>
<au>
<second-name>Jones</second-name>
<first-names>J</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2003</year>
<art-title>The DSSAT cropping system model</art-title>
<jnl-title>Eur. J. Agron.</jnl-title>
<volume>18</volume>
<pages>235–65</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/S1161-0301(02)00107-7</cr_doi>
<cr_issn type="print">11610301</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib40" author="Jurdak et al" year-label="2008">
<authors>
<au>
<second-name>Jurdak</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Nafaa</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Barbirato</second-name>
<first-names>A</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Large scale environmental monitoring through integration of sensor and mesh networks</art-title>
<jnl-title>Sensors</jnl-title>
<volume>8</volume>
<pages>7493–517</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.3390/s8117493</cr_doi>
<cr_issn type="print"></cr_issn>
<cr_issn type="electronic">1424-8220</cr_issn>
</crossref>
</journal-ref>
<misc-ref id="erl374549bib41" author="Justice and Becker-Reshef" year-label="2007">
<authors>
<au>
<second-name>Justice</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Becker-Reshef</second-name>
<first-names>I</first-names>
</au>
</authors>
<year>2007</year>
<misc-title>Developing a Strategy for Global Agricultural Monitoring in the Framework of Group on Earth Observations (GEO)</misc-title>
<misc-text>(available online
<webref url="http://www.earthobservations.org/documents/cop/ag_gams/200707_01/20070716_geo_igol_ag_workshop_report.pdf">http://www.earthobservations.org/documents/cop/ag_gams/200707_01/20070716_geo_igol_ag_workshop_report.pdf</webref>
)</misc-text>
</misc-ref>
<journal-ref id="erl374549bib42" author="Keller et al" year-label="2008">
<authors>
<au>
<second-name>Keller</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Schimel</second-name>
<first-names>D S</first-names>
</au>
<au>
<second-name>Hargrove</second-name>
<first-names>W W</first-names>
</au>
<au>
<second-name>Hoffman</second-name>
<first-names>F M</first-names>
</au>
</authors>
<year>2008</year>
<art-title>A continental strategy for the national ecological observatory network</art-title>
<jnl-title>Front. Ecol. Environ.</jnl-title>
<volume>6</volume>
<pages>282–4</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2</cr_doi>
<cr_issn type="print">1540-9295</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib43" author="Kim et al" year-label="2009">
<authors>
<au>
<second-name>Kim</second-name>
<first-names>H-J</first-names>
</au>
<au>
<second-name>Sudduth</second-name>
<first-names>K A</first-names>
</au>
<au>
<second-name>Hummel</second-name>
<first-names>J W</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Soil macronutrient sensing for precision agriculture</art-title>
<jnl-title>J. Environ. Monitor.</jnl-title>
<volume>11</volume>
<pages>1810–24</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1039/b906634a</cr_doi>
<cr_issn type="print">1464-0325</cr_issn>
<cr_issn type="electronic">1464-0333</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib44" author="Kitchen" year-label="2008">
<authors>
<au>
<second-name>Kitchen</second-name>
<first-names>N R</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Emerging technologies for real-time and integrated agriculture decisions</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>61</volume>
<pages>1–3</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2007.06.007</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib45" author="Kooistra et al" year-label="2009">
<authors>
<au>
<second-name>Kooistra</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Bergsma</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Chuma</second-name>
<first-names>B</first-names>
</au>
<au>
<second-name>De Bruin</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Development of a dynamic web mapping service for vegetation productivity using earth observation and
<italic>in situ</italic>
sensors in a sensor web based approach</art-title>
<jnl-title>Sensors</jnl-title>
<volume>9</volume>
<pages>2371–88</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.3390/s90402371</cr_doi>
<cr_issn type="print"></cr_issn>
<cr_issn type="electronic">1424-8220</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib46" author="Kotchen" year-label="2006">
<authors>
<au>
<second-name>Kotchen</second-name>
<first-names>M</first-names>
</au>
</authors>
<year>2006</year>
<art-title>Green markets and private provision of public goods</art-title>
<jnl-title>J. Polit. Econ.</jnl-title>
<volume>114</volume>
<pages>816</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1086/506337</cr_doi>
<cr_issn type="print">0022-3808</cr_issn>
<cr_issn type="electronic">1537-534X</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib47" author="Kucharik" year-label="2003">
