Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Earth Observation Scientific Workflows in a Distributed Computing Environment

Identifieur interne : 000521 ( Istex/Corpus ); précédent : 000520; suivant : 000522

Earth Observation Scientific Workflows in a Distributed Computing Environment

Auteurs : Terence L. Van Zyl ; Anwar Vahed ; Graeme Mcferren ; Derek Hohls

Source :

RBID : ISTEX:CA03DCD703518BA61B79176F012679B1EFD993F8

Abstract

Geospatially Enabled Scientific Workflows offer a promising toolset to help researchers in the earth observation domain with many aspects of the scientific process. One such aspect is that of access to distributed earth observation data and computing resources. Earth observation research often utilizes large datasets requiring extensive CPU and memory resources in their processing. These resource intensive processes can be chained; the sequence of processes (and their provenance) makes up a scientific workflow. Despite the exponential growth in capacity of desktop computers, their resources are often insufficient for the scientific workflow processing tasks at hand. By integrating distributed computing capabilities into a geospatially enabled scientific workflow environment, it is possible to provide researchers with a mechanism to overcome the limitations of the desktop computer. Most of the effort on extending scientific workflows with distributed computing capabilities has focused on the web services approach, as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this article uses instead remote objects via RPyC and the dynamic properties of the Python programming language. The Vistrails environment has been extended to allow for geospatial processing through the EO4Vistrails package (http://code.google.com/p/eo4vistrails/). In order to allow these geospatial processes to be seamlessly executed on distributed resources such as cloud computing nodes, the Vistrails environment has been extended with both multi‐tasking capabilities and distributed processing capabilities. The multi‐tasking capabilities are required in order to allow Vistrails to run side‐by‐side processes, a capability it does not currently have. The distributed processing capabilities are achieved through the use of remote objects and mobile code through RPyC.

