Serveur d'exploration sur la télématique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0000850 ( Pmc/Corpus ); précédent : 0000849; suivant : 0000851 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox Imbalance and Viral Infections in Neurodegenerative Diseases</title>
<author>
<name sortKey="Limongi, Dolores" sort="Limongi, Dolores" uniqKey="Limongi D" first="Dolores" last="Limongi">Dolores Limongi</name>
<affiliation>
<nlm:aff id="I1">Università Telematica San Raffaele Roma, Via di Val Cannuta, 00167 Rome, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baldelli, Sara" sort="Baldelli, Sara" uniqKey="Baldelli S" first="Sara" last="Baldelli">Sara Baldelli</name>
<affiliation>
<nlm:aff id="I1">Università Telematica San Raffaele Roma, Via di Val Cannuta, 00167 Rome, Italy</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27110325</idno>
<idno type="pmc">4826696</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826696</idno>
<idno type="RBID">PMC:4826696</idno>
<idno type="doi">10.1155/2016/6547248</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000085</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Redox Imbalance and Viral Infections in Neurodegenerative Diseases</title>
<author>
<name sortKey="Limongi, Dolores" sort="Limongi, Dolores" uniqKey="Limongi D" first="Dolores" last="Limongi">Dolores Limongi</name>
<affiliation>
<nlm:aff id="I1">Università Telematica San Raffaele Roma, Via di Val Cannuta, 00167 Rome, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baldelli, Sara" sort="Baldelli, Sara" uniqKey="Baldelli S" first="Sara" last="Baldelli">Sara Baldelli</name>
<affiliation>
<nlm:aff id="I1">Università Telematica San Raffaele Roma, Via di Val Cannuta, 00167 Rome, Italy</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oxidative Medicine and Cellular Longevity</title>
<idno type="ISSN">1942-0900</idno>
<idno type="eISSN">1942-0994</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Halliwell, B" uniqKey="Halliwell B">B. Halliwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carvey, P M" uniqKey="Carvey P">P. M. Carvey</name>
</author>
<author>
<name sortKey="Punati, A" uniqKey="Punati A">A. Punati</name>
</author>
<author>
<name sortKey="Newman, M B" uniqKey="Newman M">M. B. Newman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shahani, N" uniqKey="Shahani N">N. Shahani</name>
</author>
<author>
<name sortKey="Subramaniam, S" uniqKey="Subramaniam S">S. Subramaniam</name>
</author>
<author>
<name sortKey="Wolf, T" uniqKey="Wolf T">T. Wolf</name>
</author>
<author>
<name sortKey="Tackenberg, C" uniqKey="Tackenberg C">C. Tackenberg</name>
</author>
<author>
<name sortKey="Brandt, R" uniqKey="Brandt R">R. Brandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jellinger, K A" uniqKey="Jellinger K">K. A. Jellinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gandhi, S" uniqKey="Gandhi S">S. Gandhi</name>
</author>
<author>
<name sortKey="Abramov, A Y" uniqKey="Abramov A">A. Y. Abramov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Qian, L" uniqKey="Qian L">L. Qian</name>
</author>
<author>
<name sortKey="Chen, S H" uniqKey="Chen S">S.-H. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersen, J K" uniqKey="Andersen J">J. K. Andersen</name>
</author>
<author>
<name sortKey="Davies, K J A" uniqKey="Davies K">K. J. A. Davies</name>
</author>
<author>
<name sortKey="Forman, H J" uniqKey="Forman H">H. J. Forman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuste, J E" uniqKey="Yuste J">J. E. Yuste</name>
</author>
<author>
<name sortKey="Tarragon, E" uniqKey="Tarragon E">E. Tarragon</name>
</author>
<author>
<name sortKey="Campuzano, C M" uniqKey="Campuzano C">C. M. Campuzano</name>
</author>
<author>
<name sortKey="Ros Bernal, F" uniqKey="Ros Bernal F">F. Ros-Bernal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aras, S" uniqKey="Aras S">S. Aras</name>
</author>
<author>
<name sortKey="Tanriover, G" uniqKey="Tanriover G">G. Tanriover</name>
</author>
<author>
<name sortKey="Aslan, M" uniqKey="Aslan M">M. Aslan</name>
</author>
<author>
<name sortKey="Yargicoglu, P" uniqKey="Yargicoglu P">P. Yargicoglu</name>
</author>
<author>
<name sortKey="Agar, A" uniqKey="Agar A">A. Agar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knott, A B" uniqKey="Knott A">A. B. Knott</name>
</author>
<author>
<name sortKey="Bossy Wetzel, E" uniqKey="Bossy Wetzel E">E. Bossy-Wetzel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aquilano, K" uniqKey="Aquilano K">K. Aquilano</name>
</author>
<author>
<name sortKey="Baldelli, S" uniqKey="Baldelli S">S. Baldelli</name>
</author>
<author>
<name sortKey="Rotilio, G" uniqKey="Rotilio G">G. Rotilio</name>
</author>
<author>
<name sortKey="Ciriolo, M R" uniqKey="Ciriolo M">M. R. Ciriolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nelson, E J" uniqKey="Nelson E">E. J. Nelson</name>
</author>
<author>
<name sortKey="Connolly, J" uniqKey="Connolly J">J. Connolly</name>
</author>
<author>
<name sortKey="Mcarthur, P" uniqKey="Mcarthur P">P. McArthur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marks, J D" uniqKey="Marks J">J. D. Marks</name>
</author>
<author>
<name sortKey="Boriboun, C" uniqKey="Boriboun C">C. Boriboun</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Bernhardi, R" uniqKey="Von Bernhardi R">R. von Bernhardi</name>
</author>
<author>
<name sortKey="Eugenin, J" uniqKey="Eugenin J">J. Eugenín</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chiurchiu, V" uniqKey="Chiurchiu V">V. Chiurchiù</name>
</author>
<author>
<name sortKey="Maccarrone, M" uniqKey="Maccarrone M">M. Maccarrone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klugman, A" uniqKey="Klugman A">A. Klugman</name>
</author>
<author>
<name sortKey="Naughton, D P" uniqKey="Naughton D">D. P. Naughton</name>
</author>
<author>
<name sortKey="Isaac, M" uniqKey="Isaac M">M. Isaac</name>
</author>
<author>
<name sortKey="Shah, I" uniqKey="Shah I">I. Shah</name>
</author>
<author>
<name sortKey="Petroczi, A" uniqKey="Petroczi A">A. Petroczi</name>
</author>
<author>
<name sortKey="Tabet, N" uniqKey="Tabet N">N. Tabet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smeyne, M" uniqKey="Smeyne M">M. Smeyne</name>
</author>
<author>
<name sortKey="Smeynen, R J" uniqKey="Smeynen R">R. J. Smeynen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sofic, E" uniqKey="Sofic E">E. Sofic</name>
</author>
<author>
<name sortKey="Lange, K W" uniqKey="Lange K">K. W. Lange</name>
</author>
<author>
<name sortKey="Jellinger, K" uniqKey="Jellinger K">K. Jellinger</name>
</author>
<author>
<name sortKey="Riederer, P" uniqKey="Riederer P">P. Riederer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babu, G N" uniqKey="Babu G">G. N. Babu</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Chandra, R" uniqKey="Chandra R">R. Chandra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamazaki, H" uniqKey="Yamazaki H">H. Yamazaki</name>
</author>
<author>
<name sortKey="Tanji, K" uniqKey="Tanji K">K. Tanji</name>
</author>
<author>
<name sortKey="Wakabayashi, K" uniqKey="Wakabayashi K">K. Wakabayashi</name>
</author>
<author>
<name sortKey="Matsuura, S" uniqKey="Matsuura S">S. Matsuura</name>
</author>
<author>
<name sortKey="Itoh, K" uniqKey="Itoh K">K. Itoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bryan, H K" uniqKey="Bryan H">H. K. Bryan</name>
</author>
<author>
<name sortKey="Olayanju, A" uniqKey="Olayanju A">A. Olayanju</name>
</author>
<author>
<name sortKey="Goldring, C E" uniqKey="Goldring C">C. E. Goldring</name>
</author>
<author>
<name sortKey="Park, B K" uniqKey="Park B">B. K. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramsey, C P" uniqKey="Ramsey C">C. P. Ramsey</name>
</author>
<author>
<name sortKey="Glass, C A" uniqKey="Glass C">C. A. Glass</name>
</author>
<author>
<name sortKey="Montgomery, M B" uniqKey="Montgomery M">M. B. Montgomery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarlette, A" uniqKey="Sarlette A">A. Sarlette</name>
</author>
<author>
<name sortKey="Krampfl, K" uniqKey="Krampfl K">K. Krampfl</name>
</author>
<author>
<name sortKey="Grothe, C" uniqKey="Grothe C">C. Grothe</name>
</author>
<author>
<name sortKey="Neuhoff, N V" uniqKey="Neuhoff N">N. V. Neuhoff</name>
</author>
<author>
<name sortKey="Dengler, R" uniqKey="Dengler R">R. Dengler</name>
</author>
<author>
<name sortKey="Petri, S" uniqKey="Petri S">S. Petri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mattson, M P" uniqKey="Mattson M">M. P. Mattson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsuda, K" uniqKey="Matsuda K">K. Matsuda</name>
</author>
<author>
<name sortKey="Park, C H" uniqKey="Park C">C. H. Park</name>
</author>
<author>
<name sortKey="Sunden, Y" uniqKey="Sunden Y">Y. Sunden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amor, S" uniqKey="Amor S">S. Amor</name>
</author>
<author>
<name sortKey="Puentes, F" uniqKey="Puentes F">F. Puentes</name>
</author>
<author>
<name sortKey="Baker, D" uniqKey="Baker D">D. Baker</name>
</author>
<author>
<name sortKey="Van Der Valk, P" uniqKey="Van Der Valk P">P. Van Der Valk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shipley, S J" uniqKey="Shipley S">S. J. Shipley</name>
</author>
<author>
<name sortKey="Parkin, E T" uniqKey="Parkin E">E. T. Parkin</name>
</author>
<author>
<name sortKey="Itzhaki, R F" uniqKey="Itzhaki R">R. F. Itzhaki</name>
</author>
<author>
<name sortKey="Dobson, C B" uniqKey="Dobson C">C. B. Dobson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wozniak, M A" uniqKey="Wozniak M">M. A. Wozniak</name>
</author>
<author>
<name sortKey="Itzhaki, R F" uniqKey="Itzhaki R">R. F. Itzhaki</name>
</author>
<author>
<name sortKey="Shipley, S J" uniqKey="Shipley S">S. J. Shipley</name>
</author>
<author>
<name sortKey="Dobson, C B" uniqKey="Dobson C">C. B. Dobson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rahal, A" uniqKey="Rahal A">A. Rahal</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Singh, V" uniqKey="Singh V">V. Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, M P" uniqKey="Murphy M">M. P. Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mari, M" uniqKey="Mari M">M. Marí</name>
</author>
<author>
<name sortKey="Morales, A" uniqKey="Morales A">A. Morales</name>
</author>
<author>
<name sortKey="Colell, A" uniqKey="Colell A">A. Colell</name>
</author>
<author>
<name sortKey="Garcia Ruiz, C" uniqKey="Garcia Ruiz C">C. García-Ruiz</name>
</author>
<author>
<name sortKey="Kaplowitz, N" uniqKey="Kaplowitz N">N. Kaplowitz</name>
</author>
<author>
<name sortKey="Fernandez Checa, J C" uniqKey="Fernandez Checa J">J. C. Fernández-Checa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brandes, R P" uniqKey="Brandes R">R. P. Brandes</name>
</author>
<author>
<name sortKey="Weissmann, N" uniqKey="Weissmann N">N. Weissmann</name>
</author>
<author>
<name sortKey="Schroder, K" uniqKey="Schroder K">K. Schröder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cooney, S J" uniqKey="Cooney S">S. J. Cooney</name>
</author>
<author>
<name sortKey="Bermudez Sabogal, S L" uniqKey="Bermudez Sabogal S">S. L. Bermudez-Sabogal</name>
</author>
<author>
<name sortKey="Byrnes, K R" uniqKey="Byrnes K">K. R. Byrnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amatore, D" uniqKey="Amatore D">D. Amatore</name>
</author>
<author>
<name sortKey="Sgarbanti, R" uniqKey="Sgarbanti R">R. Sgarbanti</name>
</author>
<author>
<name sortKey="Aquilano, K" uniqKey="Aquilano K">K. Aquilano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qin, L" uniqKey="Qin L">L. Qin</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Hong, J S" uniqKey="Hong J">J.-S. Hong</name>
</author>
<author>
<name sortKey="Crews, F T" uniqKey="Crews F">F. T. Crews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Butterfield, D A" uniqKey="Butterfield D">D. A. Butterfield</name>
</author>
<author>
<name sortKey="Reed, T" uniqKey="Reed T">T. Reed</name>
</author>
<author>
<name sortKey="Newman, S F" uniqKey="Newman S">S. F. Newman</name>
</author>
<author>
<name sortKey="Sultana, R" uniqKey="Sultana R">R. Sultana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, M P" uniqKey="Murphy M">M. P. Murphy</name>
</author>
<author>
<name sortKey="Levine, H" uniqKey="Levine H">H. Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binder, L I" uniqKey="Binder L">L. I. Binder</name>
</author>
<author>
<name sortKey="Guillozet Bongaarts, A L" uniqKey="Guillozet Bongaarts A">A. L. Guillozet-Bongaarts</name>
</author>
<author>
<name sortKey="Garcia Sierra, F" uniqKey="Garcia Sierra F">F. Garcia-Sierra</name>
</author>
<author>
<name sortKey="Berry, R W" uniqKey="Berry R">R. W. Berry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ando, K" uniqKey="Ando K">K. Ando</name>
</author>
<author>
<name sortKey="Laborde, Q" uniqKey="Laborde Q">Q. Laborde</name>
</author>
<author>
<name sortKey="Lazar, A" uniqKey="Lazar A">A. Lazar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stamer, K" uniqKey="Stamer K">K. Stamer</name>
</author>
<author>
<name sortKey="Vogel, R" uniqKey="Vogel R">R. Vogel</name>
</author>
<author>
<name sortKey="Thies, E" uniqKey="Thies E">E. Thies</name>
</author>
<author>
<name sortKey="Mandelkow, E" uniqKey="Mandelkow E">E. Mandelkow</name>
</author>
<author>
<name sortKey="Mandelkow, E M" uniqKey="Mandelkow E">E.-M. Mandelkow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuhla, A" uniqKey="Kuhla A">A. Kuhla</name>
</author>
<author>
<name sortKey="Ludwig, S C" uniqKey="Ludwig S">S. C. Ludwig</name>
</author>
<author>
<name sortKey="Kuhla, B" uniqKey="Kuhla B">B. Kuhla</name>
</author>
<author>
<name sortKey="Munch, G" uniqKey="Munch G">G. Münch</name>
</author>
<author>
<name sortKey="Vollmar, B" uniqKey="Vollmar B">B. Vollmar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Butterfield, D A" uniqKey="Butterfield D">D. A. Butterfield</name>
</author>
<author>
<name sortKey="Swomley, A M" uniqKey="Swomley A">A. M. Swomley</name>
</author>
<author>
<name sortKey="Sultana, R" uniqKey="Sultana R">R. Sultana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barbagallo, M" uniqKey="Barbagallo M">M. Barbagallo</name>
</author>
<author>
<name sortKey="Marotta, F" uniqKey="Marotta F">F. Marotta</name>
</author>
<author>
<name sortKey="Dominguez, L J" uniqKey="Dominguez L">L. J. Dominguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aquilano, K" uniqKey="Aquilano K">K. Aquilano</name>
</author>
<author>
<name sortKey="Baldelli, S" uniqKey="Baldelli S">S. Baldelli</name>
</author>
<author>
<name sortKey="Ciriolo, M R" uniqKey="Ciriolo M">M. R. Ciriolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uttara, B" uniqKey="Uttara B">B. Uttara</name>
</author>
<author>
<name sortKey="Singh, A V" uniqKey="Singh A">A. V. Singh</name>
</author>
<author>
<name sortKey="Zamboni, P" uniqKey="Zamboni P">P. Zamboni</name>
</author>
<author>
<name sortKey="Mahajan, R T" uniqKey="Mahajan R">R. T. Mahajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcgrath, L T" uniqKey="Mcgrath L">L. T. McGrath</name>
</author>
<author>
<name sortKey="Mcgleenon, B M" uniqKey="Mcgleenon B">B. M. McGleenon</name>
</author>
<author>
<name sortKey="Brennan, S" uniqKey="Brennan S">S. Brennan</name>
</author>
<author>
<name sortKey="Mccoll, D" uniqKey="Mccoll D">D. McColl</name>
</author>
<author>
<name sortKey="Mcilroy, S" uniqKey="Mcilroy S">S. McILroy</name>
</author>
<author>
<name sortKey="Passmore, A P" uniqKey="Passmore A">A. P. Passmore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gamba, P" uniqKey="Gamba P">P. Gamba</name>
</author>
<author>
<name sortKey="Testa, G" uniqKey="Testa G">G. Testa</name>
</author>
<author>
<name sortKey="Gargiulo, S" uniqKey="Gargiulo S">S. Gargiulo</name>
</author>
<author>
<name sortKey="Staurenghi, E" uniqKey="Staurenghi E">E. Staurenghi</name>
</author>
<author>
<name sortKey="Poli, G" uniqKey="Poli G">G. Poli</name>
</author>
<author>
<name sortKey="Leonarduzzi, G" uniqKey="Leonarduzzi G">G. Leonarduzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talbot, K" uniqKey="Talbot K">K. Talbot</name>
</author>
<author>
<name sortKey="Wang, H Y" uniqKey="Wang H">H.-Y. Wang</name>
</author>
<author>
<name sortKey="Kazi, H" uniqKey="Kazi H">H. Kazi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elfrink, H L" uniqKey="Elfrink H">H. L. Elfrink</name>
</author>
<author>
<name sortKey="Zwart, R" uniqKey="Zwart R">R. Zwart</name>
</author>
<author>
<name sortKey="Cavanillas, M L" uniqKey="Cavanillas M">M. L. Cavanillas</name>
</author>
<author>
<name sortKey="Schindler, A J" uniqKey="Schindler A">A. J. Schindler</name>
</author>
<author>
<name sortKey="Baas, F" uniqKey="Baas F">F. Baas</name>
</author>
<author>
<name sortKey="Scheper, W" uniqKey="Scheper W">W. Scheper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moreira, P I" uniqKey="Moreira P">P. I. Moreira</name>
</author>
<author>
<name sortKey="Sayre, L M" uniqKey="Sayre L">L. M. Sayre</name>
</author>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Nunomura, A" uniqKey="Nunomura A">A. Nunomura</name>
</author>
<author>
<name sortKey="Smith, M A" uniqKey="Smith M">M. A. Smith</name>
</author>
<author>
<name sortKey="Perry, G" uniqKey="Perry G">G. Perry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lovell, M A" uniqKey="Lovell M">M. A. Lovell</name>
</author>
<author>
<name sortKey="Robertson, J D" uniqKey="Robertson J">J. D. Robertson</name>
</author>
<author>
<name sortKey="Teesdale, W J" uniqKey="Teesdale W">W. J. Teesdale</name>
</author>
<author>
<name sortKey="Campbell, J L" uniqKey="Campbell J">J. L. Campbell</name>
</author>
<author>
<name sortKey="Markesbery, W R" uniqKey="Markesbery W">W. R. Markesbery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Molina, J A" uniqKey="Molina J">J. A. Molina</name>
</author>
<author>
<name sortKey="Jimenez Jimenez, F J" uniqKey="Jimenez Jimenez F">F. J. Jiménez-Jiménez</name>
</author>
<author>
<name sortKey="Aguilar, M V" uniqKey="Aguilar M">M. V. Aguilar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hane, F" uniqKey="Hane F">F. Hane</name>
</author>
<author>
<name sortKey="Leonenko, Z" uniqKey="Leonenko Z">Z. Leonenko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torsdottir, G" uniqKey="Torsdottir G">G. Torsdottir</name>
</author>
<author>
<name sortKey="Kristinsson, J" uniqKey="Kristinsson J">J. Kristinsson</name>
</author>
<author>
<name sortKey="Snaedal, J" uniqKey="Snaedal J">J. Snaedal</name>
</author>
<author>
<name sortKey="J Hannesson, T" uniqKey="J Hannesson T">T. Jóhannesson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crouch, P J" uniqKey="Crouch P">P. J. Crouch</name>
</author>
<author>
<name sortKey="White, A R" uniqKey="White A">A. R. White</name>
</author>
<author>
<name sortKey="Bush, A I" uniqKey="Bush A">A. I. Bush</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schrag, M" uniqKey="Schrag M">M. Schrag</name>
</author>
<author>
<name sortKey="Mueller, C" uniqKey="Mueller C">C. Mueller</name>
</author>
<author>
<name sortKey="Oyoyo, U" uniqKey="Oyoyo U">U. Oyoyo</name>
</author>
<author>
<name sortKey="Smith, M A" uniqKey="Smith M">M. A. Smith</name>
</author>
<author>
<name sortKey="Kirsch, W M" uniqKey="Kirsch W">W. M. Kirsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reichmann, H" uniqKey="Reichmann H">H. Reichmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amor, S" uniqKey="Amor S">S. Amor</name>
</author>
<author>
<name sortKey="Peferoen, L A N" uniqKey="Peferoen L">L. A. N. Peferoen</name>
</author>
<author>
<name sortKey="Vogel, D Y S" uniqKey="Vogel D">D. Y. S. Vogel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Engelender, S" uniqKey="Engelender S">S. Engelender</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bosco, D A" uniqKey="Bosco D">D. A. Bosco</name>
</author>
<author>
<name sortKey="Fowler, D M" uniqKey="Fowler D">D. M. Fowler</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakabeppu, Y" uniqKey="Nakabeppu Y">Y. Nakabeppu</name>
</author>
<author>
<name sortKey="Tsuchimoto, D" uniqKey="Tsuchimoto D">D. Tsuchimoto</name>
</author>
<author>
<name sortKey="Yamaguchi, H" uniqKey="Yamaguchi H">H. Yamaguchi</name>
</author>
<author>
<name sortKey="Sakumi, K" uniqKey="Sakumi K">K. Sakumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeevalk, G D" uniqKey="Zeevalk G">G. D. Zeevalk</name>
</author>
<author>
<name sortKey="Razmpour, R" uniqKey="Razmpour R">R. Razmpour</name>
</author>
<author>
<name sortKey="Bernard, L P" uniqKey="Bernard L">L. P. Bernard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emmanouilidou, E" uniqKey="Emmanouilidou E">E. Emmanouilidou</name>
</author>
<author>
<name sortKey="Stefanis, L" uniqKey="Stefanis L">L. Stefanis</name>
</author>
<author>
<name sortKey="Vekrellis, K" uniqKey="Vekrellis K">K. Vekrellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coppede, F" uniqKey="Coppede F">F. Coppedè</name>
</author>
<author>
<name sortKey="Migliore, L" uniqKey="Migliore L">L. Migliore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castellani, R J" uniqKey="Castellani R">R. J. Castellani</name>
</author>
<author>
<name sortKey="Perry, G" uniqKey="Perry G">G. Perry</name>
</author>
<author>
<name sortKey="Siedlak, S L" uniqKey="Siedlak S">S. L. Siedlak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcelhanon, K E" uniqKey="Mcelhanon K">K. E. McElhanon</name>
</author>
<author>
<name sortKey="Bose, C" uniqKey="Bose C">C. Bose</name>
</author>
<author>
<name sortKey="Sharma, R" uniqKey="Sharma R">R. Sharma</name>
</author>
<author>
<name sortKey="Wu, L" uniqKey="Wu L">L. Wu</name>
</author>
<author>
<name sortKey="Awasthi, Y C" uniqKey="Awasthi Y">Y. C. Awasthi</name>
</author>
<author>
<name sortKey="Singh, S P" uniqKey="Singh S">S. P. Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S J" uniqKey="Lee S">S. J. Lee</name>
</author>
<author>
<name sortKey="Seo, K W" uniqKey="Seo K">K. W. Seo</name>
</author>
<author>
<name sortKey="Yun, M R" uniqKey="Yun M">M. R. Yun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, Z F" uniqKey="Peng Z">Z. F. Peng</name>
</author>
<author>
<name sortKey="Koh, C H V" uniqKey="Koh C">C. H. V. Koh</name>
</author>
<author>
<name sortKey="Li, Q T" uniqKey="Li Q">Q. T. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ayala, A" uniqKey="Ayala A">A. Ayala</name>
</author>
<author>
<name sortKey="Mu Oz, M F" uniqKey="Mu Oz M">M. F. Muñoz</name>
</author>
<author>
<name sortKey="Arguelles, S" uniqKey="Arguelles S">S. Argüelles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Camandola, S" uniqKey="Camandola S">S. Camandola</name>
</author>
<author>
<name sortKey="Poli, G" uniqKey="Poli G">G. Poli</name>
</author>
<author>
<name sortKey="Mattson, M P" uniqKey="Mattson M">M. P. Mattson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Camandola, S" uniqKey="Camandola S">S. Camandola</name>
</author>
<author>
<name sortKey="Poli, G" uniqKey="Poli G">G. Poli</name>
</author>
<author>
<name sortKey="Mattson, M P" uniqKey="Mattson M">M. P. Mattson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, Z" uniqKey="Guo Z">Z. Guo</name>
</author>
<author>
<name sortKey="Xu, S" uniqKey="Xu S">S. Xu</name>
</author>
<author>
<name sortKey="Du, N" uniqKey="Du N">N. Du</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Han, M" uniqKey="Han M">M. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Bohlen Und Halbach, O" uniqKey="Von Bohlen Und Halbach O">O. von Bohlen Und Halbach</name>
</author>
<author>
<name sortKey="Schober, A" uniqKey="Schober A">A. Schober</name>
</author>
<author>