<authors>
<au>
<second-name>Kucharik</second-name>
<first-names>C J</first-names>
</au>
</authors>
<year>2003</year>
<art-title>Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the US corn belt: simulations of the interannual variability in maize yield</art-title>
<jnl-title>Earth Interact.</jnl-title>
<volume>7</volume>
<pages>14</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1175/1087-3562(2003)007 < 0001:EOAPAM > 2.0.CO;2</cr_doi>
<cr_issn type="print">1087-3562</cr_issn>
<cr_issn type="electronic">1087-3562</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib48" author="Lamb et al" year-label="2008">
<authors>
<au>
<second-name>Lamb</second-name>
<first-names>D W</first-names>
</au>
<au>
<second-name>Frazier</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Adams</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Improving pathways to adoption: putting the right P’s in precision agriculture</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>61</volume>
<pages>4–9</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2007.04.009</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib49" author="Lindenmayer and Likens" year-label="2010">
<authors>
<au>
<second-name>Lindenmayer</second-name>
<first-names>D B</first-names>
</au>
<au>
<second-name>Likens</second-name>
<first-names>G E</first-names>
</au>
</authors>
<year>2010</year>
<art-title>The science and application of ecological monitoring</art-title>
<jnl-title>Biol. Cons.</jnl-title>
<volume>143</volume>
<pages>1317–28</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.biocon.2010.02.013</cr_doi>
<cr_issn type="print">00063207</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib50" author="Lovett et al" year-label="2007">
<authors>
<au>
<second-name>Lovett</second-name>
<first-names>G M</first-names>
</au>
<au>
<second-name>Burns</second-name>
<first-names>D A</first-names>
</au>
<au>
<second-name>Driscoll</second-name>
<first-names>C T</first-names>
</au>
<au>
<second-name>Jenkins</second-name>
<first-names>J C</first-names>
</au>
<au>
<second-name>Mitchell</second-name>
<first-names>M J</first-names>
</au>
<au>
<second-name>Rustad</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Shanley</second-name>
<first-names>J B</first-names>
</au>
<au>
<second-name>Likens</second-name>
<first-names>G E</first-names>
</au>
<au>
<second-name>Haeuber</second-name>
<first-names>R</first-names>
</au>
</authors>
<year>2007</year>
<art-title>Who needs environmental monitoring?</art-title>
<jnl-title>Front. Ecol. Environ.</jnl-title>
<volume>5</volume>
<pages>253–60</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1890/1540-9295(2007)5[253:WNEM]2.0.CO;2</cr_doi>
<cr_issn type="print">1540-9295</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib51" author="McLaren et al" year-label="2009">
<authors>
<au>
<second-name>McLaren</second-name>
<first-names>C G</first-names>
</au>
<au>
<second-name>Metz</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>van den Berg</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Bruskiewich</second-name>
<first-names>R M</first-names>
</au>
<au>
<second-name>Magor</second-name>
<first-names>N P</first-names>
</au>
<au>
<second-name>Shires</second-name>
<first-names>D</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Informatics in agricultural research for development</art-title>
<jnl-title>Adv. Agron.</jnl-title>
<volume>102</volume>
<pages>135–57</pages>
</journal-ref>
<journal-ref id="erl374549bib52" author="McNairn et al" year-label="2009">
<authors>
<au>
<second-name>McNairn</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Champagne</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Shang</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Holmstrom</second-name>
<first-names>D</first-names>
</au>
<au>
<second-name>Reichert</second-name>
<first-names>G</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Integration of optical and synthetic aperture radar (SAR) imagery for delivering operational annual crop inventories</art-title>
<jnl-title>J. Photogram. Remote Sens.</jnl-title>
<volume>64</volume>
<pages>434–49</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.isprsjprs.2008.07.006</cr_doi>
<cr_issn type="print">09242716</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<misc-ref id="erl374549bib53" author="MEA" year-label="2005">
<authors>
<corporate>MEA (Millennium Ecosystem Assessment)</corporate>
</authors>
<year>2005</year>
<misc-title>Ecosystems and Human Well-Being</misc-title>
<publication>
<place>Washington, DC</place>
<publisher>Island</publisher>
</publication>
</misc-ref>
<journal-ref id="erl374549bib54" author="Monfreda et al" year-label="2008">
<authors>
<au>
<second-name>Monfreda</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Ramankutty</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Foley</second-name>