Url:
DOI: 10.1111/j.1467-9671.2012.01317.x

Links to Exploration step

ISTEX:CA03DCD703518BA61B79176F012679B1EFD993F8

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Earth Observation Scientific Workflows in a Distributed Computing Environment</title>
<author>
<name sortKey="Van Zyl, Terence L" sort="Van Zyl, Terence L" uniqKey="Van Zyl T" first="Terence L" last="Van Zyl">Terence L. Van Zyl</name>
<affiliation>
<mods:affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vahed, Anwar" sort="Vahed, Anwar" uniqKey="Vahed A" first="Anwar" last="Vahed">Anwar Vahed</name>
<affiliation>
<mods:affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mcferren, Graeme" sort="Mcferren, Graeme" uniqKey="Mcferren G" first="Graeme" last="Mcferren">Graeme Mcferren</name>
<affiliation>
<mods:affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hohls, Derek" sort="Hohls, Derek" uniqKey="Hohls D" first="Derek" last="Hohls">Derek Hohls</name>
<affiliation>
<mods:affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CA03DCD703518BA61B79176F012679B1EFD993F8</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1467-9671.2012.01317.x</idno>
<idno type="url">https://api.istex.fr/document/CA03DCD703518BA61B79176F012679B1EFD993F8/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000521</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Earth Observation Scientific Workflows in a Distributed Computing Environment</title>
<author>
<name sortKey="Van Zyl, Terence L" sort="Van Zyl, Terence L" uniqKey="Van Zyl T" first="Terence L" last="Van Zyl">Terence L. Van Zyl</name>
<affiliation>
<mods:affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vahed, Anwar" sort="Vahed, Anwar" uniqKey="Vahed A" first="Anwar" last="Vahed">Anwar Vahed</name>
<affiliation>
<mods:affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mcferren, Graeme" sort="Mcferren, Graeme" uniqKey="Mcferren G" first="Graeme" last="Mcferren">Graeme Mcferren</name>
<affiliation>
<mods:affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hohls, Derek" sort="Hohls, Derek" uniqKey="Hohls D" first="Derek" last="Hohls">Derek Hohls</name>
<affiliation>
<mods:affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Transactions in GIS</title>
<idno type="ISSN">1361-1682</idno>
<idno type="eISSN">1467-9671</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-04">2012-04</date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="233">233</biblScope>
<biblScope unit="page" to="248">248</biblScope>
</imprint>
<idno type="ISSN">1361-1682</idno>
</series>
<idno type="istex">CA03DCD703518BA61B79176F012679B1EFD993F8</idno>
<idno type="DOI">10.1111/j.1467-9671.2012.01317.x</idno>
<idno type="ArticleID">TGIS1317</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1361-1682</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Geospatially Enabled Scientific Workflows offer a promising toolset to help researchers in the earth observation domain with many aspects of the scientific process. One such aspect is that of access to distributed earth observation data and computing resources. Earth observation research often utilizes large datasets requiring extensive CPU and memory resources in their processing. These resource intensive processes can be chained; the sequence of processes (and their provenance) makes up a scientific workflow. Despite the exponential growth in capacity of desktop computers, their resources are often insufficient for the scientific workflow processing tasks at hand. By integrating distributed computing capabilities into a geospatially enabled scientific workflow environment, it is possible to provide researchers with a mechanism to overcome the limitations of the desktop computer. Most of the effort on extending scientific workflows with distributed computing capabilities has focused on the web services approach, as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this article uses instead remote objects via RPyC and the dynamic properties of the Python programming language. The Vistrails environment has been extended to allow for geospatial processing through the EO4Vistrails package (http://code.google.com/p/eo4vistrails/). In order to allow these geospatial processes to be seamlessly executed on distributed resources such as cloud computing nodes, the Vistrails environment has been extended with both multi‐tasking capabilities and distributed processing capabilities. The multi‐tasking capabilities are required in order to allow Vistrails to run side‐by‐side processes, a capability it does not currently have. The distributed processing capabilities are achieved through the use of remote objects and mobile code through RPyC.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Terence L van Zyl</name>
<affiliations>
<json:string>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</json:string>
</affiliations>
</json:item>
<json:item>
<name>Anwar Vahed</name>
<affiliations>
<json:string>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</json:string>
</affiliations>
</json:item>
<json:item>
<name>Graeme McFerren</name>
<affiliations>
<json:string>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</json:string>
</affiliations>
</json:item>
<json:item>
<name>Derek Hohls</name>
<affiliations>
<json:string>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>TGIS1317</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>technicalNote</json:string>
</originalGenre>
<abstract>Geospatially Enabled Scientific Workflows offer a promising toolset to help researchers in the earth observation domain with many aspects of the scientific process. One such aspect is that of access to distributed earth observation data and computing resources. Earth observation research often utilizes large datasets requiring extensive CPU and memory resources in their processing. These resource intensive processes can be chained; the sequence of processes (and their provenance) makes up a scientific workflow. Despite the exponential growth in capacity of desktop computers, their resources are often insufficient for the scientific workflow processing tasks at hand. By integrating distributed computing capabilities into a geospatially enabled scientific workflow environment, it is possible to provide researchers with a mechanism to overcome the limitations of the desktop computer. Most of the effort on extending scientific workflows with distributed computing capabilities has focused on the web services approach, as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this article uses instead remote objects via RPyC and the dynamic properties of the Python programming language. The Vistrails environment has been extended to allow for geospatial processing through the EO4Vistrails package (http://code.google.com/p/eo4vistrails/). In order to allow these geospatial processes to be seamlessly executed on distributed resources such as cloud computing nodes, the Vistrails environment has been extended with both multi‐tasking capabilities and distributed processing capabilities. The multi‐tasking capabilities are required in order to allow Vistrails to run side‐by‐side processes, a capability it does not currently have. The distributed processing capabilities are achieved through the use of remote objects and mobile code through RPyC.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>484.7 x 697.3 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1951</abstractCharCount>