<name sortKey="Hertel, R" uniqKey="Hertel R">R. Hertel</name>
</author>
<author>
<name sortKey="Unsicker, K" uniqKey="Unsicker K">K. Unsicker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Betarbet, R" uniqKey="Betarbet R">R. Betarbet</name>
</author>
<author>
<name sortKey="Sherer, T B" uniqKey="Sherer T">T. B. Sherer</name>
</author>
<author>
<name sortKey="Mackenzie, G" uniqKey="Mackenzie G">G. MacKenzie</name>
</author>
<author>
<name sortKey="Garcia Osuna, M" uniqKey="Garcia Osuna M">M. Garcia-Osuna</name>
</author>
<author>
<name sortKey="Panov, A V" uniqKey="Panov A">A. V. Panov</name>
</author>
<author>
<name sortKey="Greenamyre, J T" uniqKey="Greenamyre J">J. T. Greenamyre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dauer, W" uniqKey="Dauer W">W. Dauer</name>
</author>
<author>
<name sortKey="Przedborski, S" uniqKey="Przedborski S">S. Przedborski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lotharius, J" uniqKey="Lotharius J">J. Lotharius</name>
</author>
<author>
<name sortKey="O Malley, K L" uniqKey="O Malley K">K. L. O'Malley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hastings, T G" uniqKey="Hastings T">T. G. Hastings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jackson Lewis, V" uniqKey="Jackson Lewis V">V. Jackson-Lewis</name>
</author>
<author>
<name sortKey="Smeyne, R J" uniqKey="Smeyne R">R. J. Smeyne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Proukakis, C" uniqKey="Proukakis C">C. Proukakis</name>
</author>
<author>
<name sortKey="Dudzik, C G" uniqKey="Dudzik C">C. G. Dudzik</name>
</author>
<author>
<name sortKey="Brier, T" uniqKey="Brier T">T. Brier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conway, K A" uniqKey="Conway K">K. A. Conway</name>
</author>
<author>
<name sortKey="Rochet, J C" uniqKey="Rochet J">J.-C. Rochet</name>
</author>
<author>
<name sortKey="Bieganski, R M" uniqKey="Bieganski R">R. M. Bieganski</name>
</author>
<author>
<name sortKey="Lansbury, P T J" uniqKey="Lansbury P">P.T. J. Lansbury</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rochet, J C" uniqKey="Rochet J">J.-C. Rochet</name>
</author>
<author>
<name sortKey="Outeiro, T F" uniqKey="Outeiro T">T. F. Outeiro</name>
</author>
<author>
<name sortKey="Conway, K A" uniqKey="Conway K">K. A. Conway</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swarup, V" uniqKey="Swarup V">V. Swarup</name>
</author>
<author>
<name sortKey="Julien, J P" uniqKey="Julien J">J.-P. Julien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niebr J Dobosz, I" uniqKey="Niebr J Dobosz I">I. Niebrój-Dobosz</name>
</author>
<author>
<name sortKey="Dziewulska, D" uniqKey="Dziewulska D">D. Dziewulska</name>
</author>
<author>
<name sortKey="Kwieci Ski, H" uniqKey="Kwieci Ski H">H. Kwieciński</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Bao, F" uniqKey="Bao F">F. Bao</name>
</author>
<author>
<name sortKey="Wen, J" uniqKey="Wen J">J. Wen</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drechsel, D A" uniqKey="Drechsel D">D. A. Drechsel</name>
</author>
<author>
<name sortKey="Estevez, A G" uniqKey="Estevez A">A. G. Estévez</name>
</author>
<author>
<name sortKey="Barbeito, L" uniqKey="Barbeito L">L. Barbeito</name>
</author>
<author>
<name sortKey="Beckman, J S" uniqKey="Beckman J">J. S. Beckman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bogdanov, M" uniqKey="Bogdanov M">M. Bogdanov</name>
</author>
<author>
<name sortKey="Brown, R H" uniqKey="Brown R">R. H. Brown</name>
</author>
<author>
<name sortKey="Matson, W" uniqKey="Matson W">W. Matson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abe, K" uniqKey="Abe K">K. Abe</name>
</author>
<author>
<name sortKey="Pan, L H" uniqKey="Pan L">L.-H. Pan</name>
</author>
<author>
<name sortKey="Watanabe, M" uniqKey="Watanabe M">M. Watanabe</name>
</author>
<author>
<name sortKey="Konno, H" uniqKey="Konno H">H. Konno</name>
</author>
<author>
<name sortKey="Kato, T" uniqKey="Kato T">T. Kato</name>
</author>
<author>
<name sortKey="Itoyama, Y" uniqKey="Itoyama Y">Y. Itoyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cookson, M R" uniqKey="Cookson M">M. R. Cookson</name>
</author>
<author>
<name sortKey="Menzies, F M" uniqKey="Menzies F">F. M. Menzies</name>
</author>
<author>
<name sortKey="Manning, P" uniqKey="Manning P">P. Manning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayashi, Y" uniqKey="Hayashi Y">Y. Hayashi</name>
</author>
<author>
<name sortKey="Homma, K" uniqKey="Homma K">K. Homma</name>
</author>
<author>
<name sortKey="Ichijo, H" uniqKey="Ichijo H">H. Ichijo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brettschneider, J" uniqKey="Brettschneider J">J. Brettschneider</name>
</author>
<author>
<name sortKey="Arai, K" uniqKey="Arai K">K. Arai</name>
</author>
<author>
<name sortKey="Del Tredici, K" uniqKey="Del Tredici K">K. Del Tredici</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mackenzie, I R A" uniqKey="Mackenzie I">I. R. A. Mackenzie</name>
</author>
<author>
<name sortKey="Bigio, E H" uniqKey="Bigio E">E. H. Bigio</name>
</author>
<author>
<name sortKey="Ince, P G" uniqKey="Ince P">P. G. Ince</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maekawa, S" uniqKey="Maekawa S">S. Maekawa</name>
</author>
<author>
<name sortKey="Leigh, P N" uniqKey="Leigh P">P. N. Leigh</name>
</author>
<author>
<name sortKey="King, A" uniqKey="King A">A. King</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winton, M J" uniqKey="Winton M">M. J. Winton</name>
</author>
<author>
<name sortKey="Igaz, L M" uniqKey="Igaz L">L. M. Igaz</name>
</author>
<author>
<name sortKey="Wong, M M" uniqKey="Wong M">M. M. Wong</name>
</author>
<author>
<name sortKey="Kwong, L K" uniqKey="Kwong L">L. K. Kwong</name>
</author>
<author>
<name sortKey="Trojanowski, J Q" uniqKey="Trojanowski J">J. Q. Trojanowski</name>
</author>
<author>
<name sortKey="Lee, V M Y" uniqKey="Lee V">V. M.-Y. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gregory, R I" uniqKey="Gregory R">R. I. Gregory</name>
</author>
<author>
<name sortKey="Yan, K P" uniqKey="Yan K">K.-P. Yan</name>
</author>
<author>
<name sortKey="Amuthan, G" uniqKey="Amuthan G">G. Amuthan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Z S" uniqKey="Xu Z">Z.-S. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu Yesucevitz, L" uniqKey="Liu Yesucevitz L">L. Liu-Yesucevitz</name>
</author>
<author>
<name sortKey="Bilgutay, A" uniqKey="Bilgutay A">A. Bilgutay</name>
</author>
<author>
<name sortKey="Zhang, Y J" uniqKey="Zhang Y">Y.-J. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bentmann, E" uniqKey="Bentmann E">E. Bentmann</name>
</author>
<author>
<name sortKey="Neumann, M" uniqKey="Neumann M">M. Neumann</name>
</author>
<author>
<name sortKey="Tahirovic, S" uniqKey="Tahirovic S">S. Tahirovic</name>
</author>
<author>
<name sortKey="Rodde, R" uniqKey="Rodde R">R. Rodde</name>
</author>
<author>
<name sortKey="Dormann, D" uniqKey="Dormann D">D. Dormann</name>
</author>
<author>
<name sortKey="Haass, C" uniqKey="Haass C">C. Haass</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colombrita, C" uniqKey="Colombrita C">C. Colombrita</name>
</author>
<author>
<name sortKey="Zennaro, E" uniqKey="Zennaro E">E. Zennaro</name>
</author>
<author>
<name sortKey="Fallini, C" uniqKey="Fallini C">C. Fallini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frank Cannon, T C" uniqKey="Frank Cannon T">T. C. Frank-Cannon</name>
</author>
<author>
<name sortKey="Alto, L T" uniqKey="Alto L">L. T. Alto</name>
</author>
<author>
<name sortKey="Mcalpine, F E" uniqKey="Mcalpine F">F. E. McAlpine</name>
</author>
<author>
<name sortKey="Tansey, M G" uniqKey="Tansey M">M. G. Tansey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, G C" uniqKey="Brown G">G. C. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cappellano, G" uniqKey="Cappellano G">G. Cappellano</name>
</author>
<author>
<name sortKey="Carecchio, M" uniqKey="Carecchio M">M. Carecchio</name>
</author>
<author>
<name sortKey="Fleetwood, T" uniqKey="Fleetwood T">T. Fleetwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Citron, B A" uniqKey="Citron B">B. A. Citron</name>
</author>
<author>
<name sortKey="Dennis, J S" uniqKey="Dennis J">J. S. Dennis</name>
</author>
<author>
<name sortKey="Zeitlin, R S" uniqKey="Zeitlin R">R. S. Zeitlin</name>
</author>
<author>
<name sortKey="Echeverria, V" uniqKey="Echeverria V">V. Echeverria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Q" uniqKey="Jiang Q">Q. Jiang</name>
</author>
<author>
<name sortKey="Heneka, M" uniqKey="Heneka M">M. Heneka</name>
</author>
<author>
<name sortKey="Landreth, G E" uniqKey="Landreth G">G. E. Landreth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Granic, I" uniqKey="Granic I">I. Granic</name>
</author>
<author>
<name sortKey="Dolga, A M" uniqKey="Dolga A">A. M. Dolga</name>
</author>
<author>
<name sortKey="Nijholt, I M" uniqKey="Nijholt I">I. M. Nijholt</name>
</author>
<author>
<name sortKey="Van Dijk, G" uniqKey="Van Dijk G">G. Van Dijk</name>
</author>
<author>
<name sortKey="Eisel, U L M" uniqKey="Eisel U">U. L. M. Eisel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Town, T" uniqKey="Town T">T. Town</name>
</author>
<author>
<name sortKey="Nikolic, V" uniqKey="Nikolic V">V. Nikolic</name>
</author>
<author>
<name sortKey="Tan, J" uniqKey="Tan J">J. Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halliday, G" uniqKey="Halliday G">G. Halliday</name>
</author>
<author>
<name sortKey="Robinson, S R" uniqKey="Robinson S">S. R. Robinson</name>
</author>
<author>
<name sortKey="Shepherd, C" uniqKey="Shepherd C">C. Shepherd</name>
</author>
<author>
<name sortKey="Kril, J" uniqKey="Kril J">J. Kril</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, G C" uniqKey="Brown G">G. C. Brown</name>
</author>
<author>
<name sortKey="Bal Price, A" uniqKey="Bal Price A">A. Bal-Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strohmeyer, R" uniqKey="Strohmeyer R">R. Strohmeyer</name>
</author>
<author>
<name sortKey="Ramirez, M" uniqKey="Ramirez M">M. Ramirez</name>
</author>
<author>
<name sortKey="Cole, G J" uniqKey="Cole G">G. J. Cole</name>
</author>
<author>
<name sortKey="Mueller, K" uniqKey="Mueller K">K. Mueller</name>
</author>
<author>
<name sortKey="Rogers, J" uniqKey="Rogers J">J. Rogers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D. Zhang</name>
</author>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X. Hu</name>
</author>
<author>
<name sortKey="Qian, L" uniqKey="Qian L">L. Qian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shie, F S" uniqKey="Shie F">F.-S. Shie</name>
</author>
<author>
<name sortKey="Woltjer, R L" uniqKey="Woltjer R">R. L. Woltjer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bettens, K" uniqKey="Bettens K">K. Bettens</name>
</author>
<author>
<name sortKey="Sleegers, K" uniqKey="Sleegers K">K. Sleegers</name>
</author>
<author>
<name sortKey="Van Broeckhoven, C" uniqKey="Van Broeckhoven C">C. Van Broeckhoven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karch, C M" uniqKey="Karch C">C. M. Karch</name>
</author>
<author>
<name sortKey="Cruchaga, C" uniqKey="Cruchaga C">C. Cruchaga</name>
</author>
<author>
<name sortKey="Goate, A M" uniqKey="Goate A">A. M. Goate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guerreiro, R" uniqKey="Guerreiro R">R. Guerreiro</name>
</author>
<author>
<name sortKey="Wojtas, A" uniqKey="Wojtas A">A. Wojtas</name>
</author>
<author>
<name sortKey="Bras, J" uniqKey="Bras J">J. Bras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harold, D" uniqKey="Harold D">D. Harold</name>
</author>
<author>
<name sortKey="Abraham, R" uniqKey="Abraham R">R. Abraham</name>
</author>
<author>
<name sortKey="Hollingworth, P" uniqKey="Hollingworth P">P. Hollingworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lambert, J C" uniqKey="Lambert J">J.-C. Lambert</name>
</author>
<author>
<name sortKey="Heath, S" uniqKey="Heath S">S. Heath</name>
</author>
<author>
<name sortKey="Even, G" uniqKey="Even G">G. Even</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reale, M" uniqKey="Reale M">M. Reale</name>
</author>
<author>
<name sortKey="Greig, N H" uniqKey="Greig N">N. H. Greig</name>
</author>
<author>
<name sortKey="Kamal, M A" uniqKey="Kamal M">M. A. Kamal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qian, L" uniqKey="Qian L">L. Qian</name>
</author>
<author>
<name sortKey="Flood, P M" uniqKey="Flood P">P. M. Flood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirsch, E C" uniqKey="Hirsch E">E. C. Hirsch</name>
</author>
<author>
<name sortKey="Breidert, T" uniqKey="Breidert T">T. Breidert</name>
</author>
<author>
<name sortKey="Rousselet, E" uniqKey="Rousselet E">E. Rousselet</name>
</author>
<author>
<name sortKey="Hunot, S" uniqKey="Hunot S">S. Hunot</name>
</author>
<author>
<name sortKey="Hartmann, A" uniqKey="Hartmann A">A. Hartmann</name>
</author>
<author>
<name sortKey="Michel, P P" uniqKey="Michel P">P. P. Michel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Segura Aguilar, J" uniqKey="Segura Aguilar J">J. Segura-Aguilar</name>
</author>
<author>
<name sortKey="Paris, I" uniqKey="Paris I">I. Paris</name>
</author>
<author>
<name sortKey="Mu Oz, P" uniqKey="Mu Oz P">P. Muñoz</name>
</author>
<author>
<name sortKey="Ferrari, E" uniqKey="Ferrari E">E. Ferrari</name>
</author>
<author>
<name sortKey="Zecca, L" uniqKey="Zecca L">L. Zecca</name>
</author>
<author>
<name sortKey="Zucca, F A" uniqKey="Zucca F">F. A. Zucca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mander, P K" uniqKey="Mander P">P. K. Mander</name>
</author>
<author>
<name sortKey="Jekabsone, A" uniqKey="Jekabsone A">A. Jekabsone</name>
</author>
<author>
<name sortKey="Brown, G C" uniqKey="Brown G">G. C. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dringen, R" uniqKey="Dringen R">R. Dringen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shibata, N" uniqKey="Shibata N">N. Shibata</name>
</author>
<author>
<name sortKey="Kakita, A" uniqKey="Kakita A">A. Kakita</name>
</author>
<author>
<name sortKey="Takahashi, H" uniqKey="Takahashi H">H. Takahashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, R" uniqKey="Zhang R">R. Zhang</name>
</author>
<author>
<name sortKey="Hadlock, K G" uniqKey="Hadlock K">K. G. Hadlock</name>
</author>
<author>
<name sortKey="Do, H" uniqKey="Do H">H. Do</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuhle, J" uniqKey="Kuhle J">J. Kuhle</name>
</author>
<author>
<name sortKey="Lindberg, R L P" uniqKey="Lindberg R">R. L. P. Lindberg</name>
</author>
<author>
<name sortKey="Regeniter, A" uniqKey="Regeniter A">A. Regeniter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiala, M" uniqKey="Fiala M">M. Fiala</name>
</author>
<author>
<name sortKey="Chattopadhay, M" uniqKey="Chattopadhay M">M. Chattopadhay</name>
</author>
<author>
<name sortKey="La Cava, A" uniqKey="La Cava A">A. La Cava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rentzos, M" uniqKey="Rentzos M">M. Rentzos</name>
</author>
<author>
<name sortKey="Rombos, A" uniqKey="Rombos A">A. Rombos</name>
</author>
<author>
<name sortKey="Nikolaou, C" uniqKey="Nikolaou C">C. Nikolaou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldknopf, I L" uniqKey="Goldknopf I">I. L. Goldknopf</name>
</author>
<author>
<name sortKey="Sheta, E A" uniqKey="Sheta E">E. A. Sheta</name>
</author>
<author>
<name sortKey="Bryson, J" uniqKey="Bryson J">J. Bryson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Chiara, G" uniqKey="De Chiara G">G. De Chiara</name>
</author>
<author>
<name sortKey="Marcocci, M E" uniqKey="Marcocci M">M. E. Marcocci</name>
</author>
<author>
<name sortKey="Sgarbanti, R" uniqKey="Sgarbanti R">R. Sgarbanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcgavern, D B" uniqKey="Mcgavern D">D. B. McGavern</name>
</author>
<author>
<name sortKey="Kang, S S" uniqKey="Kang S">S. S. Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kristensson, K" uniqKey="Kristensson K">K. Kristensson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toovey, S" uniqKey="Toovey S">S. Toovey</name>
</author>
<author>
<name sortKey="Jick, S S" uniqKey="Jick S">S. S. Jick</name>
</author>
<author>
<name sortKey="Meier, C R" uniqKey="Meier C">C. R. Meier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ravenholt, R T" uniqKey="Ravenholt R">R. T. Ravenholt</name>
</author>
<author>
<name sortKey="Foege, W" uniqKey="Foege W">W. Foege</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oxford, J S" uniqKey="Oxford J">J. S. Oxford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rohn, T T" uniqKey="Rohn T">T. T. Rohn</name>
</author>
<author>
<name sortKey="Catlin, L W" uniqKey="Catlin L">L. W. Catlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, J P" uniqKey="Anderson J">J. P. Anderson</name>
</author>
<author>
<name sortKey="Walker, D E" uniqKey="Walker D">D. E. Walker</name>
</author>
<author>
<name sortKey="Goldstein, J M" uniqKey="Goldstein J">J. M. Goldstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jang, H" uniqKey="Jang H">H. Jang</name>
</author>
<author>
<name sortKey="Boltz, D" uniqKey="Boltz D">D. Boltz</name>
</author>
<author>
<name sortKey="Sturm Ramirez, K" uniqKey="Sturm Ramirez K">K. Sturm-Ramirez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitley, R J" uniqKey="Whitley R">R. J. Whitley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ball, M J" uniqKey="Ball M">M. J. Ball</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gannicliffe, A" uniqKey="Gannicliffe A">A. Gannicliffe</name>
</author>
<author>
<name sortKey="Sutton, R N" uniqKey="Sutton R">R. N. Sutton</name>
</author>
<author>
<name sortKey="Itzhaki, R F" uniqKey="Itzhaki R">R. F. Itzhaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wozniak, M A" uniqKey="Wozniak M">M. A. Wozniak</name>
</author>
<author>
<name sortKey="Shipley, S J" uniqKey="Shipley S">S. J. Shipley</name>
</author>
<author>
<name sortKey="Combrinck, M" uniqKey="Combrinck M">M. Combrinck</name>
</author>
<author>
<name sortKey="Wilcock, G K" uniqKey="Wilcock G">G. K. Wilcock</name>
</author>
<author>
<name sortKey="Itzhaki, R F" uniqKey="Itzhaki R">R. F. Itzhaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Itzhaki, R F" uniqKey="Itzhaki R">R. F. Itzhaki</name>
</author>
<author>
<name sortKey="Wozniak, M A" uniqKey="Wozniak M">M. A. Wozniak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wozniak, M A" uniqKey="Wozniak M">M. A. Wozniak</name>
</author>
<author>
<name sortKey="Mee, A P" uniqKey="Mee A">A. P. Mee</name>
</author>
<author>
<name sortKey="Itzhaki, R F" uniqKey="Itzhaki R">R. F. Itzhaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mori, I" uniqKey="Mori I">I. Mori</name>
</author>
<author>
<name sortKey="Kimura, Y" uniqKey="Kimura Y">Y. Kimura</name>
</author>
<author>
<name sortKey="Naiki, H" uniqKey="Naiki H">H. Naiki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Letenneur, L" uniqKey="Letenneur L">L. Letenneur</name>
</author>
<author>
<name sortKey="Peres, K" uniqKey="Peres K">K. Pérès</name>
</author>
<author>
<name sortKey="Fleury, H" uniqKey="Fleury H">H. Fleury</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santana, S" uniqKey="Santana S">S. Santana</name>
</author>
<author>
<name sortKey="Recuero, M" uniqKey="Recuero M">M. Recuero</name>
</author>
<author>
<name sortKey="Bullido, M J" uniqKey="Bullido M">M. J. Bullido</name>
</author>
<author>
<name sortKey="Valdivieso, F" uniqKey="Valdivieso F">F. Valdivieso</name>
</author>
<author>
<name sortKey="Aldudo, J" uniqKey="Aldudo J">J. Aldudo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piacentini, R" uniqKey="Piacentini R">R. Piacentini</name>
</author>
<author>
<name sortKey="Civitelli, L" uniqKey="Civitelli L">L. Civitelli</name>
</author>
<author>
<name sortKey="Ripoli, C" uniqKey="Ripoli C">C. Ripoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Chiara, G" uniqKey="De Chiara G">G. De Chiara</name>
</author>
<author>
<name sortKey="Marcocci, M E" uniqKey="Marcocci M">M. E. Marcocci</name>
</author>
<author>
<name sortKey="Civitelli, L" uniqKey="Civitelli L">L. Civitelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lerchundi, R" uniqKey="Lerchundi R">R. Lerchundi</name>
</author>
<author>
<name sortKey="Neira, R" uniqKey="Neira R">R. Neira</name>
</author>
<author>
<name sortKey="Valdivia, S" uniqKey="Valdivia S">S. Valdivia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Porcellini, E" uniqKey="Porcellini E">E. Porcellini</name>
</author>
<author>
<name sortKey="Carbone, I" uniqKey="Carbone I">I. Carbone</name>
</author>
<author>
<name sortKey="Ianni, M" uniqKey="Ianni M">M. Ianni</name>
</author>
<author>
<name sortKey="Licastro, F" uniqKey="Licastro F">F. Licastro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Westarp, M E" uniqKey="Westarp M">M. E. Westarp</name>
</author>
<author>
<name sortKey="Ferrante, P" uniqKey="Ferrante P">P. Ferrante</name>
</author>
<author>
<name sortKey="Perron, H" uniqKey="Perron H">H. Perron</name>
</author>
<author>
<name sortKey="Bartmann, P" uniqKey="Bartmann P">P. Bartmann</name>
</author>
<author>
<name sortKey="Kornhuber, H H" uniqKey="Kornhuber H">H. H. Kornhuber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferrante, P" uniqKey="Ferrante P">P. Ferrante</name>
</author>
<author>
<name sortKey="Westarp, M E" uniqKey="Westarp M">M. E. Westarp</name>
</author>
<author>
<name sortKey="Mancuso, R" uniqKey="Mancuso R">R. Mancuso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, M T T" uniqKey="Silva M">M. T. T. Silva</name>
</author>
<author>
<name sortKey="Leite, A C C" uniqKey="Leite A">A. C. C. Leite</name>
</author>
<author>
<name sortKey="Alamy, A H" uniqKey="Alamy A">A. H. Alamy</name>
</author>
<author>
<name sortKey="Chimelli, L" uniqKey="Chimelli L">L. Chimelli</name>
</author>
<author>
<name sortKey="Andrada Serpa, M J" uniqKey="Andrada Serpa M">M. J. Andrada-Serpa</name>
</author>
<author>
<name sortKey="Araujo, A Q C" uniqKey="Araujo A">A. Q. C. Araújo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zachary, J F" uniqKey="Zachary J">J. F. Zachary</name>
</author>
<author>
<name sortKey="Baszler, T V" uniqKey="Baszler T">T. V. Baszler</name>
</author>
<author>
<name sortKey="French, R A" uniqKey="French R">R. A. French</name>
</author>
<author>
<name sortKey="Kelley, K W" uniqKey="Kelley K">K. W. Kelley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steele, A J" uniqKey="Steele A">A. J. Steele</name>
</author>
<author>
<name sortKey="Al Chalabi, A" uniqKey="Al Chalabi A">A. Al-Chalabi</name>
</author>
<author>
<name sortKey="Ferrante, K" uniqKey="Ferrante K">K. Ferrante</name>
</author>
<author>
<name sortKey="Cudkowicz, M E" uniqKey="Cudkowicz M">M. E. Cudkowicz</name>
</author>
<author>
<name sortKey="Brown, R H" uniqKey="Brown R">R. H. Brown</name>
</author>
<author>
<name sortKey="Garson, J A" uniqKey="Garson J">J. A. Garson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizutani, S" uniqKey="Mizutani S">S. Mizutani</name>
</author>
<author>
<name sortKey="Boettiger, D" uniqKey="Boettiger D">D. Boettiger</name>
</author>
<author>
<name sortKey="Temin, H M" uniqKey="Temin H">H. M. Temin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viola, M V" uniqKey="Viola M">M. V. Viola</name>
</author>
<author>
<name sortKey="Frazier, M" uniqKey="Frazier M">M. Frazier</name>
</author>
<author>
<name sortKey="White, L" uniqKey="White L">L. White</name>
</author>
<author>
<name sortKey="Brody, J" uniqKey="Brody J">J. Brody</name>
</author>
<author>