<first-names>J A</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000</art-title>
<jnl-title>Glob. Biogeochem. Cycles</jnl-title>
<volume>22</volume>
<pages>GB1022</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1029/2007GB002947</cr_doi>
<cr_issn type="print">0886-6236</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib55" author="Nash et al" year-label="2009">
<authors>
<au>
<second-name>Nash</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>Korduan</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Bill</second-name>
<first-names>R</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Applications of open geospatial web services in precision agriculture: a review</art-title>
<jnl-title>Precis. Agric.</jnl-title>
<volume>10</volume>
<pages>546–60</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1007/s11119-009-9134-0</cr_doi>
<cr_issn type="print">1385-2256</cr_issn>
<cr_issn type="electronic">1573-1618</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib56" author="Nduwamungu et al" year-label="2009">
<authors>
<au>
<second-name>Nduwamungu</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Ziadi</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Parent</second-name>
<first-names>L-E</first-names>
</au>
<au>
<second-name>Tremblay</second-name>
<first-names>G F</first-names>
</au>
<au>
<second-name>Thuries</second-name>
<first-names>L</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Opportunities for, and limitations of, near infrared reflectance spectroscopy applications in soil analysis: a review</art-title>
<jnl-title>Can. J. Soil Sci.</jnl-title>
<volume>89</volume>
<pages>531–41</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.4141/CJSS08076</cr_doi>
<cr_issn type="print">0008-4271</cr_issn>
<cr_issn type="electronic">1918-1841</cr_issn>
</crossref>
</journal-ref>
<book-ref id="erl374549bib57" author="OECD" year-label="2001">
<authors>
<corporate>OECD</corporate>
</authors>
<year>2001</year>
<book-title>Environmental Indicators for Agriculture: Methods and Results</book-title>
<volume>vol 3</volume>
<publication>
<place>Paris</place>
<publisher>OECD</publisher>
</publication>
<pages>pp 1–400</pages>
</book-ref>
<journal-ref id="erl374549bib58" author="O’Malley et al" year-label="2009">
<authors>
<au>
<second-name>O’Malley</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Marsh</second-name>
<first-names>A S</first-names>
</au>
<au>
<second-name>Negra</second-name>
<first-names>C</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Closing the environmental data gap</art-title>
<jnl-title>Issues Sci. Technol.</jnl-title>
<volume>25</volume>
<pages>69–74</pages>
</journal-ref>
<journal-ref id="erl374549bib59" author="Opara and Mazaud" year-label="2001">
<authors>
<au>
<second-name>Opara</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Mazaud</second-name>
<first-names>F</first-names>
</au>
</authors>
<year>2001</year>
<art-title>Food traceability from field to plate</art-title>
<jnl-title>Outlook Agric.</jnl-title>
<volume>30</volume>
<pages>239–47</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.5367/000000001101293724</cr_doi>
<cr_issn type="print">00307270</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib60" author="Ozdogan" year-label="2010">
<authors>
<au>
<second-name>Ozdogan</second-name>
<first-names>M</first-names>
</au>
</authors>
<year>2010</year>
<art-title>The spatial distribution of crop types from MODIS data: temporal unmixing using independent component analysis</art-title>
<jnl-title>Remote Sens. Environ.</jnl-title>
<volume>114</volume>
<pages>1190–1204</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.rse.2010.01.006</cr_doi>
<cr_issn type="print">00344257</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib61" author="Ozdogan et al" year-label="2010">
<authors>
<au>
<second-name>Ozdogan</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Yang</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Allez</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Cervantes</second-name>
<first-names>C</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Remote sensing of irrigated agriculture: opportunities and challenges—a review</art-title>
<jnl-title>Remote Sens.</jnl-title>
<volume>2</volume>
<pages>2274–2304</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.3390/rs2092274</cr_doi>
<cr_issn type="print"></cr_issn>
<cr_issn type="electronic">2072-4292</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib62" author="Parry et al" year-label="2004">
<authors>
<au>
<second-name>Parry</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Rosenzweig</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Iglesias</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Livermore</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Fischer</second-name>
<first-names>G</first-names>