<pdfWordCount>5671</pdfWordCount>
<pdfCharCount>35756</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>268</abstractWordCount>
</qualityIndicators>
<title>Earth Observation Scientific Workflows in a Distributed Computing Environment</title>
<genre>
<json:string>other</json:string>
</genre>
<host>
<volume>16</volume>
<publisherId>
<json:string>TGIS</json:string>
</publisherId>
<pages>
<total>16</total>
<last>248</last>
<first>233</first>
</pages>
<issn>
<json:string>1361-1682</json:string>
</issn>
<issue>2</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1467-9671</json:string>
</eissn>
<title>Transactions in GIS</title>
<doi>
<json:string>10.1111/(ISSN)1467-9671</json:string>
</doi>
</host>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1111/j.1467-9671.2012.01317.x</json:string>
</doi>
<id>CA03DCD703518BA61B79176F012679B1EFD993F8</id>
<score>0.1402953</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/CA03DCD703518BA61B79176F012679B1EFD993F8/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/CA03DCD703518BA61B79176F012679B1EFD993F8/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CA03DCD703518BA61B79176F012679B1EFD993F8/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Earth Observation Scientific Workflows in a Distributed Computing Environment</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>© 2012 Blackwell Publishing Ltd</p>
</availability>
<date>2012</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Earth Observation Scientific Workflows in a Distributed Computing Environment</title>
<author xml:id="author-1">
<persName>
<forename type="first">Terence L</forename>
<surname>van Zyl</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Terence L van Zyl, Earth Observation Science and IT, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa. E‐mail:</p>
</note>
<affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Anwar</forename>
<surname>Vahed</surname>
</persName>
<affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Graeme</forename>
<surname>McFerren</surname>
</persName>
<affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Derek</forename>
<surname>Hohls</surname>
</persName>
<affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Transactions in GIS</title>
<idno type="pISSN">1361-1682</idno>
<idno type="eISSN">1467-9671</idno>
<idno type="DOI">10.1111/(ISSN)1467-9671</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-04"></date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="233">233</biblScope>
<biblScope unit="page" to="248">248</biblScope>
</imprint>
</monogr>
<idno type="istex">CA03DCD703518BA61B79176F012679B1EFD993F8</idno>
<idno type="DOI">10.1111/j.1467-9671.2012.01317.x</idno>
<idno type="ArticleID">TGIS1317</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Geospatially Enabled Scientific Workflows offer a promising toolset to help researchers in the earth observation domain with many aspects of the scientific process. One such aspect is that of access to distributed earth observation data and computing resources. Earth observation research often utilizes large datasets requiring extensive CPU and memory resources in their processing. These resource intensive processes can be chained; the sequence of processes (and their provenance) makes up a scientific workflow. Despite the exponential growth in capacity of desktop computers, their resources are often insufficient for the scientific workflow processing tasks at hand. By integrating distributed computing capabilities into a geospatially enabled scientific workflow environment, it is possible to provide researchers with a mechanism to overcome the limitations of the desktop computer. Most of the effort on extending scientific workflows with distributed computing capabilities has focused on the web services approach, as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this article uses instead remote objects via RPyC and the dynamic properties of the Python programming language. The Vistrails environment has been extended to allow for geospatial processing through the EO4Vistrails package (http://code.google.com/p/eo4vistrails/). In order to allow these geospatial processes to be seamlessly executed on distributed resources such as cloud computing nodes, the Vistrails environment has been extended with both multi‐tasking capabilities and distributed processing capabilities. The multi‐tasking capabilities are required in order to allow Vistrails to run side‐by‐side processes, a capability it does not currently have. The distributed processing capabilities are achieved through the use of remote objects and mobile code through RPyC.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2012-04">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/CA03DCD703518BA61B79176F012679B1EFD993F8/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1467-9671</doi>
<issn type="print">1361-1682</issn>
<issn type="electronic">1467-9671</issn>
<idGroup>
<id type="product" value="TGIS"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="TRANSACTIONS IN GIS">Transactions in GIS</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="04102">
<doi origin="wiley">10.1111/tgis.2012.16.issue-2</doi>
<numberingGroup>
<numbering type="journalVolume" number="16">16</numbering>
<numbering type="journalIssue" number="2">2</numbering>
</numberingGroup>
<coverDate startDate="2012-04">April 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="technicalNote" position="10" status="forIssue">
<doi origin="wiley">10.1111/j.1467-9671.2012.01317.x</doi>
<idGroup>
<id type="unit" value="TGIS1317"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright>© 2012 Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:3.1.3 standalone mode:FullText" date="2012-04-13"></event>
<event type="firstOnline" date="2012-04-13"></event>
<event type="publishedOnlineFinalForm" date="2012-04-13"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-10"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="233">233</numbering>
<numbering type="pageLast" number="248">248</numbering>
</numberingGroup>
<correspondenceTo>Terence L van Zyl, Earth Observation Science and IT, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa. E‐mail:
<email>tvzyl@csir.co.za</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:TGIS.TGIS1317.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="1"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="22"></count>
<count type="wordTotal" number="6171"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Earth Observation Scientific Workflows in a Distributed Computing Environment</title>