<name sortKey="Spiegelman, S" uniqKey="Spiegelman S">S. Spiegelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macgowan, D J L" uniqKey="Macgowan D">D. J. L. MacGowan</name>
</author>
<author>
<name sortKey="Scelsa, S N" uniqKey="Scelsa S">S. N. Scelsa</name>
</author>
<author>
<name sortKey="Imperato, T E" uniqKey="Imperato T">T. E. Imperato</name>
</author>
<author>
<name sortKey="Liu, K N" uniqKey="Liu K">K.-N. Liu</name>
</author>
<author>
<name sortKey="Baron, P" uniqKey="Baron P">P. Baron</name>
</author>
<author>
<name sortKey="Polsky, B" uniqKey="Polsky B">B. Polsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccormick, A L" uniqKey="Mccormick A">A. L. McCormick</name>
</author>
<author>
<name sortKey="Brown, R H" uniqKey="Brown R">R. H. Brown</name>
</author>
<author>
<name sortKey="Cudkowicz, M E" uniqKey="Cudkowicz M">M. E. Cudkowicz</name>
</author>
<author>
<name sortKey="Al Chalabi, A" uniqKey="Al Chalabi A">A. Al-Chalabi</name>
</author>
<author>
<name sortKey="Garson, J A" uniqKey="Garson J">J. A. Garson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alfahad, T" uniqKey="Alfahad T">T. Alfahad</name>
</author>
<author>
<name sortKey="Nath, A" uniqKey="Nath A">A. Nath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oluwole, S O A" uniqKey="Oluwole S">S. O. A. Oluwole</name>
</author>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y. Yao</name>
</author>
<author>
<name sortKey="Conradi, S" uniqKey="Conradi S">S. Conradi</name>
</author>
<author>
<name sortKey="Kristensson, K" uniqKey="Kristensson K">K. Kristensson</name>
</author>
<author>
<name sortKey="Karlsson, H" uniqKey="Karlsson H">H. Karlsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Lee, M H" uniqKey="Lee M">M.-H. Lee</name>
</author>
<author>
<name sortKey="Henderson, L" uniqKey="Henderson L">L. Henderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ciriolo, M R" uniqKey="Ciriolo M">M. R. Ciriolo</name>
</author>
<author>
<name sortKey="Palamara, A T" uniqKey="Palamara A">A. T. Palamara</name>
</author>
<author>
<name sortKey="Incerpi, S" uniqKey="Incerpi S">S. Incerpi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gong, G" uniqKey="Gong G">G. Gong</name>
</author>
<author>
<name sortKey="Waris, G" uniqKey="Waris G">G. Waris</name>
</author>
<author>
<name sortKey="Tanveer, R" uniqKey="Tanveer R">R. Tanveer</name>
</author>
<author>
<name sortKey="Siddiqui, A" uniqKey="Siddiqui A">A. Siddiqui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaul, P" uniqKey="Kaul P">P. Kaul</name>
</author>
<author>
<name sortKey="Biagioli, M C" uniqKey="Biagioli M">M. C. Biagioli</name>
</author>
<author>
<name sortKey="Singh, I" uniqKey="Singh I">I. Singh</name>
</author>
<author>
<name sortKey="Turner, R B" uniqKey="Turner R">R. B. Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nencioni, L" uniqKey="Nencioni L">L. Nencioni</name>
</author>
<author>
<name sortKey="Iuvara, A" uniqKey="Iuvara A">A. Iuvara</name>
</author>
<author>
<name sortKey="Aquilano, K" uniqKey="Aquilano K">K. Aquilano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterhans, E" uniqKey="Peterhans E">E. Peterhans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enquist, L W" uniqKey="Enquist L">L. W. Enquist</name>
</author>
<author>
<name sortKey="Husak, P J" uniqKey="Husak P">P. J. Husak</name>
</author>
<author>
<name sortKey="Banfield, B W" uniqKey="Banfield B">B. W. Banfield</name>
</author>
<author>
<name sortKey="Smith, G A" uniqKey="Smith G">G. A. Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wickham, S" uniqKey="Wickham S">S. Wickham</name>
</author>
<author>
<name sortKey="Lu, B" uniqKey="Lu B">B. Lu</name>
</author>
<author>
<name sortKey="Ash, J" uniqKey="Ash J">J. Ash</name>
</author>
<author>
<name sortKey="Carr, D J J" uniqKey="Carr D">D. J. J. Carr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nucci, C" uniqKey="Nucci C">C. Nucci</name>
</author>
<author>
<name sortKey="Palamara, A T" uniqKey="Palamara A">A. T. Palamara</name>
</author>
<author>
<name sortKey="Ciriolo, M R" uniqKey="Ciriolo M">M. R. Ciriolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palamara, A T" uniqKey="Palamara A">A. T. Palamara</name>
</author>
<author>
<name sortKey="Perno, C F" uniqKey="Perno C">C.-F. Perno</name>
</author>
<author>
<name sortKey="Ciriolo, M R" uniqKey="Ciriolo M">M. R. Ciriolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valyi Nagy, T" uniqKey="Valyi Nagy T">T. Valyi-Nagy</name>
</author>
<author>
<name sortKey="Dermody, T S" uniqKey="Dermody T">T. S. Dermody</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schachtele, S J" uniqKey="Schachtele S">S. J. Schachtele</name>
</author>
<author>
<name sortKey="Hu, S" uniqKey="Hu S">S. Hu</name>
</author>
<author>
<name sortKey="Little, M R" uniqKey="Little M">M. R. Little</name>
</author>
<author>
<name sortKey="Lokensgard, J R" uniqKey="Lokensgard J">J. R. Lokensgard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kavouras, J" uniqKey="Kavouras J">J. Kavouras</name>
</author>
<author>
<name sortKey="Prandovszky, E" uniqKey="Prandovszky E">E. Prandovszky</name>
</author>
<author>
<name sortKey="Valyi Nagy, K" uniqKey="Valyi Nagy K">K. Valyi-Nagy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujii, S" uniqKey="Fujii S">S. Fujii</name>
</author>
<author>
<name sortKey="Akaike, T" uniqKey="Akaike T">T. Akaike</name>
</author>
<author>
<name sortKey="Maeda, H" uniqKey="Maeda H">H. Maeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santana, S" uniqKey="Santana S">S. Santana</name>
</author>
<author>
<name sortKey="Sastre, I" uniqKey="Sastre I">I. Sastre</name>
</author>
<author>
<name sortKey="Recuero, M" uniqKey="Recuero M">M. Recuero</name>
</author>
<author>
<name sortKey="Bullido, M J" uniqKey="Bullido M">M. J. Bullido</name>
</author>
<author>
<name sortKey="Aldudo, J" uniqKey="Aldudo J">J. Aldudo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sgarbanti, R" uniqKey="Sgarbanti R">R. Sgarbanti</name>
</author>
<author>
<name sortKey="Nencioni, L" uniqKey="Nencioni L">L. Nencioni</name>
</author>
<author>
<name sortKey="Amatore, D" uniqKey="Amatore D">D. Amatore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nencioni, L" uniqKey="Nencioni L">L. Nencioni</name>
</author>
<author>
<name sortKey="De Chiara, G" uniqKey="De Chiara G">G. De Chiara</name>
</author>
<author>
<name sortKey="Sgarbanti, R" uniqKey="Sgarbanti R">R. Sgarbanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garaci, E" uniqKey="Garaci E">E. Garaci</name>
</author>
<author>
<name sortKey="Palamara, A T" uniqKey="Palamara A">A. T. Palamara</name>
</author>
<author>
<name sortKey="Ciriolo, M R" uniqKey="Ciriolo M">M. R. Ciriolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reddy, P V B" uniqKey="Reddy P">P. V. B. Reddy</name>
</author>
<author>
<name sortKey="Gandhi, N" uniqKey="Gandhi N">N. Gandhi</name>
</author>
<author>
<name sortKey="Samikkannu, T" uniqKey="Samikkannu T">T. Samikkannu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dasuri, K" uniqKey="Dasuri K">K. Dasuri</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Keller, J N" uniqKey="Keller J">J. N. Keller</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Oxid Med Cell Longev</journal-id>
<journal-id journal-id-type="iso-abbrev">Oxid Med Cell Longev</journal-id>
<journal-id journal-id-type="publisher-id">OMCL</journal-id>
<journal-title-group>
<journal-title>Oxidative Medicine and Cellular Longevity</journal-title>
</journal-title-group>
<issn pub-type="ppub">1942-0900</issn>
<issn pub-type="epub">1942-0994</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27110325</article-id>
<article-id pub-id-type="pmc">4826696</article-id>
<article-id pub-id-type="doi">10.1155/2016/6547248</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Redox Imbalance and Viral Infections in Neurodegenerative Diseases</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Limongi</surname>
<given-names>Dolores</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0001-7003-3172</contrib-id>
<name>
<surname>Baldelli</surname>
<given-names>Sara</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">Università Telematica San Raffaele Roma, Via di Val Cannuta, 00167 Rome, Italy</aff>
<author-notes>
<corresp id="cor1">*Sara Baldelli:
<email>sara.baldelli@unisanraffaele.gov.it</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Michael Courtney</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>27</day>
<month>3</month>
<year>2016</year>
</pub-date>
<volume>2016</volume>
<elocation-id>6547248</elocation-id>
<history>
<date date-type="received">
<day>3</day>
<month>12</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>7</day>
<month>3</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>3</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 D. Limongi and S. Baldelli.</copyright-statement>
<copyright-year>2016</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Neurodegenerative diseases are chronic degenerative pathologies of the Central Nervous System (CNS) characterized by progressive loss of specific neurons that lead to a decline in brain functions [
<xref rid="B1" ref-type="bibr">1</xref>
<xref rid="B3" ref-type="bibr">3</xref>
]. Despite these pathologies having different clinical features, they possess some common hallmarks, such as the formation and deposition of aberrant protein conformers, synaptic dysfunctions, deficient autophagic processes, oxidative/nitrosative stress, and inflammation [
<xref rid="B4" ref-type="bibr">4</xref>
]. The neurodegenerative diseases present an increase of reactive oxygen species (ROS) production by mitochondria and NADPH oxidase (NOX), which seems to be responsible for tissue injury, inflammation, and neurodegeneration [
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B6" ref-type="bibr">6</xref>
].</p>
<p>Substantial evidence indicates that also reactive nitrogen species (RNS) play a key role in most common neurodegenerative diseases although the mechanism of nitric oxide- (NO-) mediated neurodegeneration remains uncertain [
<xref rid="B7" ref-type="bibr">7</xref>
<xref rid="B9" ref-type="bibr">9</xref>
]. However, many studies demonstrated that NO is able to modify protein function by nitrosylation and nitrotyrosination, contribute to glutamate excitotoxicity, inhibit mitochondrial respiratory complexes, participate in organelle fragmentation, and mobilize zinc from internal stores in brain cells, contributing to neurodegeneration [
<xref rid="B10" ref-type="bibr">10</xref>
<xref rid="B13" ref-type="bibr">13</xref>
]. In response to increased oxidative and nitrosative stress the brain cells (i.e., microglia, astrocytes) activate redox-sensitive transcription factors, including nuclear factor-k
<italic>β</italic>
(NF-k
<italic>β</italic>
) and activator protein-1 (AP-1) [
<xref rid="B14" ref-type="bibr">14</xref>
,
<xref rid="B15" ref-type="bibr">15</xref>
]. Next to this, it was also observed that the free radical increase, observed during neurodegeneration, may be also due to alteration of endogenous antioxidants. In particular, some antioxidant enzymes, such as superoxide dismutases (SODs), catalase, glutathione peroxidase, and glutathione reductase, have reduced activity in certain brain regions of AD patients [
<xref rid="B16" ref-type="bibr">16</xref>
]. Moreover, a reduction in amount of glutathione (GSH) level has been found in postmortem brain tissue from the
<italic> substantia nigra</italic>
of PD patients [
<xref rid="B17" ref-type="bibr">17</xref>
,
<xref rid="B18" ref-type="bibr">18</xref>
]. Similarly, catalase and glutathione reductase activity, as well as GSH levels, were found to be significantly reduced in ALS patients [
<xref rid="B19" ref-type="bibr">19</xref>
]. Many of these antioxidant systems are regulated by nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2 transcription factor. In normal conditions, NFE2L2 is associated with Kelch-like ECH associating protein 1 (Keap1) in the cytoplasm. This bond prevents the nuclear translocation of NFE2L2 and promotes its degradation
<italic> via</italic>
Ubiquitin Proteasome System (UPS). On the contrary, the presence of oxidative stress can induce the detachment between Keap1 and NFE2L2, due to the modification of the reactive cysteine in Keap1 [
<xref rid="B20" ref-type="bibr">20</xref>
]. These conformational changes determine a release of NFE2L2 and its nuclear translocation, where it binds the ARE consensus sequences and coordinates the transcription of antioxidant and phase II detoxification genes [
<xref rid="B21" ref-type="bibr">21</xref>
]. Alterations of NFE2L2-pathway have been observed in postmortem brain of patients with neurodegenerative disorders [
<xref rid="B20" ref-type="bibr">20</xref>
]. In particular, many studies have showed an increase of NFE2L2 nuclear translocation in dopaminergic neurons of PD patients, but this induction is not sufficient to counteract the oxidative stress [
<xref rid="B22" ref-type="bibr">22</xref>
]. On the contrary, a decrease of NFE2L2 expression has been observed in hippocampus neurons in AD cases [
<xref rid="B22" ref-type="bibr">22</xref>
]. Moreover, a reduction of mRNA and protein levels of NFE2L2 was also found in the motor cortex and spinal cord in ALS patients [
<xref rid="B23" ref-type="bibr">23</xref>
]. Thus, the activation of NFE2L2-ARE pathway constitutes a valuable therapeutic tool to combat oxidative stress that occurs during neurodegenerative disease.</p>
<p>Recently, it has been demonstrated that infection agents can reach the CNS crossing the blood-brain barrier, by infected migratory macrophage or by intraneuronal transfer from peripheral nerves [
<xref rid="B24" ref-type="bibr">24</xref>
,
<xref rid="B25" ref-type="bibr">25</xref>
]. In particular, these infections can affect the immune system resulting in a variety of systemic signs and symptoms [
<xref rid="B26" ref-type="bibr">26</xref>
]. The virus replication into the CNS produces molecular hallmarks of neurodegeneration, such as protein misfolding, deposition of misfolded protein aggregates, alterations of autophagic pathways, oxidative stress, neuronal functional alterations, and apoptotic cell death [
<xref rid="B26" ref-type="bibr">26</xref>
<xref rid="B28" ref-type="bibr">28</xref>
]. These effects associated with genetic alteration and other environmental factors contribute to the pathogenesis of neurodegenerative diseases.</p>
<p>In this review, we will highlight the role of oxidative stress and viral infection in the pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).</p>
</sec>
<sec id="sec2">
<title>2. Role of Oxidative Stress in Neurodegeneration: General Aspects</title>
<p>Oxidative stress occurs due to an imbalance in the prooxidant and antioxidant levels. ROS and RNS are highly reactive with biomolecules, including proteins, lipids, carbohydrate, DNA, and RNA [
<xref rid="B29" ref-type="bibr">29</xref>
]. ROS that are particularly abundant during an imbalance of redox state are superoxide anion (O
<sub>2</sub>
<sup>∙−</sup>
), hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
), and hydroxyl radical (
<sup></sup>
OH), whereas among RNS the most abundant are NO and peroxynitrite (ONOO
<sup></sup>
). During mitochondrial activity O
<sub>2</sub>
<sup>∙−</sup>
is produced in the electron transport chain (ETC), which is immediately converted to H
<sub>2</sub>
O
<sub>2</sub>
by superoxide dismutase 2 (SOD2) located in the mitochondrial matrix or SOD1 located in the cytosol [
<xref rid="B30" ref-type="bibr">30</xref>
]. H
<sub>2</sub>
O
<sub>2</sub>
is rapidly converted to water by mitochondrial glutathione (mtGSH) with the participation of GSH reductase and peroxiredoxins [
<xref rid="B31" ref-type="bibr">31</xref>
]. Other sources of free radical are the NOXs, enzymes located in the cell membrane. Several NOXs are expressed in the cells of CNS, such as neurons, astrocytes, and microglia [
<xref rid="B32" ref-type="bibr">32</xref>
,
<xref rid="B33" ref-type="bibr">33</xref>
]. During infections, activation of NOXs is strongly improved and the resulting ROS increase is particularly important as a host defense mechanism [
<xref rid="B34" ref-type="bibr">34</xref>
]. However, excessive NOXs activation has also been implicated in oxidative stress-mediated neurodegeneration [
<xref rid="B35" ref-type="bibr">35</xref>
].</p>
<p>The brain is particularly prone to oxidative stress-induced damage because of its high oxygen demand, the abundance of redox-active metals (iron and copper), the high levels of oxidizable polyunsaturated fatty acids, and the low amounts of antioxidant enzymes (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
). Another issue is that the neurons are postmitotic cells with relatively restricted replenishment by progenitor cells during the lifespan of an organism [
<xref rid="B11" ref-type="bibr">11</xref>
,
<xref rid="B36" ref-type="bibr">36</xref>
]. Thus, the brain may be particularly vulnerable to viral infections during neurodegeneration due to different reasons: (i) the blood-barrier is compromised during neurodegeneration; (ii) many viruses can reach the CNS by peripheral nerves; (iii) the mitochondria become dysfunctional during neurodegeneration, preventing neurons from depending on aerobic metabolism and making it very susceptible to oxidative stress [
<xref rid="B17" ref-type="bibr">17</xref>
]. Primarily, in this review, the role of redox imbalance and redox-mediated inflammation in the onset and pathogenesis of neurodegenerative diseases will be discussed.</p>
<sec id="sec2.1">
<title>2.1. Redox Imbalance in AD</title>
<p>AD is a neurodegenerative disorder characterized by progressive decline in cognitive functions leading to memory loss and dementia. It involves degeneration of limbic and cortical brain structures, especially in the temporal lobe. One characteristic of AD is the appearance of senile plaques, which are produced from proteolytic cleavage of the transmembrane amyloid precursor protein (APP) to form
<italic>β</italic>
-amyloid peptide (A
<italic>β</italic>
). Another characteristic of AD is neurofibrillary tangles (NFTs) [
<xref rid="B37" ref-type="bibr">37</xref>
] and aggregates of medium and high molecular weight neurofilaments (NFM and NFH, resp.), as well as the microtubule-stabilizing protein tau, a multifunctional protein involved in microtubule assembly and stabilization [
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B39" ref-type="bibr">39</xref>
]. These hallmarks are altered in ways characteristic of oxidative damage, such as advanced glycation end product- (AGE-) modifications, protein cross-linking, and carbonyl-modifications [
<xref rid="B40" ref-type="bibr">40</xref>
<xref rid="B42" ref-type="bibr">42</xref>
]. All these alterations in neurons susceptible to AD play a key role in the irreversible cellular dysfunction that ultimately leads to neuronal death.</p>
<p>Brain autopsy from AD patients has shown oxidative damage markers, such as lipid peroxidation, protein oxidative damage, and glycoxidation in brain tissues [
<xref rid="B43" ref-type="bibr">43</xref>
]. Next to this, a drastic decrease in the intraneuronal content of GSH has been observed in the hippocampus and cortex of AD patients [
<xref rid="B43" ref-type="bibr">43</xref>
,
<xref rid="B44" ref-type="bibr">44</xref>
]. Thus, the loss of ROS balance produces a chronic oxidative state, which induces a reduction of antioxidants expression and activity, accelerating the neurodegenerative processes. In fact, the alteration of redox homeostasis stimulates the formation of products of advanced glycosylation, an overload of peroxidation of fatty acids, oxidation of cholesterol, insulin resistance, and proteins unfolding [
<xref rid="B41" ref-type="bibr">41</xref>
,
<xref rid="B45" ref-type="bibr">45</xref>
<xref rid="B49" ref-type="bibr">49</xref>
]. Moreover, an increase of Heme Oxygenase-1 (HO-1) and 8-hydroxyguanosine (8-OHG) was found in AD brain as compared with controls [
<xref rid="B50" ref-type="bibr">50</xref>
].</p>
<p>Despite the cause of redox imbalance still being unclear in AD pathogenesis, many studies suggest that the alteration in redox transition metals balance (i.e., iron, copper) is the major cause of neurodegeneration [
<xref rid="B51" ref-type="bibr">51</xref>
<xref rid="B53" ref-type="bibr">53</xref>
]. In fact, iron and copper have been found in high concentrations in AD brain. In particular, Zn, Cu, and Fe in senile plaques rims and cores have been found significantly elevated in AD [
<xref rid="B51" ref-type="bibr">51</xref>
]. It has also been demonstrated that the activity of many proteins, such as ferritin and ceruloplasmin, which are important to regulation of metal homeostasis, shows altered expression in AD [
<xref rid="B54" ref-type="bibr">54</xref>
]. Other studies have revealed dramatic drops in the levels of some biometals in the AD brain, which may aid development of senile plaques [
<xref rid="B55" ref-type="bibr">55</xref>
]. In particular, reduced levels of intracellular Cu have been reported in cortical neurons derived from AD transgenic mice and in the most-affected brain region of AD patients [
<xref rid="B56" ref-type="bibr">56</xref>
]. This alteration appears to contribute in part to AD pathogenesis. The dysregulation of biometal homeostasis in AD is a complex pathway, which has contributed to the development of new therapeutic approaches to restore the neuronal functions.</p>
<p>The combination of all these factors could explain how the oxidative stress is linked to the formation of amyloid plaques and NFTs in AD.</p>
</sec>
<sec id="sec2.2">
<title>2.2. Redox Imbalance in PD</title>
<p>PD is progressive neurodegenerative disease characterized by extrapyramidal movement disorders that manifest as rigidity, resting tremor, and postural instability [
<xref rid="B57" ref-type="bibr">57</xref>
]. PD is also characterized by a progressive loss of dopaminergic neurons in the
<italic> substantia nigra</italic>
, accompanied by the accumulation of
<italic>α</italic>
-synuclein aggregates in Lewy bodies [
<xref rid="B58" ref-type="bibr">58</xref>
]. Lewy bodies are composed not only of
<italic>α</italic>
-synuclein, but also of other proteins, such as ubiquitin and neurofilament proteins [
<xref rid="B59" ref-type="bibr">59</xref>
].</p>
<p>Many evidences demonstrate that oxidative stress plays an important role in PD pathogenesis. The
<italic> substantiae nigrae</italic>
of PD subjects show increased levels of oxidized protein lipid [
<xref rid="B60" ref-type="bibr">60</xref>
], DNA [
<xref rid="B61" ref-type="bibr">61</xref>
], and decreased level of GSH [
<xref rid="B62" ref-type="bibr">62</xref>
]. In particular, oxidized proteins may not be adequately ubiquitinated and recognized by proteasome and thus accumulate within the neurons [
<xref rid="B63" ref-type="bibr">63</xref>
]. Moreover, DNA damage could determine an alteration of many important genes essential for neurons activity and functionality [
<xref rid="B64" ref-type="bibr">64</xref>
]. Increased levels of 4-hydroxynonenal (HNE) were found in the rime of Lewy bodies of PD [
<xref rid="B65" ref-type="bibr">65</xref>
]. HNE, activating caspase-8, caspase-9, and caspase-3 and inducing DNA fragmentation, is able to ultimately provoke apoptosis of dopaminergic cells [
<xref rid="B66" ref-type="bibr">66</xref>
]. HNE inhibits NF-k
<italic>β</italic>
pathway [
<xref rid="B67" ref-type="bibr">67</xref>
], induces PARP cleavage [
<xref rid="B68" ref-type="bibr">68</xref>