</au>
</authors>
<year>2004</year>
<art-title>Effects of climate change on global food production under SRES emissions and socio-economic scenarios</art-title>
<jnl-title>Glob. Environ. Chang.</jnl-title>
<volume>14</volume>
<pages>53–67</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.gloenvcha.2003.10.008</cr_doi>
<cr_issn type="print">09593780</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib63" author="Payraudeau and Van Der Werf" year-label="2005">
<authors>
<au>
<second-name>Payraudeau</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Van Der Werf</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Environmental impact assessment for a farming region: a review of methods</art-title>
<jnl-title>Agric. Ecosyst. Environ.</jnl-title>
<volume>107</volume>
<pages>1–19</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.agee.2004.12.012</cr_doi>
<cr_issn type="print">01678809</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib64" author="Pierce and Elliott" year-label="2008">
<authors>
<au>
<second-name>Pierce</second-name>
<first-names>F J</first-names>
</au>
<au>
<second-name>Elliott</second-name>
<first-names>T V</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Regional and on-farm wireless sensor networks for agricultural systems in eastern Washington</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>61</volume>
<pages>32–43</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2007.05.007</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib65" author="Porter et al" year-label="2009">
<authors>
<au>
<second-name>Porter</second-name>
<first-names>J H</first-names>
</au>
<au>
<second-name>Nagy</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>Kratz</second-name>
<first-names>T K</first-names>
</au>
<au>
<second-name>Hanson</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Collins</second-name>
<first-names>S L</first-names>
</au>
<au>
<second-name>Arzberger</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>2009</year>
<art-title>New eyes on the world: advanced sensors for ecology</art-title>
<jnl-title>Bioscience</jnl-title>
<volume>59</volume>
<pages>385–97</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1525/bio.2009.59.5.6</cr_doi>
<cr_issn type="print">0006-3568</cr_issn>
<cr_issn type="electronic">1525-3244</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib66" author="Potter et al" year-label="2010">
<authors>
<au>
<second-name>Potter</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Ramankutty</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Bennett</second-name>
<first-names>E M</first-names>
</au>
<au>
<second-name>Donner</second-name>
<first-names>S D</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Characterizing the spatial patterns of global fertilizer application and manure production</art-title>
<jnl-title>Earth Interact.</jnl-title>
<volume>14</volume>
<pages>2</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1175/2009EI288.1</cr_doi>
<cr_issn type="print">1087-3562</cr_issn>
<cr_issn type="electronic">1087-3562</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib67" author="Ramankutty et al" year-label="2008">
<authors>
<au>
<second-name>Ramankutty</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Evan</second-name>
<first-names>a T</first-names>
</au>
<au>
<second-name>Monfreda</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Foley</second-name>
<first-names>J A</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000</art-title>
<jnl-title>Glob. Biogeochem. Cycles</jnl-title>
<volume>22</volume>
<pages>GB1003</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1029/2007GB002952</cr_doi>
<cr_issn type="print">0886-6236</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib68" author="Robertson and Swinton" year-label="2005">
<authors>
<au>
<second-name>Robertson</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Swinton</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture</art-title>
<jnl-title>Front Ecol. Environ.</jnl-title>
<volume>3</volume>
<pages>38–46</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2</cr_doi>
<cr_issn type="print">1540-9295</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib69" author="Robock et al" year-label="2000">
<authors>
<au>
<second-name>Robock</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Vinnikov</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Srinivasan</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Entin</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Hollinger</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Speranskaya</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Liu</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Namkhai</second-name>
<first-names>A</first-names>
</au>
</authors>
<year>2000</year>
<art-title>The global soil moisture data bank</art-title>