<title type="shortAuthors">T L van Zyl, A Vahed, G McFerren and D Hohls</title>
<title type="short">Earth Observation Scientific Workflows</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>Terence L</givenNames>
<familyName>van Zyl</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>Anwar</givenNames>
<familyName>Vahed</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>Graeme</givenNames>
<familyName>McFerren</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>Derek</givenNames>
<familyName>Hohls</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="ZA">
<unparsedAffiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Geospatially Enabled Scientific Workflows offer a promising toolset to help researchers in the earth observation domain with many aspects of the scientific process. One such aspect is that of access to distributed earth observation data and computing resources. Earth observation research often utilizes large datasets requiring extensive CPU and memory resources in their processing. These resource intensive processes can be chained; the sequence of processes (and their provenance) makes up a scientific workflow. Despite the exponential growth in capacity of desktop computers, their resources are often insufficient for the scientific workflow processing tasks at hand. By integrating distributed computing capabilities into a geospatially enabled scientific workflow environment, it is possible to provide researchers with a mechanism to overcome the limitations of the desktop computer. Most of the effort on extending scientific workflows with distributed computing capabilities has focused on the web services approach, as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this article uses instead remote objects via RPyC and the dynamic properties of the Python programming language. The Vistrails environment has been extended to allow for geospatial processing through the EO4Vistrails package (
<url href="http://code.google.com/p/eo4vistrails/">http://code.google.com/p/eo4vistrails/</url>
). In order to allow these geospatial processes to be seamlessly executed on distributed resources such as cloud computing nodes, the Vistrails environment has been extended with both multi‐tasking capabilities and distributed processing capabilities. The multi‐tasking capabilities are required in order to allow Vistrails to run side‐by‐side processes, a capability it does not currently have. The distributed processing capabilities are achieved through the use of remote objects and mobile code through RPyC.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Earth Observation Scientific Workflows in a Distributed Computing Environment</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Earth Observation Scientific Workflows</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Earth Observation Scientific Workflows in a Distributed Computing Environment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Terence L</namePart>
<namePart type="family">van Zyl</namePart>
<affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</affiliation>
<description>Correspondence: Terence L van Zyl, Earth Observation Science and IT, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa. E‐mail: </description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anwar</namePart>
<namePart type="family">Vahed</namePart>
<affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graeme</namePart>
<namePart type="family">McFerren</namePart>
<affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="family">Hohls</namePart>
<affiliation>Earth Observation Science and IT, Council for Scientific and Industrial Research, South Africa</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="other" displayLabel="technicalNote"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-04</dateIssued>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">6</extent>
<extent unit="tables">1</extent>
<extent unit="references">22</extent>
<extent unit="words">6171</extent>
</physicalDescription>
<abstract lang="en">Geospatially Enabled Scientific Workflows offer a promising toolset to help researchers in the earth observation domain with many aspects of the scientific process. One such aspect is that of access to distributed earth observation data and computing resources. Earth observation research often utilizes large datasets requiring extensive CPU and memory resources in their processing. These resource intensive processes can be chained; the sequence of processes (and their provenance) makes up a scientific workflow. Despite the exponential growth in capacity of desktop computers, their resources are often insufficient for the scientific workflow processing tasks at hand. By integrating distributed computing capabilities into a geospatially enabled scientific workflow environment, it is possible to provide researchers with a mechanism to overcome the limitations of the desktop computer. Most of the effort on extending scientific workflows with distributed computing capabilities has focused on the web services approach, as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this article uses instead remote objects via RPyC and the dynamic properties of the Python programming language. The Vistrails environment has been extended to allow for geospatial processing through the EO4Vistrails package (http://code.google.com/p/eo4vistrails/). In order to allow these geospatial processes to be seamlessly executed on distributed resources such as cloud computing nodes, the Vistrails environment has been extended with both multi‐tasking capabilities and distributed processing capabilities. The multi‐tasking capabilities are required in order to allow Vistrails to run side‐by‐side processes, a capability it does not currently have. The distributed processing capabilities are achieved through the use of remote objects and mobile code through RPyC.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Transactions in GIS</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1361-1682</identifier>
<identifier type="eISSN">1467-9671</identifier>
<identifier type="DOI">10.1111/(ISSN)1467-9671</identifier>
<identifier type="PublisherID">TGIS</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>233</start>
<end>248</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CA03DCD703518BA61B79176F012679B1EFD993F8</identifier>
<identifier type="DOI">10.1111/j.1467-9671.2012.01317.x</identifier>
<identifier type="ArticleID">TGIS1317</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2012 Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/CA03DCD703518BA61B79176F012679B1EFD993F8/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000521 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000521 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CA03DCD703518BA61B79176F012679B1EFD993F8
   |texte=   Earth Observation Scientific Workflows in a Distributed Computing Environment
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024