], decrease GSH content, and inhibits complexes I and II of the ETC, contributing to the disease progression [
<xref rid="B69" ref-type="bibr">69</xref>
<xref rid="B71" ref-type="bibr">71</xref>
].</p>
<p>Mice treated with PD toxins (i.e., 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), paraquat, and rotenone) support the link between oxidative stress and dopaminergic neuronal degeneration. In particular, MPTP causes a depletion of dopamine (DA) levels [
<xref rid="B72" ref-type="bibr">72</xref>
] and reduction of tyrosine hydroxylase (TH) [
<xref rid="B73" ref-type="bibr">73</xref>
]. The monoamine oxidase B (MO B) converts MPTP in 1-methyl-4-phenylpyridinium (MPP+), which blocks mitochondrial complex I and causes ATP depletion and ROS increase. This is thought to be the main cause of MPTP-induced terminal degeneration [
<xref rid="B74" ref-type="bibr">74</xref>
<xref rid="B77" ref-type="bibr">77</xref>
]. Consequently, MPTP-treated mice show an induction of glial response and increased levels of inflammatory cytokines and microglial activation, suggesting that the neurodegenerative process is evolving [
<xref rid="B78" ref-type="bibr">78</xref>
].</p>
<p>In the last years, the discovery of genes implicated to familial forms of PD (i.e.,
<italic>α</italic>
-synuclein, Parkin, and DJ-1) has allowed the identification of new mechanisms, which highlight the importance of oxidative stress in PD pathogenesis. For example,
<italic>α</italic>
-synuclein gene mutations are linked with inherited PD and increase the tendency of the protein to aggregate [
<xref rid="B79" ref-type="bibr">79</xref>
]. It is a natively unfolded protein that can associate with vesicular and membranous structures and plays a role in synaptic vesicle recycling storage. Fibrils of
<italic>α</italic>
-synuclein in conjunction with DA were found in
<italic> substantia nigra</italic>
, which lead to an accumulation of cytotoxic soluble protofibrils and an increase of oxidative/nitrosative stress [
<xref rid="B80" ref-type="bibr">80</xref>
,
<xref rid="B81" ref-type="bibr">81</xref>
].</p>
</sec>
<sec id="sec2.3">
<title>2.3. Redox Imbalance in ALS</title>
<p>ALS is a relentlessly progressive neurodegenerative disorder, in which increasing muscle weakness leads to respiratory failure and death, which typically develops during the sixth or seventh decade of life [
<xref rid="B82" ref-type="bibr">82</xref>
].</p>
<p>Different studies show an increase of oxidative damage to proteins in ALS postmortem tissues compared to control. In particular, high levels of protein carbonyls have been identified in both spinal cord [
<xref rid="B83" ref-type="bibr">83</xref>
] and motor cortex [
<xref rid="B84" ref-type="bibr">84</xref>
] from ALS cases. Increased 3-nitrotyrosine levels were observed in both sporadic and SOD1 familial ALS patients [
<xref rid="B85" ref-type="bibr">85</xref>
]. Oxidative damage to DNA, measured by levels of 8-OHG, has also been found to be increased in cervical spinal cord from ALS patients [
<xref rid="B86" ref-type="bibr">86</xref>
]. Immunoreactivity to the brain and endothelial forms of nitric oxide synthase (eNOS) was also elevated in ALS motor neurons relative to controls, suggesting that nitration of protein-tyrosine residue is upregulated in motor neurons of the spinal cord of ALS [
<xref rid="B87" ref-type="bibr">87</xref>
].</p>
<p>Transgenic mouse models and cell culture models of ALS based on mutant SOD1 recapitulate the oxidative damage to protein, lipid, and DNA observed in the human disease [
<xref rid="B88" ref-type="bibr">88</xref>
]. Moreover, many studies have suggested that SOD1 mutations could have toxic effects for three different reasons: (i) loss of function leading to increased levels of O
<sub>2</sub>
<sup>∙−</sup>
, which can react with NO to produce ONOO
<sup></sup>
[
<xref rid="B85" ref-type="bibr">85</xref>
]; (ii) a dominant-negative mechanism whereby the mutant SOD1 protein not only is inactive, but also inhibits the function of normal SOD1 expressed by the normal allele [
<xref rid="B89" ref-type="bibr">89</xref>
]; or (iii) increased SOD1 activity leading to increased H
<sub>2</sub>
O
<sub>2</sub>
levels and
<sup></sup>
OH [
<xref rid="B89" ref-type="bibr">89</xref>
].</p>
<p>A new pathological feature identified in postmortem tissue of ALS patients consists in neuronal protein deposition of TDP-43 or TAR DNA binding protein with a molecular mass of 43 kDa [
<xref rid="B90" ref-type="bibr">90</xref>
]. In particular, TDP-43 aggregates were found in 97% of ALS cases whether sporadic or familial [
<xref rid="B91" ref-type="bibr">91</xref>
,
<xref rid="B92" ref-type="bibr">92</xref>
]. TDP-43 is a ubiquitously expressed DNA/RNA-binding protein, which is expressed in cytoplasm and in the nucleus where it regulates RNA splicing and microRNA biogenesis [
<xref rid="B93" ref-type="bibr">93</xref>
<xref rid="B95" ref-type="bibr">95</xref>
]. It has been observed that in conditions of oxidative stress TDP-43 is able to translocate in cytoplasm and assemble into stress granules (SGs), which are evident in ALS [
<xref rid="B96" ref-type="bibr">96</xref>
,
<xref rid="B97" ref-type="bibr">97</xref>
]. SGs are large messenger ribonucleoprotein aggregates that are implicated in the stress-mediated inhibition of mRNA and protein synthesis [
<xref rid="B98" ref-type="bibr">98</xref>
]. An altered control of mRNA translation in stressful conditions may trigger motor neuron degeneration at early stages of the disease. Thus, the presence of TDP-43 in SGs leads to a loss of protein functionality defining an altered control of mRNA translation in stressful conditions triggering neuron degeneration.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Redox-Mediated Inflammation in Neurodegenerative Diseases</title>
<p>Recent studies have highlighted the correlation between oxidative damage and
<italic> neuroinflammation</italic>
in neurodegenerative processes, with the term neuroinflammation meaning the chronic inflammation of the CNS. It is characterized by inflammatory molecules expression, endothelial cell activation, platelet deposition, and tissue edema. Neuroinflammation plays an important role in many common neurodegenerative diseases [
<xref rid="B99" ref-type="bibr">99</xref>
]. Its accompanied by an increase of NO and/or O
<sub>2</sub>
<sup>∙−</sup>
with H
<sub>2</sub>
O
<sub>2</sub>
production [
<xref rid="B100" ref-type="bibr">100</xref>
]. Generally, the inflammation is a protective process that protects the cells from detrimental agents, promoting tissue repair. In uncontrolled conditions the inflammatory process induces inordinate cell damage as it occurs in neurodegenerative disease. In particular, during neuroinflammation, microglia and astrocytes produce many inflammatory genes, including cytokines, chemokines, adhesion molecules, and proinflammatory transcription factors [
<xref rid="B101" ref-type="bibr">101</xref>
]. An increase of some transcription factors involved in inflammation was also found, such as NF-k
<italic>β</italic>
, peroxisome proliferator-activated receptor gamma (PPAR
<italic>γ</italic>
), and Sp1 in microglia cultures and AD brain [
<xref rid="B102" ref-type="bibr">102</xref>
<xref rid="B104" ref-type="bibr">104</xref>
]. Thus, the inflammatory mediators secreted by microglial and astrocytic cells contribute to neuronal dystrophy [
<xref rid="B105" ref-type="bibr">105</xref>
]. In these conditions microglia can produce ROS, NO, and proteolytic enzyme, enhancing the senile plaques and NFTs formation [
<xref rid="B106" ref-type="bibr">106</xref>
]. Furthermore, as a vicious cycle, the senile plaques induce the expression of proinflammatory cytokines and enzymes such as inducible NOS (iNOS) and cyclooxygenase enzyme (COX-2) in microglia cells, suggesting that all these factors can contribute to neurodegeneration [
<xref rid="B107" ref-type="bibr">107</xref>
].</p>
<p>In the case of AD many authors speculate that senile plaques and NFTs constitute the site of activation of a chronic inflammatory response. In fact, an interaction between A
<italic>β</italic>
peptide and CR3/Mac-1 (CD11b/CD18) on microglia has been observed. This interaction determines the activation of phosphatidylinositol 3-kinase (PI3K), which in turn phosphorylates p47
<sup>phox</sup>
, inducing the PHOX translocation and activation on microglia membrane increasing the production of O
<sub>2</sub>
<sup>∙−</sup>
and causing neuroinflammation [
<xref rid="B108" ref-type="bibr">108</xref>
,
<xref rid="B109" ref-type="bibr">109</xref>
]. Thus the abnormal activation of microglia disrupts nerve terminals activity causing an alteration and a loss of synapses, which correlates with memory decline, leading to progression of AD [
<xref rid="B110" ref-type="bibr">110</xref>
]. Next to this, some studies have revealed an association between AD and mutations in different genes opening new strategies for comprehension of pathology [
<xref rid="B111" ref-type="bibr">111</xref>
,
<xref rid="B112" ref-type="bibr">112</xref>
]. For example, genome exome and Sanger sequencing have revealed that heterozygous rare variants in triggering receptor expressed on myeloid cells 2 (TREM2) are associated with a significant increase in the risk of AD [
<xref rid="B113" ref-type="bibr">113</xref>
]. Also genome-wide investigations have revealed many polymorphisms in the human genome of AD patients. In particular, polymorphisms on clusterin (ApoJ, a potent regulator of complement induction) and CR1 (complement receptor) genes are genetically associated with sporadic AD [
<xref rid="B114" ref-type="bibr">114</xref>
,
<xref rid="B115" ref-type="bibr">115</xref>
]. Moreover, the single nucleotide polymorphisms for cytokines and chemokines genes have been associated with AD risk [
<xref rid="B116" ref-type="bibr">116</xref>
].</p>
<p>In PD the activation of microglia has been amply demonstrated, suggesting an important role of neuroinflammation in the pathophysiology of PD. Activated microglia produce O
<sub>2</sub>
<sup>∙−</sup>
and NO, which in turn contribute to oxidative and nitrosative stress in the brain [
<xref rid="B117" ref-type="bibr">117</xref>
]. Notably, activated microglia and T lymphocytes, together with an increase of proinflammatory mediators, have been detected in the brain and cerebrospinal fluids of PD patients [
<xref rid="B118" ref-type="bibr">118</xref>
]. An increase of iNOS has been also revealed in activated microglia of PD subjects [
<xref rid="B118" ref-type="bibr">118</xref>
]. Moreover, the role of DA as being responsible for the ROS-mediated inflammation reaction in neurons was shown [
<xref rid="B119" ref-type="bibr">119</xref>
]. In fact, DA is stable in synaptic vesicles inside the cell; however once DA exists it is easily metabolized by MO. Alternatively, DA can undergo autooxidation determining the ROS production. As a result the microglia became active and produce proinflammatory cytokine, such as interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-
<italic>α</italic>
) [
<xref rid="B120" ref-type="bibr">120</xref>
], and O
<sub>2</sub>
<sup>∙−</sup>
and NO [
<xref rid="B121" ref-type="bibr">121</xref>
], leading the generation of vicious cycle that further increases dopaminergic toxicity in the
<italic> substantia nigra</italic>
.</p>
<p>As for the other neurodegenerative diseases a characteristic of ALS pathology is the occurrence of a neuroinflammation, which activates microglia, astrocytes, and T-cells. In particular, the autopsy studies have demonstrated a microglia activation and an induction of activator transcription-3 (STAT3) in ALS spinal cord microglia [
<xref rid="B122" ref-type="bibr">122</xref>
]. Moreover, an upregulation of lipopolysaccharide/Toll Like Receptor 4 (LPS/TLR4) signaling associated genes has been observed in peripheral blood mononuclear cell (PMBCs) from ALS patients, suggesting chronic monocytes and macrophage activations [
<xref rid="B123" ref-type="bibr">123</xref>
]. Studies made on serum and cerebrospinal fluid (CSF) of 20 ALS patients show an increase of MCP1 and IL-8 levels, indicating a stimulation of proinflammatory cytokine cascade after microglia activation [
<xref rid="B124" ref-type="bibr">124</xref>
]. Also increased levels of IL-17, IL-6, and LPS are found in the serum of subjects with ALS [
<xref rid="B125" ref-type="bibr">125</xref>
]. ELISA assays have also demonstrated an increase of IL-15 and IL-12 in serum and CSF of 21 patients with ALS, suggesting that these molecules could be used as potential markers of immune activation in ALS [
<xref rid="B126" ref-type="bibr">126</xref>
]. Moreover, 2D gel electrophoresis analysis highlighted an increased activity of components of complement C3 in serum of ALS patients with respect to controls [
<xref rid="B127" ref-type="bibr">127</xref>
]. All these studies demonstrate the presence of an inflammatory and immune response in subjects with ALS.</p>
</sec>
<sec id="sec4">
<title>4. Viral Infections and Neurodegeneration</title>
<p>As mentioned above, a common feature of neurodegenerative disease is the chronic neuroinflammation and activation of microglia in the brains of patients with PD, AD, and ALS. In the last years, many studies show an association between virus infection and neurodegenerative as another important common feature of these disorders (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
). In the second part of this review we will provide a detailed picture of how some virus infections can guide us to underpin mechanisms in neurodegeneration and amplify the damage mediated by oxidative stress.</p>
<p>Neuronal degeneration can be either directly or indirectly affected by viral infection. Viruses can injure neurons by direct killing, by cell lysis, and by inducing apoptosis. Different pathogens and/or their products may directly induce long-term degenerative effects, such as the deposit of misfolded protein aggregates, increased levels of oxidative stress, deficient autophagic processes, synaptopathies, and neuronal death. Viruses, bacteria, protozoa, and unconventional pathogens such as prion proteins have the ability to invade the CNS as described by De Chiara et al. (2012) [
<xref rid="B128" ref-type="bibr">128</xref>
]. There are different routes of entry of infectious agents into the CNS and they cause acute infections, which in some cases may be fatal or which may progress to become chronic illnesses [
<xref rid="B129" ref-type="bibr">129</xref>
,
<xref rid="B130" ref-type="bibr">130</xref>
]. When the viruses enter into the nervous system, that is, they are neurotropic, it leads to activation of both innate and adaptive immune responses. Viral antigens preferentially activate the TLRs 3, 7, and 8 driving innate and adaptive immune responses and leading to neuronal damage, which occurs through direct damage, killing, release of free radicals, cellular activation, and inflammation, and induce a number of encephalopathies [
<xref rid="B58" ref-type="bibr">58</xref>
]. In particular, one of the secondary consequences of these encephalopathies can be the Parkinsonism that is both transient and permanent condition.</p>
<p>According to reviewed literature, and as discussed in depth below, a large number of studies demonstrate that the viruses are one of the main causes of degenerative diseases. In particular, as emerging from the review below, a growing interest is devoted to investigating the effects of H1N1 in PD (
<xref ref-type="sec" rid="sec4.1">Section 4.1</xref>
), of HSV1 in AD (
<xref ref-type="sec" rid="sec4.2">Section 4.2</xref>
), and of retroviruses in ALS (
<xref ref-type="sec" rid="sec4.3">Section 4.3</xref>
).</p>
<sec id="sec4.1">
<title>4.1. H1N1 in PD</title>
<p>In the last years, it has emerged that influenza virus has been implicated as a direct and an indirect cause of PD, although it was recently found that influenza can be considered as PD-like symptoms such as tremor, particularly in the month after an infection, but not with an increased risk of developing idiopathic PD [
<xref rid="B131" ref-type="bibr">131</xref>
].</p>
<p>Influenza virus is a respiratory pathogen contagious to humans, belonging to Orthomyxoviridae family, which are negative sense, single-stranded, segmented RNA viruses. In particular, a viral etiology for PD is based largely on epidemiological studies indicating a possible coincidence of PD with influenza flu pandemics, most notably the 1918-1919 “Spanish” influenza outbreak [
<xref rid="B132" ref-type="bibr">132</xref>
,
<xref rid="B133" ref-type="bibr">133</xref>
]. In recent studies, Rohn and Catlin have shown the presence of influenza A virus within the
<italic> substantia nigra</italic>
pars compacta (SNpc) from postmortem PD brain sections [
<xref rid="B134" ref-type="bibr">134</xref>
]. They also identified colocalized influenza A and immune cells with caspase-cleaved Beclin-1 within the SNpc, which clearly indicated the role of neuroinflammation with influenza A virus's involvement in PD pathogenesis. Influenza A virus labelling was identified within neuromelanin granules as well as on tissue macrophages in the SNpc [
<xref rid="B134" ref-type="bibr">134</xref>
]. As mentioned above, the PD hallmark Lewy bodies are also composed mainly of aggregated
<italic>α</italic>
-synuclein. The formation of Lewy bodies is due to accumulation of normally produced Ser-129 phosphorylated
<italic>α</italic>
-synuclein [
<xref rid="B135" ref-type="bibr">135</xref>
]. It is demonstrated that H5N1 influenza virus progresses from the peripheral nervous system into the CNS and increases the phosphorylation and aggregation of
<italic>α</italic>
-synuclein [
<xref rid="B136" ref-type="bibr">136</xref>
]. Reviewed data suggest that influenza virus could have a role in the PD.</p>
</sec>
<sec id="sec4.2">
<title>4.2. HSV1 in AD</title>
<p>Growing epidemiological and experimental evidence suggests that recurrent herpes simplex virus type-1 (HSV-1) infection is a risk factor for AD. It belongs to the family Herpesviridae, which is a large family of double-stranded DNA viruses. HSV-1 is a virus that primarily infects epithelial cells of oral and nasal mucosa [
<xref rid="B137" ref-type="bibr">137</xref>
]. The concept of a viral role in AD, specifically of HSV-1, was first proposed several decades ago [
<xref rid="B138" ref-type="bibr">138</xref>
,
<xref rid="B139" ref-type="bibr">139</xref>
]. Several epidemiological studies have reported the presence of the HSV-1 genome in postmortem brain specimens from numerous AD patients, particularly those who carry the type 4 allele of the gene that encodes apolipoprotein E (APOE4), another potential risk factor for AD [
<xref rid="B140" ref-type="bibr">140</xref>
,
<xref rid="B141" ref-type="bibr">141</xref>
]. Moreover, Wozniak et al. [
<xref rid="B142" ref-type="bibr">142</xref>
] have found the HSV-1 DNA in amyloid plaques of AD brains.</p>
<p>Several studies suggest that HSV-1 could be a possible major cause of amyloid plaques and hence possible aetiological factor in AD. Besides, genes related to HSV-1 reactivation have been detected in the brain of patients with familial AD, associated with
<italic>β</italic>
-amyloid deposits [
<xref rid="B143" ref-type="bibr">143</xref>
]. HSV-1 infection has also been shown to promote neurotoxic A
<italic>β</italic>
accumulation [
<xref rid="B144" ref-type="bibr">144</xref>
<xref rid="B146" ref-type="bibr">146</xref>
], tau phosphorylation [
<xref rid="B147" ref-type="bibr">147</xref>
], and cleavage [
<xref rid="B142" ref-type="bibr">142</xref>
]
<italic> in vitro</italic>
. Several studies have sought anti-HSV-1 IgM as well as IgG in serum from AD patients, showing that the risk of AD is increased in elderly subjects with positive titers of anti-HSV-1 IgM antibodies [
<xref rid="B148" ref-type="bibr">148</xref>
]. Genetic studies too have linked various pathways in AD with those occurring in HSV-1 infection [
<xref rid="B149" ref-type="bibr">149</xref>
].</p>
<p>The presented evidences suggest that HSV1 may have a critical role in AD pathogenesis.</p>
</sec>
<sec id="sec4.3">
<title>4.3. Retroviruses in ALS</title>
<p>Retroviruses play an important role in the pathogenesis of ALS. In fact, several studies have reported retroviruses to be involved in ALS [
<xref rid="B150" ref-type="bibr">150</xref>
<xref rid="B154" ref-type="bibr">154</xref>
]. As found by [
<xref rid="B155" ref-type="bibr">155</xref>
], the reverse transcriptase (RT) enzyme of the retroviruses can convert RNA into complementary DNA. The first demonstration of retroviral involvement in ALS dates back to 1975 when Viola et al. [
<xref rid="B156" ref-type="bibr">156</xref>
] found RT activity in cytoplasmic particulate fraction from two Guamanian ALS but not in brains from two control individuals. At that time, a growing interest was in finding the retroviral.</p>
<p>Other studies showed that the RT is present more frequently in ALS patients' sera compared to that of control and the levels of the activity in ALS patients were comparable to that in HIV-infected patients [
<xref rid="B157" ref-type="bibr">157</xref>
,
<xref rid="B158" ref-type="bibr">158</xref>
].</p>
<p>ALS-like syndromes are developed in a small percentage of persons infected with the human immunodeficiency virus-1 (HIV-1) or human T-cell leukemia virus-1 (HTLV-1). HIV-infected patients may develop neurological manifestations that resemble classical ALS although it occurs at a younger age and they may show a dramatic improvement following the initiation of antiretroviral therapy. On the other hand, HTLV-1 associated ALS-like syndrome has several features that may distinguish it from classical ALS. However, most patients with probable or definite ALS show no evidence of HIV-1 or HTLV-1 infection [
<xref rid="B159" ref-type="bibr">159</xref>
]. Moreover, studies have shown increased HERV-K expression in both serum and brain tissue in ALS patients [
<xref rid="B160" ref-type="bibr">160</xref>
]. Furthermore, in a recent study it has been shown that HERV-K is activated in a subpopulation of patients with ALS and that its envelope protein may contribute to neurodegeneration [
<xref rid="B161" ref-type="bibr">161</xref>
]. These evidences suggest that retroviruses are involved in the pathophysiology of ALS.</p>
</sec>
</sec>
<sec id="sec5">
<title>5. Viral Infections and Oxidative Stress in Neurodegenerative Disease</title>
<p>Frequently viral infections cause changes in the redox state in host cells [
<xref rid="B162" ref-type="bibr">162</xref>
<xref rid="B166" ref-type="bibr">166</xref>
]. Many viral infections can cause an increased generation of ROS and RNS, which can be caused by both direct effects of virus on cells and inflammatory responses of the chronic viral host. In the presence of surplus ROS, the pathogen-mediated proteins can induce pathologic changes in neural tissue and lead to chronic inflammation of the brain, as seen in classical neurodegenerative diseases.</p>
<sec id="sec5.1">
<title>5.1. HSV1</title>
<p>HSV1-1 when infecting neurons and glia cells induce the production of proinflammatory cytokines produced by microglia and infiltrating macrophages, as well as the production of chemokines and antiviral cytokines [
<xref rid="B167" ref-type="bibr">167</xref>
,
<xref rid="B168" ref-type="bibr">168</xref>
]. Several studies have shown that during HSV-1 infection into the cell a depletion of GSH, the production of ROS, the induction of mitochondrial DNA damage, and endoplasmatic reticulum stress with consequent alteration of the intracellular redox state towards a prooxidant state occur [