<jnl-title>Bull. Am. Meteorol. Soc.</jnl-title>
<volume>81</volume>
<pages>1281–99</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1175/1520-0477(2000)081 < 1281:TGSMDB > 2.3.CO;2</cr_doi>
<cr_issn type="print">0003-0007</cr_issn>
<cr_issn type="electronic">1520-0477</cr_issn>
</crossref>
</journal-ref>
<book-ref id="erl374549bib70" author="Rosegrant et al" year-label="2008">
<authors>
<au>
<second-name>Rosegrant</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Ringler</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Msangi</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Sulser</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Zhu</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Cline</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2008</year>
<book-title>A International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description</book-title>
<publication>
<place>Washington, DC</place>
<publisher>International Food Policy Research Institute</publisher>
</publication>
</book-ref>
<journal-ref id="erl374549bib71" author="Ross et al" year-label="2008">
<authors>
<au>
<second-name>Ross</second-name>
<first-names>K W</first-names>
</au>
<au>
<second-name>Morris</second-name>
<first-names>D K</first-names>
</au>
<au>
<second-name>Johannsen</second-name>
<first-names>C J</first-names>
</au>
</authors>
<year>2008</year>
<art-title>A review of intra-field yield estimation from yield monitor data</art-title>
<jnl-title>Appl. Eng. Agric.</jnl-title>
<volume>24</volume>
<pages>309–17</pages>
</journal-ref>
<journal-ref id="erl374549bib72" author="Rundel et al" year-label="2009">
<authors>
<au>
<second-name>Rundel</second-name>
<first-names>P W</first-names>
</au>
<au>
<second-name>Graham</second-name>
<first-names>E A</first-names>
</au>
<au>
<second-name>Allen</second-name>
<first-names>M F</first-names>
</au>
<au>
<second-name>Fisher</second-name>
<first-names>J C</first-names>
</au>
<au>
<second-name>Harmon</second-name>
<first-names>T C</first-names>
</au>
</authors>
<year>2009</year>
<art-title>Environmental sensor networks in ecological research</art-title>
<jnl-title>New. Phytol.</jnl-title>
<volume>182</volume>
<pages>589–607</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1111/j.1469-8137.2009.02811.x</cr_doi>
<cr_issn type="print">0028646X</cr_issn>
<cr_issn type="electronic">14698137</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib73" author="Sachs et al" year-label="2010">
<authors>
<au>
<second-name>Sachs</second-name>
<first-names>J</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2010</year>
<art-title>Monitoring the world’s agriculture</art-title>
<jnl-title>Nature</jnl-title>
<volume>466</volume>
<pages>558–60</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1038/466558a</cr_doi>
<cr_issn type="print">0028-0836</cr_issn>
<cr_issn type="electronic">1476-4687</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib74" author="Sadler et al" year-label="2005">
<authors>
<au>
<second-name>Sadler</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>Evans</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Stone</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Camp</second-name>
<first-names>C</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Opportunities for conservation with precision irrigation</art-title>
<jnl-title>J. Soil Water Cons.</jnl-title>
<volume>60</volume>
<pages>371–9</pages>
</journal-ref>
<journal-ref id="erl374549bib75" author="Sakamoto et al" year-label="2005">
<authors>
<au>
<second-name>Sakamoto</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Yokozawa</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Toritani</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Shibayama</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Ishitsuka</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Ohno</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>2005</year>
<art-title>A crop phenology detection method using time-series modis data</art-title>
<jnl-title>Remote Sens. Environ.</jnl-title>
<volume>96</volume>
<pages>366–74</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.rse.2005.03.008</cr_doi>
<cr_issn type="print">00344257</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib76" author="Sassenrath et al" year-label="2008">
<authors>
<au>
<second-name>Sassenrath</second-name>
<first-names>G F</first-names>
</au>
<au>
<second-name>Heilman</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Lusche</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>Bennett</second-name>
<first-names>G L</first-names>
</au>
<au>
<second-name>Fitzgerald</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Klesius</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Tracy</second-name>
<first-names>W</first-names>
</au>
<au>
<second-name>Williford</second-name>
<first-names>J R</first-names>
</au>
<au>
<second-name>Zimba</second-name>
<first-names>P V</first-names>
</au>
</authors>
<year>2008</year>
<art-title>Technology, complexity and change in agricultural production systems</art-title>
<jnl-title>Renew. Agric. Food Syst.</jnl-title>
<volume>23</volume>
<pages>285–95</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1017/S174217050700213X</cr_doi>
<cr_issn type="print">1742-1705</cr_issn>
<cr_issn type="electronic">1742-1713</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib77" author="Serrano et al" year-label="2010">
<authors>
<au>
<second-name>Serrano</second-name>
<first-names>J M</first-names>
</au>
<au>
<second-name>Peca</second-name>
<first-names>J O</first-names>
</au>
<au>
<second-name>Marques Da Silva</second-name>
<first-names>J R</first-names>
</au>
<au>
<second-name>Shaidian</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Mapping soil and pasture variability with an electromagnetic induction sensor</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>73</volume>
<pages>7–16</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2010.03.008</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib78" author="Sinfield et al" year-label="2010">
<authors>
<au>
<second-name>Sinfield</second-name>
<first-names>J V</first-names>
</au>
<au>
<second-name>Fagerman</second-name>
<first-names>D</first-names>
</au>
<au>
<second-name>Colic</second-name>
<first-names>O</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>70</volume>
<pages>1–18</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2009.09.017</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib79" author="Singels and Smith" year-label="2006">
<authors>
<au>
<second-name>Singels</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Smith</second-name>
<first-names>M T</first-names>
</au>
</authors>
<year>2006</year>
<art-title>Provision of irrigation scheduling advice to small-scale sugarcane farmers using a web-based crop model and cellular technology: a south African case study</art-title>
<jnl-title>Irrig. Drain.</jnl-title>
<volume>55</volume>
<pages>363–72</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1002/ird.231</cr_doi>
<cr_issn type="print">1531-0353</cr_issn>
<cr_issn type="electronic">1531-0361</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib80" author="Smith et al" year-label="2007">
<authors>
<au>
<second-name>Smith</second-name>
<first-names>P</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2007</year>
<art-title>Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture</art-title>
<jnl-title>Agric. Ecosyst. Environ.</jnl-title>
<volume>118</volume>
<pages>6–28</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.agee.2006.06.006</cr_doi>
<cr_issn type="print">01678809</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib81" author="Stevens et al" year-label="2010">
<authors>
<au>
<second-name>Stevens</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Udelhoven</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Denis</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Tychon</second-name>
<first-names>B</first-names>
</au>
<au>
<second-name>Lioy</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Hoffmann</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Van Wesemael</second-name>
<first-names>B</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy</art-title>
<jnl-title>Geoderma</jnl-title>
<volume>158</volume>
<pages>32–45</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.geoderma.2009.11.032</cr_doi>
<cr_issn type="print">00167061</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib82" author="Sumberg" year-label="2005">
<authors>
<au>
<second-name>Sumberg</second-name>
<first-names>J</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Constraints to the adoption of agricultural innovations-is it time for a re-think?</art-title>
<jnl-title>Outlook Agric.</jnl-title>
<volume>34</volume>
<pages>7–10</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.5367/0000000053295141</cr_doi>
<cr_issn type="print">00307270</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib83" author="Sun et al" year-label="2009">
<authors>
<au>
<second-name>Sun</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Li</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Lammers</second-name>
<first-names>R S</first-names>
</au>
<au>
<second-name>Zeng</second-name>
<first-names>Q</first-names>
</au>
<au>
<second-name>Lin</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Schumann</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>2009</year>
<art-title>A solar-powered wireless cell for dynamically monitoring soil water content</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>69</volume>
<pages>19–23</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2009.06.009</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib84" author="Swinton et al" year-label="2007">