<xref rid="B166" ref-type="bibr">166</xref>
,
<xref rid="B169" ref-type="bibr">169</xref>
<xref rid="B171" ref-type="bibr">171</xref>
].</p>
<p>More data indicate that virus infection induced oxidative damage in the brain. In particular, Schachtele et al. (2010) [
<xref rid="B172" ref-type="bibr">172</xref>
] have shown that HSV-1 induced neural cell oxidative tissue damage and cytotoxicity, which are mediated by microglial cell through a TLR2-dependent mechanism. In other studies increases in ROS levels, lipid peroxidation, and protein nitrosylation were reported when there is HSV-1 infection [
<xref rid="B167" ref-type="bibr">167</xref>
,
<xref rid="B173" ref-type="bibr">173</xref>
,
<xref rid="B174" ref-type="bibr">174</xref>
]. Furthermore, in the recent study Santana et al. (2013) have shown that oxidative stress enhances the accumulation of intracellular A
<italic>β</italic>
and the inhibition of A
<italic>β</italic>
secretion induced by HSV-1 infection [
<xref rid="B175" ref-type="bibr">175</xref>
]. Several studies suggest that HSV-1 induced oxidative stress in neuronal cells may trigger
<italic>β</italic>
- and
<italic>γ</italic>
-secretase activation and, consequently, APP processing and A
<italic>β</italic>
formation. These findings demonstrate that HSV-1 infection of neuronal cells can generate multiple APP fragments with well-documented neurotoxic potentials [
<xref rid="B147" ref-type="bibr">147</xref>
].</p>
</sec>
<sec id="sec5.2">
<title>5.2. Influenza Virus</title>
<p>
<italic>Influenza </italic>
virus uses host cell structures and metabolic pathways for its life-cycle. In particular, intracellular redox state changes, for example, GSH depletion or ROS or RNS increase, have been detected during influenza virus infection [
<xref rid="B165" ref-type="bibr">165</xref>
]. On the other hand, it has been recently demonstrated that NOX4 enzyme, the main source of ROS production during influenza virus infection, regulates specific steps of virus life-cycle [
<xref rid="B34" ref-type="bibr">34</xref>
]. Virus-induced GSH decrease is pivotal for viral replication by allowing the folding and maturation of viral hemagglutinin [
<xref rid="B176" ref-type="bibr">176</xref>
] and activating cellular kinases involved in nucleocytoplasmic traffic of viral proteins [
<xref rid="B177" ref-type="bibr">177</xref>
].</p>
<p>On the basis of these evidences it can be assumed that the infection of influenza virus amplifies the effects of oxidative stress, which contribute to neuronal damage.</p>
</sec>
<sec id="sec5.3">
<title>5.3. Retroviruses</title>
<p>Garaci et al. [
<xref rid="B178" ref-type="bibr">178</xref>
] demonstrated that
<italic> in vitro</italic>
HIV infection significantly decreases the GSH content of human macrophages. In addition, recent work has shown that HIV-1 induces ROS production in astrocytes and microglia [
<xref rid="B179" ref-type="bibr">179</xref>
,
<xref rid="B180" ref-type="bibr">180</xref>
]. Dasuri et al. [
<xref rid="B180" ref-type="bibr">180</xref>
] have shown that oxidative stress is involved in the pathology of HIV-associated neurocognitive disorders. HIV-infected monocytes and T-cell, to enter in the cell, use the glycoprotein gp120. The viral protein gp120 can directly induce apoptosis in neurons and increase oxidative stress through GSH and lipid peroxidation [
<xref rid="B179" ref-type="bibr">179</xref>
].</p>
<p>The increases of ROS plays a role in viral pathogenesis probably because the increase of oxidative stress, generated when viruses infect the aged neuronal cells, may contribute to increasing the production of misfolded proteins and hence to the pathogenesis of neurodegenerative diseases.</p>
<p>Data discussed in this review suggest that viruses can be causative agents or, at least, cofactors of some neurodegenerative diseases. Therefore, much attention should be paid to infectious and, especially, viral agents among the environmental factors contributing to neurodegenerative diseases.</p>
</sec>
</sec>
<sec id="sec6">
<title>6. Conclusions</title>
<p>Although numerous studies have been made to understand the genetic/molecular mechanisms that underly the different neurodegenerative diseases, the comprehension of how redox imbalance is implicated in viral infection during neuronal damage is still unclear. In particular, understanding whether the redox imbalance is the cause or the effect of an increased propensity of brain cells to infection would be of great importance to develop new therapeutic strategies to target redox/inflammatory markers in brain inflammation and neurodegenerative disorders.</p>
</sec>
</body>
<back>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>MPTP:</term>
<def>
<p>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine</p>
</def>
</def-item>
<def-item>
<term>MPP+:</term>
<def>
<p>1-Methyl-4-phenylpyridinium</p>
</def>
</def-item>
<def-item>
<term>HNE:</term>
<def>
<p>4-Hydroxynonenal</p>
</def>
</def-item>
<def-item>
<term>8-OHG:</term>
<def>
<p>8-Hydroxyguanosine</p>
</def>
</def-item>
<def-item>
<term>AP-1:</term>
<def>
<p>Activator protein-1</p>
</def>
</def-item>
<def-item>
<term>STAT3:</term>
<def>
<p>Activator transcription-3</p>
</def>
</def-item>
<def-item>
<term>AGE:</term>
<def>
<p>Advanced glycation end product</p>
</def>
</def-item>
<def-item>
<term>AD:</term>
<def>
<p>Alzheimer's disease</p>
</def>
</def-item>
<def-item>
<term>APP:</term>
<def>
<p>Amyloid precursor protein</p>
</def>
</def-item>
<def-item>
<term>ALS:</term>
<def>
<p>Amyotrophic lateral sclerosis</p>
</def>
</def-item>
<def-item>
<term>A
<italic>β</italic>
:</term>
<def>
<p>
<italic>β</italic>
-Amyloid peptide</p>
</def>
</def-item>
<def-item>
<term>CNS:</term>
<def>
<p>Central Nervous System</p>
</def>
</def-item>
<def-item>
<term>CSF:</term>
<def>
<p>Cerebrospinal fluid</p>
</def>
</def-item>
<def-item>
<term>CR1:</term>
<def>
<p>Complement receptor</p>
</def>
</def-item>
<def-item>
<term>COX-2:</term>
<def>
<p>Cyclooxygenase enzyme</p>
</def>
</def-item>
<def-item>
<term>DAT:</term>
<def>
<p>DA transporter</p>
</def>
</def-item>
<def-item>
<term>DOPAC:</term>
<def>
<p>Dihydroxyphenylacetic acid</p>
</def>
</def-item>
<def-item>
<term>DA:</term>
<def>
<p>Dopamine</p>
</def>
</def-item>
<def-item>
<term>ETC:</term>
<def>
<p>Electron transport chain</p>
</def>
</def-item>
<def-item>
<term>eNOS:</term>
<def>
<p>Endothelial nitric oxide synthase</p>
</def>
</def-item>
<def-item>
<term>GSH:</term>
<def>
<p>Glutathione</p>
</def>
</def-item>
<def-item>
<term>HO-1:</term>
<def>
<p>Heme Oxygenase-1</p>
</def>
</def-item>
<def-item>
<term>HSV-1:</term>
<def>
<p>Herpes simplex virus type-1</p>
</def>
</def-item>
<def-item>
<term>H
<sub>2</sub>
O
<sub>2</sub>
:</term>
<def>
<p>Hydrogen peroxide</p>
</def>
</def-item>
<def-item>
<term>
<sup></sup>
OH:</term>
<def>
<p>Hydroxyl radical</p>
</def>
</def-item>
<def-item>
<term>IL-12:</term>
<def>
<p>Interleukin-12</p>
</def>
</def-item>
<def-item>
<term>IL-15:</term>
<def>
<p>Interleukin-15</p>
</def>
</def-item>
<def-item>
<term>IL-17:</term>
<def>
<p>Interleukin-17</p>
</def>
</def-item>
<def-item>
<term>IL-1
<italic>β</italic>
:</term>
<def>
<p>Interleukin-1
<italic>β</italic>
</p>
</def>
</def-item>
<def-item>
<term>IL-6:</term>
<def>
<p>Interleukin-6</p>
</def>
</def-item>
<def-item>
<term>IL-8:</term>
<def>
<p>Interleukin-8</p>
</def>
</def-item>
<def-item>
<term>iNOS:</term>
<def>
<p>Inducible nitric oxide synthase</p>
</def>
</def-item>
<def-item>
<term>INF-
<italic>γ</italic>
:</term>
<def>
<p>Interferon-
<italic>γ</italic>
</p>
</def>
</def-item>
<def-item>
<term>LPS:</term>
<def>
<p>Lipopolysaccharide</p>
</def>
</def-item>
<def-item>
<term>MIP1
<italic>α</italic>
:</term>
<def>
<p>Macrophage inflammatory protein 1
<italic>α</italic>
</p>
</def>
</def-item>
<def-item>
<term>MIP1
<italic>β</italic>
:</term>
<def>
<p>Macrophage inflammatory protein 1
<italic>β</italic>
</p>
</def>
</def-item>
<def-item>
<term>NFM, NFH:</term>
<def>
<p>Medium and high molecular weight neurofilaments</p>
</def>
</def-item>
<def-item>
<term>mtGSH:</term>
<def>
<p>Mitochondrial glutathione</p>
</def>
</def-item>
<def-item>
<term>MO B:</term>
<def>
<p>Monoamine oxidase B</p>
</def>
</def-item>
<def-item>
<term>MCP1:</term>
<def>
<p>Monocyte chemotactic protein 1</p>
</def>
</def-item>
<def-item>
<term>NOX:</term>
<def>
<p>NADPH oxidase</p>
</def>
</def-item>
<def-item>
<term>NFTs:</term>
<def>
<p>Neurofibrillary tangles</p>
</def>
</def-item>
<def-item>
<term>NO:</term>
<def>
<p>Nitric oxide</p>
</def>
</def-item>
<def-item>
<term>NF-k
<italic>β</italic>
:</term>
<def>
<p>Nuclear factor-k
<italic>β</italic>
</p>
</def>
</def-item>
<def-item>
<term>PD:</term>
<def>
<p>Parkinson's disease</p>
</def>
</def-item>
<def-item>
<term>PPAR
<italic>γ</italic>
:</term>
<def>
<p>Peroxisome proliferator-activated receptor gamma</p>
</def>
</def-item>
<def-item>
<term>ONOO
<sup></sup>
: </term>
<def>
<p>Peroxynitrite</p>
</def>
</def-item>
<def-item>
<term>PMBCs:</term>
<def>
<p>Peripheral blood mononuclear cells</p>
</def>
</def-item>
<def-item>
<term>RNS:</term>
<def>
<p>Reactive nitrogen species</p>
</def>
</def-item>
<def-item>
<term>ROS:</term>
<def>
<p>Reactive oxygen species</p>
</def>
</def-item>
<def-item>
<term>SNpc:</term>
<def>
<p>
<italic> Substantia nigra</italic>
pars compacta</p>
</def>
</def-item>
<def-item>
<term>O
<sub>2</sub>
<sup>∙−</sup>
:</term>
<def>
<p>Superoxide anion</p>
</def>
</def-item>
<def-item>
<term>SOD2:</term>
<def>
<p>Superoxide dismutase 2</p>
</def>
</def-item>
<def-item>
<term>TLR:</term>
<def>
<p>Toll Like Receptor</p>
</def>
</def-item>
<def-item>
<term>TNF-
<italic>α</italic>
:</term>
<def>
<p>Tumor necrosis factor-
<italic>α</italic>
</p>
</def>
</def-item>
<def-item>
<term>TREM2:</term>
<def>
<p>Triggering receptor expressed on myeloid cells 2</p>
</def>
</def-item>
<def-item>
<term>TH:</term>
<def>
<p>Tyrosine hydroxylase.</p>
</def>
</def-item>
</def-list>
</glossary>
<sec>
<title>Competing Interests</title>
<p>The authors have no competing interests to declare.</p>
</sec>
<sec>
<title>Authors' Contributions</title>
<p>Dolores Limongi and Sara Baldelli equally contributed to this work.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halliwell</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Oxidative stress and neurodegeneration: where are we now?</article-title>
<source>
<italic>Journal of Neurochemistry</italic>
</source>
<year>2006</year>
<volume>97</volume>
<issue>6</issue>
<fpage>1634</fpage>
<lpage>1658</lpage>
<pub-id pub-id-type="doi">10.1111/j.1471-4159.2006.03907.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-33745013111</pub-id>
<pub-id pub-id-type="pmid">16805774</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carvey</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Punati</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>M. B.</given-names>
</name>
</person-group>
<article-title>Progressive dopamine neuron loss in Parkinson's disease: the multiple hit hypothesis</article-title>
<source>
<italic>Cell Transplantation</italic>
</source>
<year>2006</year>
<volume>15</volume>
<issue>3</issue>
<fpage>239</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="doi">10.3727/000000006783981990</pub-id>
<pub-id pub-id-type="other">2-s2.0-33646558560</pub-id>
<pub-id pub-id-type="pmid">16719059</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shahani</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Subramaniam</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tackenberg</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Brandt</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Tau aggregation and progressive neuronal degeneration in the absence of changes in spine density and morphology after targeted expression of Alzheimer's disease-relevant tau constructs in organotypic hippocampal slices</article-title>
<source>
<italic>The Journal of Neuroscience</italic>
</source>
<year>2006</year>
<volume>26</volume>
<issue>22</issue>
<fpage>6103</fpage>
<lpage>6114</lpage>
<pub-id pub-id-type="doi">10.1523/jneurosci.4245-05.2006</pub-id>
<pub-id pub-id-type="other">2-s2.0-33745236883</pub-id>
<pub-id pub-id-type="pmid">16738255</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jellinger</surname>
<given-names>K. A.</given-names>
</name>
</person-group>
<article-title>Basic mechanisms of neurodegeneration: a critical update</article-title>
<source>
<italic>Journal of Cellular and Molecular Medicine</italic>
</source>
<year>2010</year>
<volume>14</volume>
<issue>3</issue>
<fpage>457</fpage>
<lpage>487</lpage>
<pub-id pub-id-type="doi">10.1111/j.1582-4934.2010.01010.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-77953417539</pub-id>
<pub-id pub-id-type="pmid">20070435</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gandhi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Abramov</surname>
<given-names>A. Y.</given-names>
</name>
</person-group>
<article-title>Mechanism of oxidative stress in neurodegeneration</article-title>
<source>
<italic>Oxidative Medicine and Cellular Longevity</italic>
</source>
<year>2012</year>
<volume>2012</volume>
<fpage>11</fpage>
<pub-id pub-id-type="publisher-id">428010</pub-id>
<pub-id pub-id-type="doi">10.1155/2012/428010</pub-id>
<pub-id pub-id-type="other">2-s2.0-84867068655</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.-H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson's disease models</article-title>
<source>
<italic>Brain</italic>
</source>
<year>2015</year>
<volume>138</volume>
<issue>5</issue>
<fpage>1247</fpage>
<lpage>1262</lpage>
<pub-id pub-id-type="doi">10.1093/brain/awv034</pub-id>
<pub-id pub-id-type="other">2-s2.0-84929657195</pub-id>
<pub-id pub-id-type="pmid">25716193</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andersen</surname>
<given-names>J. K.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>K. J. A.</given-names>
</name>
<name>
<surname>Forman</surname>
<given-names>H. J.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen and nitrogen species in neurodegeneration</article-title>
<source>
<italic>Free Radical Biology and Medicine</italic>
</source>
<year>2013</year>
<volume>62</volume>
<fpage>1</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2013.06.001</pub-id>
<pub-id pub-id-type="other">2-s2.0-84884884105</pub-id>
<pub-id pub-id-type="pmid">23876468</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuste</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Tarragon</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Campuzano</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Ros-Bernal</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Implications of glial nitric oxide in neurodegenerative diseases</article-title>
<source>
<italic>Frontiers in Cellular Neuroscience</italic>
</source>
<year>2015</year>
<volume>9, article 322</volume>
<pub-id pub-id-type="doi">10.3389/fncel.2015.00322</pub-id>
<pub-id pub-id-type="other">2-s2.0-84940213599</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aras</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tanriover</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Aslan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yargicoglu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Agar</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The role of nitric oxide on visual-evoked potentials in MPTP-induced Parkinsonism in mice</article-title>
<source>
<italic>Neurochemistry International</italic>
</source>
<year>2014</year>
<volume>72</volume>
<issue>1</issue>
<fpage>48</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuint.2014.04.014</pub-id>
<pub-id pub-id-type="other">2-s2.0-84900462545</pub-id>
<pub-id pub-id-type="pmid">24795109</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knott</surname>
<given-names>A. B.</given-names>
</name>
<name>
<surname>Bossy-Wetzel</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Nitric oxide in health and disease of the nervous system</article-title>
<source>
<italic>Antioxidants and Redox Signaling</italic>
</source>
<year>2009</year>
<volume>11</volume>
<issue>3</issue>
<fpage>541</fpage>
<lpage>554</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2008.2234</pub-id>
<pub-id pub-id-type="other">2-s2.0-58849147441</pub-id>
<pub-id pub-id-type="pmid">18715148</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aquilano</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Baldelli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rotilio</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ciriolo</surname>
<given-names>M. R.</given-names>
</name>
</person-group>
<article-title>Role of nitric oxide synthases in Parkinson's disease: a review on the antioxidant and anti-inflammatory activity of polyphenols</article-title>
<source>
<italic>Neurochemical Research</italic>
</source>
<year>2008</year>
<volume>33</volume>
<issue>12</issue>
<fpage>2416</fpage>
<lpage>2426</lpage>
<pub-id pub-id-type="doi">10.1007/s11064-008-9697-6</pub-id>
<pub-id pub-id-type="other">2-s2.0-56349089470</pub-id>
<pub-id pub-id-type="pmid">18415676</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nelson</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Connolly</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>McArthur</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Nitric oxide and S-nitrosylation: excitotoxic and cell signaling mechanism</article-title>
<source>
<italic>Biology of the Cell</italic>
</source>
<year>2003</year>
<volume>95</volume>
<issue>1</issue>
<fpage>3</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1016/s0248-4900(03)00004-2</pub-id>
<pub-id pub-id-type="other">2-s2.0-0038103656</pub-id>
<pub-id pub-id-type="pmid">12753948</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marks</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Boriboun</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Mitochondrial nitric oxide mediates decreased vulnerability of hippocampal neurons from immature animals to NMDA</article-title>
<source>
<italic>The Journal of Neuroscience</italic>
</source>
<year>2005</year>
<volume>25</volume>
<issue>28</issue>
<fpage>6561</fpage>
<lpage>6575</lpage>
<pub-id pub-id-type="doi">10.1523/jneurosci.1450-05.2005</pub-id>
<pub-id pub-id-type="other">2-s2.0-22244481826</pub-id>
<pub-id pub-id-type="pmid">16014717</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>von Bernhardi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Eugenín</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms</article-title>
<source>
<italic>Antioxidants and Redox Signaling</italic>
</source>
<year>2012</year>
<volume>16</volume>
<issue>9</issue>
<fpage>974</fpage>
<lpage>1031</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2011.4082</pub-id>
<pub-id pub-id-type="other">2-s2.0-84857977037</pub-id>
<pub-id pub-id-type="pmid">22122400</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chiurchiù</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Maccarrone</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities</article-title>
<source>
<italic>Antioxidants and Redox Signaling</italic>
</source>
<year>2011</year>
<volume>15</volume>
<issue>9</issue>
<fpage>2605</fpage>
<lpage>2641</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2010.3547</pub-id>
<pub-id pub-id-type="other">2-s2.0-80053004011</pub-id>
<pub-id pub-id-type="pmid">21391902</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klugman</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Naughton</surname>
<given-names>D. P.</given-names>
</name>
<name>
<surname>Isaac</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Petroczi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tabet</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Antioxidant enzymatic activities in alzheimer's disease: the relationship to acetylcholinesterase inhibitors</article-title>
<source>
<italic>Journal of Alzheimer's Disease</italic>
</source>
<year>2012</year>
<volume>30</volume>
<issue>3</issue>
<fpage>467</fpage>
<lpage>474</lpage>
<pub-id pub-id-type="doi">10.3233/jad-2012-120124</pub-id>
<pub-id pub-id-type="other">2-s2.0-84862847822</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smeyne</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Smeynen</surname>
<given-names>R. J.</given-names>
</name>
</person-group>
<article-title>Glutathione metabolism and Parkinson's disease</article-title>
<source>
<italic>Free Radical Biology and Medicine</italic>
</source>
<year>2013</year>
<volume>62</volume>
<fpage>13</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2013.05.001</pub-id>
<pub-id pub-id-type="other">2-s2.0-84884901192</pub-id>
<pub-id pub-id-type="pmid">23665395</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sofic</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lange</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Jellinger</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Riederer</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease</article-title>
<source>
<italic>Neuroscience Letters</italic>
</source>
<year>1992</year>
<volume>142</volume>
<issue>2</issue>
<fpage>128</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="doi">10.1016/0304-3940(92)90355-B</pub-id>
<pub-id pub-id-type="other">2-s2.0-0026644192</pub-id>
<pub-id pub-id-type="pmid">1454205</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babu</surname>
<given-names>G. N.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chandra</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oxidant-antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease</article-title>
<source>
<italic>Neurochemistry International</italic>
</source>
<year>2008</year>
<volume>52</volume>
<issue>6</issue>
<fpage>1284</fpage>
<lpage>1289</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuint.2008.01.009</pub-id>
<pub-id pub-id-type="other">2-s2.0-40949149410</pub-id>
<pub-id pub-id-type="pmid">18308427</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamazaki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tanji</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wakabayashi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Matsuura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Itoh</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Role of the Keap1/Nrf2 pathway in neurodegenerative diseases</article-title>
<source>
<italic>Pathology International</italic>
</source>
<year>2015</year>
<volume>65</volume>
<issue>5</issue>
<fpage>210</fpage>
<lpage>219</lpage>
<pub-id pub-id-type="doi">10.1111/pin.12261</pub-id>
<pub-id pub-id-type="other">2-s2.0-84927650894</pub-id>
<pub-id pub-id-type="pmid">25707882</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bryan</surname>
<given-names>H. K.</given-names>
</name>
<name>
<surname>Olayanju</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Goldring</surname>
<given-names>C. E.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>B. K.</given-names>
</name>
</person-group>
<article-title>The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation</article-title>
<source>
<italic>Biochemical Pharmacology</italic>
</source>
<year>2013</year>
<volume>85</volume>
<issue>6</issue>
<fpage>705</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="doi">10.1016/j.bcp.2012.11.016</pub-id>
<pub-id pub-id-type="other">2-s2.0-84874111758</pub-id>
<pub-id pub-id-type="pmid">23219527</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramsey</surname>