<authors>
<au>
<second-name>Swinton</second-name>
<first-names>S M</first-names>
</au>
<au>
<second-name>Lupi</second-name>
<first-names>F</first-names>
</au>
<au>
<second-name>Robertson</second-name>
<first-names>G P</first-names>
</au>
<au>
<second-name>Hamilton</second-name>
<first-names>S K</first-names>
</au>
</authors>
<year>2007</year>
<art-title>Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits</art-title>
<jnl-title>Ecol. Econom.</jnl-title>
<volume>64</volume>
<pages>245–52</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.ecolecon.2007.09.020</cr_doi>
<cr_issn type="print">09218009</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib85" author="Teillet et al" year-label="2007">
<authors>
<au>
<second-name>Teillet</second-name>
<first-names>P M</first-names>
</au>
<others>
<italic>et al</italic>
</others>
</authors>
<year>2007</year>
<art-title>An integrated Earth sensing sensorweb for improved crop and rangeland yield predictions</art-title>
<jnl-title>Can. J. Remote Sens.</jnl-title>
<volume>33</volume>
<pages>88–98</pages>
</journal-ref>
<journal-ref id="erl374549bib86" author="Uslaender et al" year-label="2010">
<authors>
<au>
<second-name>Uslaender</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Jacques</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Simonis</second-name>
<first-names>I</first-names>
</au>
<au>
<second-name>Watson</second-name>
<first-names>K</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Designing environmental software applications based upon an open sensor service architecture</art-title>
<jnl-title>Environ. Modell. Softw.</jnl-title>
<volume>25</volume>
<pages>977–87</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.envsoft.2010.03.013</cr_doi>
<cr_issn type="print">13648152</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib87" author="Van Zyl et al" year-label="2009">
<authors>
<au>
<second-name>Van Zyl</second-name>
<first-names>T L</first-names>
</au>
<au>
<second-name>Simonis</second-name>
<first-names>I</first-names>
</au>
<au>
<second-name>Mcferren</second-name>
<first-names>G</first-names>
</au>
</authors>
<year>2009</year>
<art-title>The sensor web: systems of sensor systems</art-title>
<jnl-title>Int. J. Digit. Earth</jnl-title>
<volume>2</volume>
<pages>16–30</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1080/17538940802439549</cr_doi>
<cr_issn type="print">1753-8947</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib88" author="Vellidis et al" year-label="2008">
<authors>
<au>
<second-name>Vellidis</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Tucker</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Perry</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Wen</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Bednarz</second-name>
<first-names>C</first-names>
</au>
</authors>
<year>2008</year>
<art-title>A real-time wireless smart sensor array for scheduling irrigation</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>61</volume>
<pages>44–50</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2007.05.009</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib89" author="Wang et al" year-label="2006">
<authors>
<au>
<second-name>Wang</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Zhang</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Wang</second-name>
<first-names>M</first-names>
</au>
</authors>
<year>2006</year>
<art-title>Wireless sensors in agriculture and food industry—recent development and future perspective</art-title>
<jnl-title>Comput. Electron. Agric.</jnl-title>
<volume>50</volume>
<pages>1–14</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.compag.2005.09.003</cr_doi>
<cr_issn type="print">01681699</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<journal-ref id="erl374549bib90" author="Wang et al" year-label="2010">
<authors>
<au>
<second-name>Wang</second-name>
<first-names>Y-P</first-names>
</au>
<au>
<second-name>Chang</second-name>
<first-names>K-W</first-names>
</au>
<au>
<second-name>Chen</second-name>
<first-names>R-K</first-names>
</au>
<au>
<second-name>Lo</second-name>
<first-names>J-C</first-names>
</au>
<au>
<second-name>Shen</second-name>
<first-names>Y</first-names>
</au>
</authors>
<year>2010</year>
<art-title>Large-area rice yield forecasting using satellite imageries</art-title>
<jnl-title>Int. J. Appl. Earth Obs.</jnl-title>
<volume>12</volume>
<pages>27–35</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.jag.2009.09.009</cr_doi>
<cr_issn type="print">03032434</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
<book-ref id="erl374549bib91" author="World Bank" year-label="2008">
<authors>
<corporate>World Bank</corporate>
</authors>
<year>2008</year>
<book-title>World Development Report: Agriculture for Development</book-title>
<publication>
<place>Washington, DC</place>
<publisher>World Bank</publisher>
</publication>
</book-ref>
<journal-ref id="erl374549bib92" author="Zhang et al" year-label="2010">
<authors>
<au>
<second-name>Zhang</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Kimball</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Nemani</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Running</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2010</year>
<art-title>A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006</art-title>
<jnl-title>Water Resour. Res.</jnl-title>
<volume>46</volume>
<pages>W09522</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1029/2009WR008800</cr_doi>
<cr_issn type="print">0043-1397</cr_issn>
<cr_issn type="electronic"></cr_issn>
</crossref>
</journal-ref>
</reference-list>
</references>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="eng">
<title>Data and monitoring needs for a more ecological agriculture</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Data and monitoring needs for a more ecological agriculture</title>
</titleInfo>
<titleInfo type="alternative" lang="eng">
<title>Data and monitoring needs for a more ecological agriculture</title>
</titleInfo>
<name type="personal">
<namePart type="given">David P M</namePart>
<namePart type="family">Zaks</namePart>
<affiliation>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of WisconsinMadison, 1710 University Avenue, Madison, WI 53726, USA</affiliation>
<affiliation>Author to whom any correspondence should be addressed</affiliation>
<affiliation>E-mail: zaks@wisc.edu</affiliation>
<affiliation>E-mail: davidzaks@gmail.com</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher J</namePart>
<namePart type="family">Kucharik</namePart>
<affiliation>Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of WisconsinMadison, 1710 University Avenue, Madison, WI 53726, USA</affiliation>
<affiliation>Department of Agronomy, University of WisconsinMadison, 1575 Linden Drive, Madison, WI53706, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="letter">letter</genre>
<originInfo>
<publisher>IOP Publishing</publisher>
<dateIssued encoding="w3cdtf">2011</dateIssued>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<note type="production">Printed in the UK</note>
</physicalDescription>
<abstract>Information on the life-cycle environmental impacts of agricultural production is oftenlimited. As demands grow for increasing agricultural output while reducing its negativeenvironmental impacts, both existing and novel data sources can be leveraged to providemore information to producers, consumers, scientists and policy makers. We review thecomponents and organization of an agroecological sensor web that integrates remotesensing technologies and in situ sensors with models in order to provide decisionmakers with effective management options at useful spatial and temporal scales formaking more informed decisions about agricultural productivity while reducingenvironmental burdens. Several components of the system are already in place, but byincreasing the extent and accessibility of information, decision makers will have theopportunity to enhance food security and environmental quality. Potential roadblocks toimplementation include farmer acceptance, data transparency and technology deployment.</abstract>
<subject>
<genre>keywords</genre>
<topic>agriculture</topic>
<topic>environmental monitoring</topic>
<topic>science policy</topic>
<topic>agroecology</topic>
<topic>food security</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Environmental Research Letters</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Environ. Res. Lett.</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1748-9326</identifier>
<identifier type="eISSN">1748-9326</identifier>
<identifier type="PublisherID">erl</identifier>
<identifier type="CODEN">ERLNAL</identifier>
<identifier type="URL">stacks.iop.org/ERL</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>10</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">092840B4C18A423F07516A4364E2462EA5F2942D</identifier>
<identifier type="DOI">10.1088/1748-9326/6/1/014017</identifier>
<identifier type="PII">S1748-9326(11)74549-9</identifier>
<identifier type="articleID">374549</identifier>
<identifier type="articleNumber">014017</identifier>
<accessCondition type="use and reproduction" contentType="copyright">IOP Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>IOP</recordContentSource>
<recordOrigin>IOP Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/092840B4C18A423F07516A4364E2462EA5F2942D/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000628 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000628 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:092840B4C18A423F07516A4364E2462EA5F2942D
   |texte=   Data and monitoring needs for a more ecological agriculture
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024