<given-names>C. P.</given-names>
</name>
<name>
<surname>Glass</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Montgomery</surname>
<given-names>M. B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression of Nrf2 in neurodegenerative diseases</article-title>
<source>
<italic>Journal of Neuropathology and Experimental Neurology</italic>
</source>
<year>2007</year>
<volume>66</volume>
<issue>1</issue>
<fpage>75</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="pmid">17204939</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarlette</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Krampfl</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Grothe</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Neuhoff</surname>
<given-names>N. V.</given-names>
</name>
<name>
<surname>Dengler</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Petri</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis</article-title>
<source>
<italic>Journal of Neuropathology and Experimental Neurology</italic>
</source>
<year>2008</year>
<volume>67</volume>
<issue>11</issue>
<fpage>1055</fpage>
<lpage>1062</lpage>
<pub-id pub-id-type="doi">10.1097/nen.0b013e31818b4906</pub-id>
<pub-id pub-id-type="other">2-s2.0-58149232639</pub-id>
<pub-id pub-id-type="pmid">18957896</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mattson</surname>
<given-names>M. P.</given-names>
</name>
</person-group>
<article-title>Infectious agents and age-related neurodegenerative disorders</article-title>
<source>
<italic>Ageing Research Reviews</italic>
</source>
<year>2004</year>
<volume>3</volume>
<issue>1</issue>
<fpage>105</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="doi">10.1016/j.arr.2003.08.005</pub-id>
<pub-id pub-id-type="other">2-s2.0-0842324558</pub-id>
<pub-id pub-id-type="pmid">15163105</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsuda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>C. H.</given-names>
</name>
<name>
<surname>Sunden</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The vagus nerve is one route of transneural invasion for intranasally inoculated influenza A virus in mice</article-title>
<source>
<italic>Veterinary Pathology</italic>
</source>
<year>2004</year>
<volume>41</volume>
<issue>2</issue>
<fpage>101</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="doi">10.1354/vp.41-2-101</pub-id>
<pub-id pub-id-type="other">2-s2.0-1842610987</pub-id>
<pub-id pub-id-type="pmid">15017022</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amor</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Puentes</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Van Der Valk</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Inflammation in neurodegenerative diseases</article-title>
<source>
<italic>Immunology</italic>
</source>
<year>2010</year>
<volume>129</volume>
<issue>2</issue>
<fpage>154</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2567.2009.03225.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-73949090103</pub-id>
<pub-id pub-id-type="pmid">20561356</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shipley</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Parkin</surname>
<given-names>E. T.</given-names>
</name>
<name>
<surname>Itzhaki</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Dobson</surname>
<given-names>C. B.</given-names>
</name>
</person-group>
<article-title>Herpes simplex virus interferes with amyloid precursor protein processing</article-title>
<source>
<italic>BMC Microbiology</italic>
</source>
<year>2005</year>
<volume>5, article 48</volume>
<pub-id pub-id-type="doi">10.1186/1471-2180-5-48</pub-id>
<pub-id pub-id-type="other">2-s2.0-24144470801</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wozniak</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Itzhaki</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Shipley</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Dobson</surname>
<given-names>C. B.</given-names>
</name>
</person-group>
<article-title>Herpes simplex virus infection causes cellular
<italic>β</italic>
-amyloid accumulation and secretase upregulation</article-title>
<source>
<italic>Neuroscience Letters</italic>
</source>
<year>2007</year>
<volume>429</volume>
<issue>2-3</issue>
<fpage>95</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="doi">10.1016/j.neulet.2007.09.077</pub-id>
<pub-id pub-id-type="other">2-s2.0-36348931527</pub-id>
<pub-id pub-id-type="pmid">17980964</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rahal</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oxidative stress, prooxidants, and antioxidants: the interplay</article-title>
<source>
<italic>BioMed Research International</italic>
</source>
<year>2014</year>
<volume>2014</volume>
<fpage>19</fpage>
<pub-id pub-id-type="publisher-id">761264</pub-id>
<pub-id pub-id-type="doi">10.1155/2014/761264</pub-id>
<pub-id pub-id-type="other">2-s2.0-84893744320</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>M. P.</given-names>
</name>
</person-group>
<article-title>How mitochondria produce reactive oxygen species</article-title>
<source>
<italic>Biochemical Journal</italic>
</source>
<year>2009</year>
<volume>417</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1042/BJ20081386</pub-id>
<pub-id pub-id-type="other">2-s2.0-58249093939</pub-id>
<pub-id pub-id-type="pmid">19061483</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marí</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Morales</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Colell</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>García-Ruiz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kaplowitz</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Fernández-Checa</surname>
<given-names>J. C.</given-names>
</name>
</person-group>
<article-title>Mitochondrial glutathione: features, regulation and role in disease</article-title>
<source>
<italic>Biochimica et Biophysica Acta—General Subjects</italic>
</source>
<year>2013</year>
<volume>1830</volume>
<issue>5</issue>
<fpage>3317</fpage>
<lpage>3328</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbagen.2012.10.018</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brandes</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Weissmann</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Schröder</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Nox family NADPH oxidases: molecular mechanisms of activation</article-title>
<source>
<italic>Free Radical Biology and Medicine</italic>
</source>
<year>2014</year>
<volume>76</volume>
<fpage>208</fpage>
<lpage>226</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2014.07.046</pub-id>
<pub-id pub-id-type="other">2-s2.0-84907455071</pub-id>
<pub-id pub-id-type="pmid">25157786</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cooney</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Bermudez-Sabogal</surname>
<given-names>S. L.</given-names>
</name>
<name>
<surname>Byrnes</surname>
<given-names>K. R.</given-names>
</name>
</person-group>
<article-title>Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury</article-title>
<source>
<italic>Journal of Neuroinflammation</italic>
</source>
<year>2013</year>
<volume>10, article 155</volume>
<pub-id pub-id-type="doi">10.1186/1742-2094-10-155</pub-id>
<pub-id pub-id-type="other">2-s2.0-84890268293</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amatore</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sgarbanti</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Aquilano</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS</article-title>
<source>
<italic>Cellular Microbiology</italic>
</source>
<year>2015</year>
<volume>17</volume>
<issue>1</issue>
<fpage>131</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="doi">10.1111/cmi.12343</pub-id>
<pub-id pub-id-type="other">2-s2.0-84919390555</pub-id>
<pub-id pub-id-type="pmid">25154738</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>J.-S.</given-names>
</name>
<name>
<surname>Crews</surname>
<given-names>F. T.</given-names>
</name>
</person-group>
<article-title>NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration</article-title>
<source>
<italic>Glia</italic>
</source>
<year>2013</year>
<volume>61</volume>
<issue>6</issue>
<fpage>855</fpage>
<lpage>868</lpage>
<pub-id pub-id-type="doi">10.1002/glia.22479</pub-id>
<pub-id pub-id-type="other">2-s2.0-84876463910</pub-id>
<pub-id pub-id-type="pmid">23536230</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Butterfield</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>S. F.</given-names>
</name>
<name>
<surname>Sultana</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Roles of amyloid
<italic>β</italic>
-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment</article-title>
<source>
<italic>Free Radical Biology and Medicine</italic>
</source>
<year>2007</year>
<volume>43</volume>
<issue>5</issue>
<fpage>658</fpage>
<lpage>677</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2007.05.037</pub-id>
<pub-id pub-id-type="other">2-s2.0-34547102265</pub-id>
<pub-id pub-id-type="pmid">17664130</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>M. P.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>H.</given-names>
<suffix>III</suffix>
</name>
</person-group>
<article-title>Alzheimer's disease and the amyloid-
<italic>β</italic>
peptide</article-title>
<source>
<italic>Journal of Alzheimer's Disease</italic>
</source>
<year>2010</year>
<volume>19</volume>
<issue>1</issue>
<fpage>311</fpage>
<lpage>323</lpage>
<pub-id pub-id-type="doi">10.3233/JAD-2010-1221</pub-id>
<pub-id pub-id-type="other">2-s2.0-75149136696</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binder</surname>
<given-names>L. I.</given-names>
</name>
<name>
<surname>Guillozet-Bongaarts</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Garcia-Sierra</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Berry</surname>
<given-names>R. W.</given-names>
</name>
</person-group>
<article-title>Tau, tangles, and Alzheimer's disease</article-title>
<source>
<italic>Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease</italic>
</source>
<year>2005</year>
<volume>1739</volume>
<issue>2-3</issue>
<fpage>216</fpage>
<lpage>223</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbadis.2004.08.014</pub-id>
<pub-id pub-id-type="other">2-s2.0-10944248857</pub-id>
<pub-id pub-id-type="pmid">15615640</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ando</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Laborde</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Lazar</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inside Alzheimer brain with CLARITY: senile plaques, neurofibrillary tangles and axons in 3-D</article-title>
<source>
<italic>Acta Neuropathologica</italic>
</source>
<year>2014</year>
<volume>128</volume>
<issue>3</issue>
<fpage>457</fpage>
<lpage>459</lpage>
<pub-id pub-id-type="doi">10.1007/s00401-014-1322-y</pub-id>
<pub-id pub-id-type="other">2-s2.0-84906309260</pub-id>
<pub-id pub-id-type="pmid">25069432</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stamer</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Thies</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mandelkow</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mandelkow</surname>
<given-names>E.-M.</given-names>
</name>
</person-group>
<article-title>Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress</article-title>
<source>
<italic>Journal of Cell Biology</italic>
</source>
<year>2002</year>
<volume>156</volume>
<issue>6</issue>
<fpage>1051</fpage>
<lpage>1063</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.200108057</pub-id>
<pub-id pub-id-type="other">2-s2.0-0037128935</pub-id>
<pub-id pub-id-type="pmid">11901170</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuhla</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ludwig</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Kuhla</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Münch</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Vollmar</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer's disease brain</article-title>
<source>
<italic>Neurobiology of Aging</italic>
</source>
<year>2015</year>
<volume>36</volume>
<issue>2</issue>
<fpage>753</fpage>
<lpage>761</lpage>
<pub-id pub-id-type="doi">10.1016/j.neurobiolaging.2014.09.025</pub-id>
<pub-id pub-id-type="other">2-s2.0-84922765522</pub-id>
<pub-id pub-id-type="pmid">25448604</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Butterfield</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Swomley</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Sultana</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Amyloid
<italic>β</italic>
-peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression</article-title>
<source>
<italic>Antioxidants and Redox Signaling</italic>
</source>
<year>2013</year>
<volume>19</volume>
<issue>8</issue>
<fpage>823</fpage>
<lpage>835</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2012.5027</pub-id>
<pub-id pub-id-type="other">2-s2.0-84877072330</pub-id>
<pub-id pub-id-type="pmid">23249141</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barbagallo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Marotta</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Dominguez</surname>
<given-names>L. J.</given-names>
</name>
</person-group>
<article-title>Oxidative stress in patients with Alzheimer's disease: effect of extracts of fermented papaya powder</article-title>
<source>
<italic>Mediators of Inflammation</italic>
</source>
<year>2015</year>
<volume>2015</volume>
<fpage>6</fpage>
<pub-id pub-id-type="publisher-id">624801</pub-id>
<pub-id pub-id-type="doi">10.1155/2015/624801</pub-id>
<pub-id pub-id-type="other">2-s2.0-84928494210</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aquilano</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Baldelli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ciriolo</surname>
<given-names>M. R.</given-names>
</name>
</person-group>
<article-title>Glutathione: new roles in redox signalling for an old antioxidant</article-title>
<source>
<italic>Frontiers in Pharmacology</italic>
</source>
<year>2014</year>
<volume>5</volume>
<fpage>p. 196</fpage>
<pub-id pub-id-type="doi">10.3389/fphar.2014.00196</pub-id>
<pub-id pub-id-type="other">2-s2.0-84906239247</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uttara</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>A. V.</given-names>
</name>
<name>
<surname>Zamboni</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mahajan</surname>
<given-names>R. T.</given-names>
</name>
</person-group>
<article-title>Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options</article-title>
<source>
<italic>Current Neuropharmacology</italic>
</source>
<year>2009</year>
<volume>7</volume>
<issue>1</issue>
<fpage>65</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.2174/157015909787602823</pub-id>
<pub-id pub-id-type="other">2-s2.0-65949121134</pub-id>
<pub-id pub-id-type="pmid">19721819</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McGrath</surname>
<given-names>L. T.</given-names>
</name>
<name>
<surname>McGleenon</surname>
<given-names>B. M.</given-names>
</name>
<name>
<surname>Brennan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>McColl</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>McILroy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Passmore</surname>
<given-names>A. P.</given-names>
</name>
</person-group>
<article-title>Increased oxidative stress in Alzheimer's disease as assessed with 4-hydroxynonenal but not malondialdehyde</article-title>
<source>
<italic>QJM</italic>
</source>
<year>2001</year>
<volume>94</volume>
<issue>9</issue>
<fpage>485</fpage>
<lpage>490</lpage>
<pub-id pub-id-type="pmid">11528012</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gamba</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Testa</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gargiulo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Staurenghi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Poli</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Leonarduzzi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Oxidized cholesterol as the driving force behind the development of Alzheimer's disease</article-title>
<source>
<italic>Frontiers in Aging Neuroscience</italic>
</source>
<year>2015</year>
<volume>7, article 119</volume>
<pub-id pub-id-type="doi">10.3389/fnagi.2015.00119</pub-id>
<pub-id pub-id-type="other">2-s2.0-84936097545</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talbot</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.-Y.</given-names>
</name>
<name>
<surname>Kazi</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline</article-title>
<source>
<italic>The Journal of Clinical Investigation</italic>
</source>
<year>2012</year>
<volume>122</volume>
<issue>4</issue>
<fpage>1316</fpage>
<lpage>1338</lpage>
<pub-id pub-id-type="doi">10.1172/jci59903</pub-id>
<pub-id pub-id-type="other">2-s2.0-84859718265</pub-id>
<pub-id pub-id-type="pmid">22476197</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elfrink</surname>
<given-names>H. L.</given-names>
</name>
<name>
<surname>Zwart</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cavanillas</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Schindler</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Baas</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Scheper</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Rab6 is a modulator of the unfolded protein response: implications for Alzheimer's disease</article-title>
<source>
<italic>Journal of Alzheimer's Disease</italic>
</source>
<year>2012</year>
<volume>28</volume>
<issue>4</issue>
<fpage>917</fpage>
<lpage>929</lpage>
<pub-id pub-id-type="doi">10.3233/jad-2011-110971</pub-id>
<pub-id pub-id-type="other">2-s2.0-84858022581</pub-id>
</element-citation>
</ref>
<ref id="B50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moreira</surname>
<given-names>P. I.</given-names>
</name>
<name>
<surname>Sayre</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Nunomura</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Perry</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Detection and localization of markers of oxidative stress by in situ methods: application in the study of Alzheimer disease</article-title>
<source>
<italic>Methods in Molecular Biology</italic>
</source>
<year>2010</year>
<volume>610</volume>
<fpage>419</fpage>
<lpage>434</lpage>
<pub-id pub-id-type="doi">10.1007/978-1-60327-029-8_25</pub-id>
<pub-id pub-id-type="other">2-s2.0-77449159407</pub-id>
<pub-id pub-id-type="pmid">20013193</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lovell</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Teesdale</surname>
<given-names>W. J.</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Markesbery</surname>
<given-names>W. R.</given-names>
</name>
</person-group>
<article-title>Copper, iron and zinc in Alzheimer's disease senile plaques</article-title>
<source>
<italic>Journal of the Neurological Sciences</italic>
</source>
<year>1998</year>
<volume>158</volume>
<issue>1</issue>
<fpage>47</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1016/s0022-510x(98)00092-6</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032507975</pub-id>
<pub-id pub-id-type="pmid">9667777</pub-id>
</element-citation>
</ref>
<ref id="B52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Molina</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Jiménez-Jiménez</surname>
<given-names>F. J.</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>M. V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cerebrospinal fluid levels of transition metals in patients with Alzheimer's disease</article-title>
<source>
<italic>Journal of Neural Transmission</italic>
</source>
<year>1998</year>
<volume>105</volume>
<issue>4-5</issue>
<fpage>479</fpage>
<lpage>488</lpage>
<pub-id pub-id-type="doi">10.1007/s007020050071</pub-id>
<pub-id pub-id-type="other">2-s2.0-14444268040</pub-id>
<pub-id pub-id-type="pmid">9720975</pub-id>
</element-citation>
</ref>
<ref id="B53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hane</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Leonenko</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Effect of metals on kinetic pathways of amyloid-
<italic>β</italic>
aggregation</article-title>
<source>
<italic>Biomolecules</italic>
</source>
<year>2014</year>
<volume>4</volume>
<issue>1</issue>
<fpage>101</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="doi">10.3390/biom4010101</pub-id>
<pub-id pub-id-type="other">2-s2.0-84905754827</pub-id>
<pub-id pub-id-type="pmid">24970207</pub-id>
</element-citation>
</ref>
<ref id="B54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Torsdottir</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kristinsson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Snaedal</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jóhannesson</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Ceruloplasmin and iron proteins in the serum of patients with Alzheimer’s disease</article-title>
<source>
<italic>Dementia and Geriatric Cognitive Disorders Extra</italic>
</source>
<year>2011</year>
<volume>1</volume>
<issue>1</issue>
<fpage>366</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="doi">10.1159/000330467</pub-id>
<pub-id pub-id-type="pmid">22187543</pub-id>
</element-citation>
</ref>
<ref id="B55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crouch</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Bush</surname>
<given-names>A. I.</given-names>
</name>
</person-group>
<article-title>The modulation of metal bio-availability as a therapeutic strategy for the treatment of Alzheimer's disease</article-title>
<source>
<italic>FEBS Journal</italic>
</source>
<year>2007</year>
<volume>274</volume>
<issue>15</issue>
<fpage>3775</fpage>
<lpage>3783</lpage>
<pub-id pub-id-type="doi">10.1111/j.1742-4658.2007.05918.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-34447634140</pub-id>
<pub-id pub-id-type="pmid">17617225</pub-id>
</element-citation>
</ref>
<ref id="B56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schrag</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mueller</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Oyoyo</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Kirsch</surname>
<given-names>W. M.</given-names>
</name>
</person-group>
<article-title>Iron, zinc and copper in the Alzheimer's disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion</article-title>
<source>
<italic>Progress in Neurobiology</italic>
</source>
<year>2011</year>
<volume>94</volume>
<issue>3</issue>
<fpage>296</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="doi">10.1016/j.pneurobio.2011.05.001</pub-id>
<pub-id pub-id-type="other">2-s2.0-79959395494</pub-id>
<pub-id pub-id-type="pmid">21600264</pub-id>
</element-citation>
</ref>
<ref id="B57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reichmann</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Clinical criteria for the diagnosis of Parkinson's disease</article-title>
<source>
<italic>Neurodegenerative Diseases</italic>
</source>
<year>2010</year>
<volume>7</volume>
<issue>5</issue>
<fpage>284</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="doi">10.1159/000314478</pub-id>
<pub-id pub-id-type="other">2-s2.0-77954258078</pub-id>
<pub-id pub-id-type="pmid">20616563</pub-id>
</element-citation>
</ref>
<ref id="B58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amor</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Peferoen</surname>
<given-names>L. A. N.</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>D. Y. S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inflammation in neurodegenerative diseases—an update</article-title>
<source>
<italic>Immunology</italic>
</source>
<year>2014</year>
<volume>142</volume>
<issue>2</issue>
<fpage>151</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="doi">10.1111/imm.12233</pub-id>
<pub-id pub-id-type="other">2-s2.0-84899062441</pub-id>
<pub-id pub-id-type="pmid">24329535</pub-id>
</element-citation>
</ref>
<ref id="B59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Engelender</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Ubiquitination of
<italic>α</italic>
-synuclein and autophagy in Parkinson's disease</article-title>
<source>
<italic>Autophagy</italic>
</source>
<year>2008</year>
<volume>4</volume>
<issue>3</issue>
<fpage>372</fpage>
<lpage>374</lpage>
<pub-id pub-id-type="doi">10.4161/auto.5604</pub-id>
<pub-id pub-id-type="other">2-s2.0-41449113168</pub-id>
<pub-id pub-id-type="pmid">18216494</pub-id>
</element-citation>
</ref>
<ref id="B60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bosco</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Fowler</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate
<italic>α</italic>
-synuclein fibrilization</article-title>
<source>
<italic>Nature Chemical Biology</italic>
</source>
<year>2006</year>
<volume>2</volume>
<issue>5</issue>
<fpage>249</fpage>
<lpage>253</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio782</pub-id>
<pub-id pub-id-type="other">2-s2.0-33646451063</pub-id>
<pub-id pub-id-type="pmid">16565714</pub-id>
</element-citation>
</ref>
<ref id="B61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakabeppu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tsuchimoto</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sakumi</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Oxidative damage in nucleic acids and Parkinson's disease</article-title>
<source>
<italic>Journal of Neuroscience Research</italic>
</source>
<year>2007</year>
<volume>85</volume>
<issue>5</issue>
<fpage>919</fpage>
<lpage>934</lpage>
<pub-id pub-id-type="doi">10.1002/jnr.21191</pub-id>
<pub-id pub-id-type="other">2-s2.0-34147204519</pub-id>
<pub-id pub-id-type="pmid">17279544</pub-id>
</element-citation>
</ref>
<ref id="B62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeevalk</surname>
<given-names>G. D.</given-names>
</name>
<name>
<surname>Razmpour</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bernard</surname>
<given-names>L. P.</given-names>
</name>
</person-group>
<article-title>Glutathione and Parkinson's disease: is this the elephant in the room?</article-title>
<source>
<italic>Biomedicine and Pharmacotherapy</italic>
</source>
<year>2008</year>
<volume>62</volume>
<issue>4</issue>
<fpage>236</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2008.01.017</pub-id>
<pub-id pub-id-type="other">2-s2.0-43049145863</pub-id>
<pub-id pub-id-type="pmid">18400456</pub-id>
</element-citation>
</ref>
<ref id="B63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emmanouilidou</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Stefanis</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Vekrellis</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Cell-produced
<italic>α</italic>
-synuclein oligomers are targeted to, and impair, the 26S proteasome</article-title>
<source>
<italic>Neurobiology of Aging</italic>
</source>
<year>2010</year>
<volume>31</volume>
<issue>6</issue>
<fpage>953</fpage>
<lpage>968</lpage>
<pub-id pub-id-type="doi">10.1016/j.neurobiolaging.2008.07.008</pub-id>
<pub-id pub-id-type="other">2-s2.0-77951976610</pub-id>
<pub-id pub-id-type="pmid">18715677</pub-id>
</element-citation>
</ref>
<ref id="B64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coppedè</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Migliore</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>DNA damage in neurodegenerative diseases</article-title>
<source>
<italic>Mutation Research</italic>
</source>
<year>2015</year>
<volume>776</volume>
<fpage>84</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1016/j.mrfmmm.2014.11.010</pub-id>
<pub-id pub-id-type="other">2-s2.0-84938739004</pub-id>
<pub-id pub-id-type="pmid">26255941</pub-id>
</element-citation>
</ref>
<ref id="B65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castellani</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Perry</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Siedlak</surname>
<given-names>S. L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans</article-title>
<source>
<italic>Neuroscience Letters</italic>
</source>
<year>2002</year>
<volume>319</volume>
<issue>1</issue>
<fpage>25</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="doi">10.1016/S0304-3940(01)02514-9</pub-id>
<pub-id pub-id-type="other">2-s2.0-0037039837</pub-id>
<pub-id pub-id-type="pmid">11814645</pub-id>
</element-citation>
</ref>
<ref id="B66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McElhanon</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>Bose</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Awasthi</surname>
<given-names>Y. C.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>S. P.</given-names>
</name>
</person-group>
<article-title>4 null mouse embryonic fibroblasts exhibit enhanced sensitivity to oxidants: role of 4-hydroxynonenal in oxidant toxicity</article-title>
<source>
<italic>Open Journal of Apoptosis</italic>
</source>
<year>2013</year>
<volume>02</volume>
<issue>01</issue>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.4236/ojapo.2013.21001</pub-id>
</element-citation>
</ref>
<ref id="B67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Seo</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>M. R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>4-Hydroxynonenal enhances MMP-2 production in vascular smooth muscle cells via mitochondrial ROS-mediated activation of the Akt/NF-
<italic>κ</italic>
B signaling pathways</article-title>
<source>
<italic>Free Radical Biology and Medicine</italic>
</source>
<year>2008</year>
<volume>45</volume>
<issue>10</issue>
<fpage>1487</fpage>
<lpage>1492</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2008.08.022</pub-id>
<pub-id pub-id-type="other">2-s2.0-54349125514</pub-id>
<pub-id pub-id-type="pmid">18805481</pub-id>
</element-citation>
</ref>
<ref id="B68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>Z. F.</given-names>
</name>
<name>
<surname>Koh</surname>
<given-names>C. H. V.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q. T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Deciphering the mechanism of HNE-induced apoptosis in cultured murine cortical neurons: transcriptional responses and cellular pathways</article-title>
<source>
<italic>Neuropharmacology</italic>
</source>
<year>2007</year>
<volume>53</volume>
<issue>5</issue>
<fpage>687</fpage>
<lpage>698</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropharm.2007.07.016</pub-id>
<pub-id pub-id-type="other">2-s2.0-34848876430</pub-id>
<pub-id pub-id-type="pmid">17889908</pub-id>
</element-citation>
</ref>
<ref id="B69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ayala</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Muñoz</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Argüelles</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal</article-title>
<source>
<italic>Oxidative Medicine and Cellular Longevity</italic>
</source>
<year>2014</year>
<volume>2014</volume>
<fpage>31</fpage>
<pub-id pub-id-type="publisher-id">360438</pub-id>
<pub-id pub-id-type="doi">10.1155/2014/360438</pub-id>
<pub-id pub-id-type="other">2-s2.0-84901917562</pub-id>
</element-citation>
</ref>
<ref id="B70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Camandola</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Poli</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mattson</surname>
<given-names>M. P.</given-names>
</name>
</person-group>
<article-title>The lipid peroxidation product 4-hydroxy-2,3-nonenal inhibits constitutive and inducible activity of nuclear factor
<italic>κ</italic>
B in neurons</article-title>
<source>
<italic>Molecular Brain Research</italic>
</source>
<year>2000</year>
<volume>85</volume>
<issue>1-2</issue>
<fpage>53</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1016/S0169-328X(00)00234-5</pub-id>
<pub-id pub-id-type="other">2-s2.0-0034727901</pub-id>
<pub-id pub-id-type="pmid">11146106</pub-id>
</element-citation>
</ref>
<ref id="B71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Camandola</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Poli</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mattson</surname>
<given-names>M. P.</given-names>
</name>
</person-group>
<article-title>The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1-binding activity through caspase activation in neurons</article-title>
<source>
<italic>Journal of Neurochemistry</italic>
</source>
<year>2000</year>
<volume>74</volume>
<issue>1</issue>
<fpage>159</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="pmid">10617117</pub-id>
</element-citation>
</ref>
<ref id="B72">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Neuroprotective effects of stemazole in the MPTP-induced acute model of Parkinson’s disease: involvement of the dopamine system</article-title>
<source>
<italic>Neuroscience Letters</italic>
</source>
<year>2016</year>
<volume>616</volume>
<fpage>152</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="doi">10.1016/j.neulet.2016.01.048</pub-id>
<pub-id pub-id-type="pmid">26827716</pub-id>
</element-citation>
</ref>
<ref id="B73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>von Bohlen Und Halbach</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Schober</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hertel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Unsicker</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>MPTP treatment impairs tyrosine hydroxylase immunopositive fibers not only in the striatum, but also in the amygdala</article-title>
<source>
<italic>Neurodegenerative Diseases</italic>
</source>
<year>2005</year>
<volume>2</volume>
<issue>1</issue>
<fpage>44</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1159/000086430</pub-id>
<pub-id pub-id-type="other">2-s2.0-23844443156</pub-id>
<pub-id pub-id-type="pmid">16909002</pub-id>
</element-citation>
</ref>
<ref id="B74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Betarbet</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sherer</surname>
<given-names>T. B.</given-names>
</name>
<name>
<surname>MacKenzie</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Garcia-Osuna</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Panov</surname>
<given-names>A. V.</given-names>
</name>
<name>
<surname>Greenamyre</surname>
<given-names>J. T.</given-names>
</name>
</person-group>
<article-title>Chronic systemic pesticide exposure reproduces features of Parkinson's disease</article-title>
<source>
<italic>Nature Neuroscience</italic>
</source>
<year>2000</year>
<volume>3</volume>
<issue>12</issue>
<fpage>1301</fpage>
<lpage>1306</lpage>
<pub-id pub-id-type="doi">10.1038/81834</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033681149</pub-id>
<pub-id pub-id-type="pmid">11100151</pub-id>
</element-citation>
</ref>
<ref id="B75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dauer</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Przedborski</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Parkinson's disease: mechanisms and models</article-title>
<source>
<italic>Neuron</italic>
</source>
<year>2003</year>
<volume>39</volume>
<issue>6</issue>
<fpage>889</fpage>
<lpage>909</lpage>
<pub-id pub-id-type="doi">10.1016/s0896-6273(03)00568-3</pub-id>
<pub-id pub-id-type="other">2-s2.0-0141741347</pub-id>
<pub-id pub-id-type="pmid">12971891</pub-id>
</element-citation>
</ref>
<ref id="B76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lotharius</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>O'Malley</surname>
<given-names>K. L.</given-names>
</name>
</person-group>
<article-title>The Parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity</article-title>
<source>
<italic>The Journal of Biological Chemistry</italic>
</source>
<year>2000</year>
<volume>275</volume>
<issue>49</issue>
<fpage>38581</fpage>
<lpage>38588</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.m005385200</pub-id>
<pub-id pub-id-type="other">2-s2.0-0034624017</pub-id>
<pub-id pub-id-type="pmid">10969076</pub-id>
</element-citation>
</ref>
<ref id="B77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hastings</surname>
<given-names>T. G.</given-names>
</name>
</person-group>
<article-title>The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson's disease</article-title>
<source>
<italic>Journal of Bioenergetics and Biomembranes</italic>
</source>
<year>2009</year>
<volume>41</volume>
<issue>6</issue>
<fpage>469</fpage>
<lpage>472</lpage>
<pub-id pub-id-type="doi">10.1007/s10863-009-9257-z</pub-id>
<pub-id pub-id-type="other">2-s2.0-76949108822</pub-id>
<pub-id pub-id-type="pmid">19967436</pub-id>
</element-citation>
</ref>
<ref id="B78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jackson-Lewis</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Smeyne</surname>
<given-names>R. J.</given-names>
</name>
</person-group>
<article-title>MPTP and SNpc DA neuronal vulnerability: role of dopamine, superoxide and nitric oxide in neurotoxicity. Minireview</article-title>
<source>
<italic>Neurotoxicity Research</italic>
</source>
<year>2005</year>
<volume>7</volume>
<issue>3</issue>
<fpage>193</fpage>
<lpage>201</lpage>
<pub-id pub-id-type="doi">10.1007/bf03036449</pub-id>
<pub-id pub-id-type="other">2-s2.0-21744440118</pub-id>
<pub-id pub-id-type="pmid">15897154</pub-id>
</element-citation>
</ref>
<ref id="B79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Proukakis</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dudzik</surname>
<given-names>C. G.</given-names>
</name>
<name>
<surname>Brier</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel
<italic>α</italic>
-synuclein missense mutation in Parkinson disease</article-title>
<source>
<italic>Neurology</italic>
</source>
<year>2013</year>
<volume>80</volume>
<issue>11</issue>
<fpage>1062</fpage>
<lpage>1064</lpage>
<pub-id pub-id-type="doi">10.1212/wnl.0b013e31828727ba</pub-id>
<pub-id pub-id-type="other">2-s2.0-84876226920</pub-id>
<pub-id pub-id-type="pmid">23427326</pub-id>
</element-citation>
</ref>
<ref id="B80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conway</surname>
<given-names>K. A.</given-names>
</name>
<name>
<surname>Rochet</surname>
<given-names>J.-C.</given-names>
</name>
<name>
<surname>Bieganski</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Lansbury</surname>
<given-names>P.T. J.</given-names>
</name>
</person-group>
<article-title>Kinetic stabilization of the
<italic>α</italic>
-synuclein protofibril by a dopamine-
<italic>α</italic>
-synuclein adduct</article-title>
<source>
<italic>Science</italic>
</source>
<year>2001</year>
<volume>294</volume>
<issue>5545</issue>
<fpage>1346</fpage>
<lpage>1349</lpage>
<pub-id pub-id-type="doi">10.1126/science.1063522</pub-id>
<pub-id pub-id-type="other">2-s2.0-0035834360</pub-id>
<pub-id pub-id-type="pmid">11701929</pub-id>
</element-citation>
</ref>
<ref id="B81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rochet</surname>
<given-names>J.-C.</given-names>
</name>
<name>
<surname>Outeiro</surname>
<given-names>T. F.</given-names>
</name>
<name>
<surname>Conway</surname>
<given-names>K. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interactions among
<italic>α</italic>
-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson's disease</article-title>
<source>
<italic>Journal of Molecular Neuroscience</italic>
</source>
<year>2004</year>
<volume>23</volume>
<issue>1-2</issue>
<fpage>23</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1385/jmn:23:1-2:023</pub-id>
<pub-id pub-id-type="other">2-s2.0-4344641972</pub-id>
<pub-id pub-id-type="pmid">15126689</pub-id>
</element-citation>
</ref>
<ref id="B82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Swarup</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Julien</surname>
<given-names>J.-P.</given-names>
</name>
</person-group>
<article-title>ALS pathogenesis: recent insights from genetics and mouse models</article-title>
<source>
<italic>Progress in Neuro-Psychopharmacology and Biological Psychiatry</italic>
</source>
<year>2011</year>
<volume>35</volume>
<issue>2</issue>
<fpage>363</fpage>
<lpage>369</lpage>
<pub-id pub-id-type="doi">10.1016/j.pnpbp.2010.08.006</pub-id>
<pub-id pub-id-type="other">2-s2.0-79952900572</pub-id>
<pub-id pub-id-type="pmid">20728492</pub-id>
</element-citation>
</ref>
<ref id="B83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niebrój-Dobosz</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Dziewulska</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kwieciński</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Oxidative damage to proteins in the spinal cord in amyotrophic lateral sclerosis (ALS)</article-title>
<source>
<italic>Folia Neuropathologica</italic>
</source>
<year>2004</year>
<volume>42</volume>
<issue>3</issue>
<fpage>151</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="other">2-s2.0-7244223437</pub-id>
<pub-id pub-id-type="pmid">15535033</pub-id>
</element-citation>
</ref>
<ref id="B84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Mutation of superoxide dismutase elevates reactive species: comparison of nitration and oxidation of proteins in different brain regions of transgenic mice with amyotrophic lateral sclerosis</article-title>
<source>
<italic>Neuroscience</italic>
</source>
<year>2007</year>
<volume>146</volume>
<issue>1</issue>
<fpage>255</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroscience.2007.01.028</pub-id>
<pub-id pub-id-type="other">2-s2.0-34247485859</pub-id>
<pub-id pub-id-type="pmid">17368952</pub-id>
</element-citation>
</ref>
<ref id="B85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drechsel</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Estévez</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Barbeito</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Beckman</surname>
<given-names>J. S.</given-names>
</name>
</person-group>
<article-title>Nitric oxide-mediated oxidative damage and the progressive demise of motor neurons in ALS</article-title>
<source>
<italic>Neurotoxicity Research</italic>
</source>
<year>2012</year>
<volume>22</volume>
<issue>4</issue>
<fpage>251</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="doi">10.1007/s12640-012-9322-y</pub-id>
<pub-id pub-id-type="other">2-s2.0-84870299231</pub-id>
<pub-id pub-id-type="pmid">22488161</pub-id>
</element-citation>
</ref>
<ref id="B86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bogdanov</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>R. H.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Matson</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increased oxidative damage to DNA in ALS patients</article-title>
<source>
<italic>Free Radical Biology and Medicine</italic>
</source>
<year>2000</year>
<volume>29</volume>
<issue>7</issue>
<fpage>652</fpage>
<lpage>658</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(00)00349-X</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033807443</pub-id>
<pub-id pub-id-type="pmid">11033417</pub-id>
</element-citation>
</ref>
<ref id="B87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abe</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>L.-H.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Konno</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Itoyama</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis</article-title>
<source>
<italic>Neurological Research</italic>
</source>
<year>1997</year>
<volume>19</volume>
<issue>2</issue>
<fpage>124</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="other">2-s2.0-0030888919</pub-id>
<pub-id pub-id-type="pmid">9175139</pub-id>
</element-citation>
</ref>
<ref id="B88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cookson</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Menzies</surname>
<given-names>F. M.</given-names>
</name>
<name>
<surname>Manning</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cu/Zn superoxide dismutase (SOD1) mutations associated with familial amyotrophic lateral sclerosis (ALS) affect cellular free radical release in the presence of oxidative stress</article-title>
<source>
<italic>Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders</italic>
</source>
<year>2002</year>
<volume>3</volume>
<issue>2</issue>
<fpage>75</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1080/146608202760196048</pub-id>
<pub-id pub-id-type="other">2-s2.0-0036391077</pub-id>
<pub-id pub-id-type="pmid">12215229</pub-id>
</element-citation>
</ref>
<ref id="B89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayashi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Homma</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ichijo</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS</article-title>
<source>
<italic>Advances in Biological Regulation</italic>
</source>
<year>2016</year>
<volume>60</volume>
<fpage>95</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="doi">10.1016/j.jbior.2015.10.006</pub-id>
<pub-id pub-id-type="pmid">26563614</pub-id>
</element-citation>
</ref>
<ref id="B90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brettschneider</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Arai</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Del Tredici</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord</article-title>
<source>
<italic>Acta Neuropathologica</italic>
</source>
<year>2014</year>
<volume>128</volume>
<issue>3</issue>
<fpage>423</fpage>
<lpage>437</lpage>
<pub-id pub-id-type="doi">10.1007/s00401-014-1299-6</pub-id>
<pub-id pub-id-type="other">2-s2.0-84906314307</pub-id>
<pub-id pub-id-type="pmid">24916269</pub-id>
</element-citation>
</ref>
<ref id="B91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mackenzie</surname>
<given-names>I. R. A.</given-names>
</name>
<name>
<surname>Bigio</surname>
<given-names>E. H.</given-names>
</name>
<name>
<surname>Ince</surname>
<given-names>P. G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations</article-title>
<source>
<italic>Annals of Neurology</italic>
</source>
<year>2007</year>
<volume>61</volume>
<issue>5</issue>
<fpage>427</fpage>
<lpage>434</lpage>
<pub-id pub-id-type="doi">10.1002/ana.21147</pub-id>
<pub-id pub-id-type="other">2-s2.0-34249946466</pub-id>
<pub-id pub-id-type="pmid">17469116</pub-id>
</element-citation>
</ref>
<ref id="B92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maekawa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Leigh</surname>
<given-names>P. N.</given-names>
</name>
<name>
<surname>King</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations</article-title>
<source>
<italic>Neuropathology</italic>
</source>
<year>2009</year>
<volume>29</volume>
<issue>6</issue>
<fpage>672</fpage>
<lpage>683</lpage>
<pub-id pub-id-type="doi">10.1111/j.1440-1789.2009.01029.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-70449698510</pub-id>
<pub-id pub-id-type="pmid">19496940</pub-id>
</element-citation>
</ref>
<ref id="B93">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winton</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Igaz</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Kwong</surname>
<given-names>L. K.</given-names>
</name>
<name>
<surname>Trojanowski</surname>
<given-names>J. Q.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>V. M.-Y.</given-names>
</name>
</person-group>
<article-title>Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation</article-title>
<source>
<italic>The Journal of Biological Chemistry</italic>
</source>
<year>2008</year>
<volume>283</volume>
<issue>19</issue>
<fpage>13302</fpage>
<lpage>13309</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.m800342200</pub-id>
<pub-id pub-id-type="other">2-s2.0-44749091997</pub-id>
<pub-id pub-id-type="pmid">18305110</pub-id>
</element-citation>
</ref>
<ref id="B94">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gregory</surname>
<given-names>R. I.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>K.-P.</given-names>
</name>
<name>
<surname>Amuthan</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Microprocessor complex mediates the genesis of microRNAs</article-title>
<source>
<italic>Nature</italic>
</source>
<year>2004</year>
<volume>432</volume>
<issue>7014</issue>
<fpage>235</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="doi">10.1038/nature03120</pub-id>
<pub-id pub-id-type="other">2-s2.0-9144225636</pub-id>
<pub-id pub-id-type="pmid">15531877</pub-id>
</element-citation>
</ref>
<ref id="B95">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>Z.-S.</given-names>
</name>
</person-group>
<article-title>Does a loss of TDP-43 function cause neurodegeneration?</article-title>
<source>
<italic>Molecular Neurodegeneration</italic>
</source>
<year>2012</year>
<volume>7, article 27</volume>
<pub-id pub-id-type="doi">10.1186/1750-1326-7-27</pub-id>
<pub-id pub-id-type="other">2-s2.0-84862210719</pub-id>
</element-citation>
</ref>
<ref id="B96">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu-Yesucevitz</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bilgutay</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.-J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<year>2010</year>
<volume>5</volume>
<issue>10</issue>
<pub-id pub-id-type="publisher-id">e13250</pub-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0013250</pub-id>
<pub-id pub-id-type="other">2-s2.0-78149461229</pub-id>
</element-citation>
</ref>
<ref id="B97">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bentmann</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Neumann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tahirovic</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rodde</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Dormann</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Haass</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43)</article-title>
<source>
<italic>The Journal of Biological Chemistry</italic>
</source>
<year>2012</year>
<volume>287</volume>
<issue>27</issue>
<fpage>23079</fpage>
<lpage>23094</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.m111.328757</pub-id>
<pub-id pub-id-type="other">2-s2.0-84863309952</pub-id>
<pub-id pub-id-type="pmid">22563080</pub-id>
</element-citation>
</ref>
<ref id="B98">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colombrita</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zennaro</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Fallini</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TDP-43 is recruited to stress granules in conditions of oxidative insult</article-title>
<source>
<italic>Journal of Neurochemistry</italic>
</source>
<year>2009</year>
<volume>111</volume>
<issue>4</issue>
<fpage>1051</fpage>
<lpage>1061</lpage>
<pub-id pub-id-type="doi">10.1111/j.1471-4159.2009.06383.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-70350135049</pub-id>
<pub-id pub-id-type="pmid">19765185</pub-id>
</element-citation>
</ref>
<ref id="B99">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frank-Cannon</surname>
<given-names>T. C.</given-names>
</name>
<name>
<surname>Alto</surname>
<given-names>L. T.</given-names>
</name>
<name>
<surname>McAlpine</surname>
<given-names>F. E.</given-names>
</name>
<name>
<surname>Tansey</surname>
<given-names>M. G.</given-names>
</name>
</person-group>
<article-title>Does neuroinflammation fan the flame in neurodegenerative diseases?</article-title>
<source>
<italic>Molecular Neurodegeneration</italic>
</source>
<year>2009</year>
<volume>4, article 47</volume>
<pub-id pub-id-type="doi">10.1186/1750-1326-4-47</pub-id>
<pub-id pub-id-type="other">2-s2.0-72449204160</pub-id>
</element-citation>
</ref>
<ref id="B100">
<label>100</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>G. C.</given-names>
</name>
</person-group>
<article-title>Mechanisms of inflammatory neurodegeneration: INOS and NADPH oxidase</article-title>
<source>
<italic>Biochemical Society Transactions</italic>
</source>
<year>2007</year>
<volume>35</volume>
<issue>5</issue>
<fpage>1119</fpage>
<lpage>1121</lpage>
<pub-id pub-id-type="doi">10.1042/BST0351119</pub-id>
<pub-id pub-id-type="other">2-s2.0-36749005178</pub-id>
<pub-id pub-id-type="pmid">17956292</pub-id>
</element-citation>
</ref>
<ref id="B101">
<label>101</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cappellano</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Carecchio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fleetwood</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Immunity and inflammation in neurodegenerative diseases</article-title>
<source>
<italic>American Journal of Neurodegenerative Disease</italic>
</source>
<year>2013</year>
<volume>2</volume>
<issue>2</issue>
<fpage>89</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="pmid">23844334</pub-id>
</element-citation>
</ref>
<ref id="B102">
<label>102</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Citron</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Dennis</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Zeitlin</surname>
<given-names>R. S.</given-names>
</name>
<name>
<surname>Echeverria</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Transcription factor Sp1 dysregulation in Alzheimer's disease</article-title>
<source>
<italic>Journal of Neuroscience Research</italic>
</source>
<year>2008</year>
<volume>86</volume>
<issue>11</issue>
<fpage>2499</fpage>
<lpage>2504</lpage>
<pub-id pub-id-type="doi">10.1002/jnr.21695</pub-id>
<pub-id pub-id-type="other">2-s2.0-49349101732</pub-id>
<pub-id pub-id-type="pmid">18449948</pub-id>
</element-citation>
</ref>
<ref id="B103">
<label>103</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Heneka</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Landreth</surname>
<given-names>G. E.</given-names>
</name>
</person-group>
<article-title>The role of peroxisome proliferator-activated receptor-
<italic>γ</italic>
(PPAR
<italic>γ</italic>
) in Alzheimer's disease: therapeutic implications</article-title>
<source>
<italic>CNS Drugs</italic>
</source>
<year>2008</year>
<volume>22</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.2165/00023210-200822010-00001</pub-id>
<pub-id pub-id-type="other">2-s2.0-36949038203</pub-id>
<pub-id pub-id-type="pmid">18072811</pub-id>
</element-citation>
</ref>
<ref id="B104">
<label>104</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Granic</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Dolga</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Nijholt</surname>
<given-names>I. M.</given-names>
</name>
<name>
<surname>Van Dijk</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Eisel</surname>
<given-names>U. L. M.</given-names>
</name>
</person-group>
<article-title>Inflammation and NF-
<italic>κ</italic>
B in Alzheimer's disease and diabetes</article-title>
<source>
<italic>Journal of Alzheimer's Disease</italic>
</source>
<year>2009</year>
<volume>16</volume>
<issue>4</issue>
<fpage>809</fpage>
<lpage>821</lpage>
<pub-id pub-id-type="doi">10.3233/jad-2009-0976</pub-id>
<pub-id pub-id-type="other">2-s2.0-67649742202</pub-id>
</element-citation>
</ref>
<ref id="B105">
<label>105</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Town</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nikolic</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The microglial‘activation’ continuum: from innate to adaptive responses</article-title>
<source>
<italic>Journal of Neuroinflammation</italic>
</source>
<year>2005</year>
<volume>2, article 24</volume>
<pub-id pub-id-type="doi">10.1186/1742-2094-2-24</pub-id>
<pub-id pub-id-type="other">2-s2.0-27744464859</pub-id>
</element-citation>
</ref>
<ref id="B106">
<label>106</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halliday</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kril</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Alzheimer's disease and inflammation: a review of cellular and therapeutic mechanisms</article-title>
<source>
<italic>Clinical and Experimental Pharmacology and Physiology</italic>
</source>
<year>2000</year>
<volume>27</volume>
<issue>1-2</issue>
<fpage>1</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1046/j.1440-1681.2000.03200.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033951505</pub-id>
<pub-id pub-id-type="pmid">10696521</pub-id>
</element-citation>
</ref>
<ref id="B107">
<label>107</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>G. C.</given-names>
</name>
<name>
<surname>Bal-Price</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria</article-title>
<source>
<italic>Molecular Neurobiology</italic>
</source>
<year>2003</year>
<volume>27</volume>
<issue>3</issue>
<fpage>325</fpage>
<lpage>355</lpage>
<pub-id pub-id-type="doi">10.1385/mn:27:3:325</pub-id>
<pub-id pub-id-type="other">2-s2.0-0041784698</pub-id>
<pub-id pub-id-type="pmid">12845153</pub-id>
</element-citation>
</ref>
<ref id="B108">
<label>108</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strohmeyer</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ramirez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>G. J.</given-names>
</name>
<name>
<surname>Mueller</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Association of factor H of the alternative pathway of complement with agrin and complement receptor 3 in the Alzheimer's disease brain</article-title>
<source>
<italic>Journal of Neuroimmunology</italic>
</source>
<year>2002</year>
<volume>131</volume>
<issue>1-2</issue>
<fpage>135</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="doi">10.1016/S0165-5728(02)00272-2</pub-id>
<pub-id pub-id-type="other">2-s2.0-0036789954</pub-id>
<pub-id pub-id-type="pmid">12458045</pub-id>
</element-citation>
</ref>
<ref id="B109">
<label>109</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microglial MAC1 receptor and PI3K are essential in mediating
<italic>β</italic>
-amyloid peptide-induced microglial activation and subsequent neurotoxicity</article-title>
<source>
<italic>Journal of Neuroinflammation</italic>
</source>
<year>2011</year>
<volume>8</volume>
<issue>1, article 3</issue>
<pub-id pub-id-type="doi">10.1186/1742-2094-8-3</pub-id>
<pub-id pub-id-type="other">2-s2.0-78651308665</pub-id>
</element-citation>
</ref>
<ref id="B110">
<label>110</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shie</surname>
<given-names>F.-S.</given-names>
</name>
<name>
<surname>Woltjer</surname>
<given-names>R. L.</given-names>
</name>
</person-group>
<article-title>Manipulation of microglial activation as a therapeutic strategy in Alzheimer's disease</article-title>
<source>
<italic>Current Medicinal Chemistry</italic>
</source>
<year>2007</year>
<volume>14</volume>
<issue>27</issue>
<fpage>2865</fpage>
<lpage>2871</lpage>
<pub-id pub-id-type="doi">10.2174/092986707782359981</pub-id>
<pub-id pub-id-type="other">2-s2.0-36749017492</pub-id>
<pub-id pub-id-type="pmid">18045132</pub-id>
</element-citation>
</ref>
<ref id="B111">
<label>111</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bettens</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sleegers</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Van Broeckhoven</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Genetic insights in Alzheimer's disease</article-title>
<source>
<italic>The Lancet Neurology</italic>
</source>
<year>2013</year>
<volume>12</volume>
<issue>1</issue>
<fpage>92</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="doi">10.1016/S1474-4422(12)70259-4</pub-id>
<pub-id pub-id-type="other">2-s2.0-84870796993</pub-id>
<pub-id pub-id-type="pmid">23237904</pub-id>
</element-citation>
</ref>
<ref id="B112">
<label>112</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karch</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Cruchaga</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Goate</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
<article-title>Alzheimer's disease genetics: from the bench to the clinic</article-title>
<source>
<italic>Neuron</italic>
</source>
<year>2014</year>
<volume>83</volume>
<issue>1</issue>
<fpage>11</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2014.05.041</pub-id>
<pub-id pub-id-type="other">2-s2.0-84903627137</pub-id>
<pub-id pub-id-type="pmid">24991952</pub-id>
</element-citation>
</ref>
<ref id="B113">
<label>113</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guerreiro</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wojtas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bras</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>TREM2</italic>
variants in Alzheimer's disease</article-title>
<source>
<italic>The New England Journal of Medicine</italic>
</source>
<year>2013</year>
<volume>368</volume>
<issue>2</issue>
<fpage>117</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="doi">10.1056/nejmoa1211851</pub-id>
<pub-id pub-id-type="pmid">23150934</pub-id>
</element-citation>
</ref>
<ref id="B114">
<label>114</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harold</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hollingworth</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease</article-title>
<source>
<italic>Nature Genetics</italic>
</source>
<year>2009</year>
<volume>41</volume>
<issue>10</issue>
<fpage>1088</fpage>
<lpage>1093</lpage>
<pub-id pub-id-type="doi">10.1038/ng.440</pub-id>
<pub-id pub-id-type="pmid">19734902</pub-id>
</element-citation>
</ref>
<ref id="B115">
<label>115</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lambert</surname>
<given-names>J.-C.</given-names>
</name>
<name>
<surname>Heath</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Even</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association study identifies variants at
<italic>CLU</italic>
and
<italic>CR1</italic>
associated with Alzheimer's disease</article-title>
<source>
<italic>Nature Genetics</italic>
</source>
<year>2009</year>
<volume>41</volume>
<issue>10</issue>
<fpage>1094</fpage>
<lpage>1099</lpage>
<pub-id pub-id-type="doi">10.1038/ng.439</pub-id>
<pub-id pub-id-type="pmid">19734903</pub-id>
</element-citation>
</ref>
<ref id="B116">
<label>116</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reale</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Greig</surname>
<given-names>N. H.</given-names>
</name>
<name>
<surname>Kamal</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
<article-title>Peripheral chemo-cytokine profiles in Alzheimer's and Parkinson's diseases</article-title>
<source>
<italic>Mini-Reviews in Medicinal Chemistry</italic>
</source>
<year>2009</year>
<volume>9</volume>
<issue>10</issue>
<fpage>1229</fpage>
<lpage>1241</lpage>
<pub-id pub-id-type="doi">10.2174/138955709789055199</pub-id>
<pub-id pub-id-type="other">2-s2.0-70450213422</pub-id>
<pub-id pub-id-type="pmid">19817713</pub-id>
</element-citation>
</ref>
<ref id="B117">
<label>117</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qian</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Flood</surname>
<given-names>P. M.</given-names>
</name>
</person-group>
<article-title>Microglial cells and Parkinson's disease</article-title>
<source>
<italic>Immunologic Research</italic>
</source>
<year>2008</year>
<volume>41</volume>
<issue>3</issue>
<fpage>155</fpage>
<lpage>164</lpage>
<pub-id pub-id-type="doi">10.1007/s12026-008-8018-0</pub-id>
<pub-id pub-id-type="other">2-s2.0-62549102057</pub-id>
<pub-id pub-id-type="pmid">18512160</pub-id>
</element-citation>
</ref>
<ref id="B118">
<label>118</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirsch</surname>
<given-names>E. C.</given-names>
</name>
<name>
<surname>Breidert</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Rousselet</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hunot</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hartmann</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Michel</surname>
<given-names>P. P.</given-names>
</name>
</person-group>
<article-title>The role of glial reaction and inflammation in Parkinson's disease</article-title>
<source>
<italic>Annals of the New York Academy of Sciences</italic>
</source>
<year>2003</year>
<volume>991</volume>
<fpage>214</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="other">2-s2.0-0038051266</pub-id>
<pub-id pub-id-type="pmid">12846989</pub-id>
</element-citation>
</ref>
<ref id="B119">
<label>119</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Segura-Aguilar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Paris</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Muñoz</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zecca</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zucca</surname>
<given-names>F. A.</given-names>
</name>
</person-group>
<article-title>Protective and toxic roles of dopamine in Parkinson's disease</article-title>
<source>
<italic>Journal of Neurochemistry</italic>
</source>
<year>2014</year>
<volume>129</volume>
<issue>6</issue>
<fpage>898</fpage>
<lpage>915</lpage>
<pub-id pub-id-type="doi">10.1111/jnc.12686</pub-id>
<pub-id pub-id-type="other">2-s2.0-84902326763</pub-id>
<pub-id pub-id-type="pmid">24548101</pub-id>
</element-citation>
</ref>
<ref id="B120">
<label>120</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mander</surname>
<given-names>P. K.</given-names>
</name>
<name>
<surname>Jekabsone</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>G. C.</given-names>
</name>
</person-group>
<article-title>Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase</article-title>
<source>
<italic>The Journal of Immunology</italic>
</source>
<year>2006</year>
<volume>176</volume>
<issue>2</issue>
<fpage>1046</fpage>
<lpage>1052</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.176.2.1046</pub-id>
<pub-id pub-id-type="other">2-s2.0-30744455267</pub-id>
<pub-id pub-id-type="pmid">16393992</pub-id>
</element-citation>
</ref>
<ref id="B121">
<label>121</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dringen</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Oxidative and antioxidative potential of brain microglial cells</article-title>
<source>
<italic>Antioxidants and Redox Signaling</italic>
</source>
<year>2005</year>
<volume>7</volume>
<issue>9-10</issue>
<fpage>1223</fpage>
<lpage>1233</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2005.7.1223</pub-id>
<pub-id pub-id-type="other">2-s2.0-24144473653</pub-id>
<pub-id pub-id-type="pmid">16115027</pub-id>
</element-citation>
</ref>
<ref id="B122">
<label>122</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shibata</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kakita</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activation of signal transducer and activator of transcription-3 in the spinal cord of sporadic amyotrophic lateral sclerosis patients</article-title>
<source>
<italic>Neurodegenerative Diseases</italic>
</source>
<year>2009</year>
<volume>6</volume>
<issue>3</issue>
<fpage>118</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="doi">10.1159/000213762</pub-id>
<pub-id pub-id-type="other">2-s2.0-64549164008</pub-id>
<pub-id pub-id-type="pmid">19372705</pub-id>
</element-citation>
</ref>
<ref id="B123">
<label>123</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hadlock</surname>
<given-names>K. G.</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gene expression profiling in peripheral blood mononuclear cells from patients with sporadic amyotrophic lateral sclerosis (sALS)</article-title>
<source>
<italic>Journal of Neuroimmunology</italic>
</source>
<year>2011</year>
<volume>230</volume>
<issue>1-2</issue>
<fpage>114</fpage>
<lpage>123</lpage>
<pub-id pub-id-type="doi">10.1016/j.jneuroim.2010.08.012</pub-id>
<pub-id pub-id-type="other">2-s2.0-78650988314</pub-id>
<pub-id pub-id-type="pmid">20884065</pub-id>
</element-citation>
</ref>
<ref id="B124">
<label>124</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuhle</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lindberg</surname>
<given-names>R. L. P.</given-names>
</name>
<name>
<surname>Regeniter</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis</article-title>
<source>
<italic>European Journal of Neurology</italic>
</source>
<year>2009</year>
<volume>16</volume>
<issue>6</issue>
<fpage>771</fpage>
<lpage>774</lpage>
<pub-id pub-id-type="doi">10.1111/j.1468-1331.2009.02560.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-65449167187</pub-id>
<pub-id pub-id-type="pmid">19236470</pub-id>
</element-citation>
</ref>
<ref id="B125">
<label>125</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiala</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chattopadhay</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>La Cava</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients</article-title>
<source>
<italic>Journal of Neuroinflammation</italic>
</source>
<year>2010</year>
<volume>7, article 76</volume>
<pub-id pub-id-type="doi">10.1186/1742-2094-7-76</pub-id>
<pub-id pub-id-type="other">2-s2.0-78049519396</pub-id>
</element-citation>
</ref>
<ref id="B126">
<label>126</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rentzos</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rombos</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nikolaou</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interleukin-15 and Interleukin-12 are elevated in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis</article-title>
<source>
<italic>European Neurology</italic>
</source>
<year>2010</year>
<volume>63</volume>
<issue>5</issue>
<fpage>285</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="doi">10.1159/000287582</pub-id>
<pub-id pub-id-type="other">2-s2.0-77950933850</pub-id>
<pub-id pub-id-type="pmid">20407265</pub-id>
</element-citation>
</ref>
<ref id="B127">
<label>127</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldknopf</surname>
<given-names>I. L.</given-names>
</name>
<name>
<surname>Sheta</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Bryson</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson's disease</article-title>
<source>
<italic>Biochemical and Biophysical Research Communications</italic>
</source>
<year>2006</year>
<volume>342</volume>
<issue>4</issue>
<fpage>1034</fpage>
<lpage>1039</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2006.02.051</pub-id>
<pub-id pub-id-type="other">2-s2.0-33644903466</pub-id>
<pub-id pub-id-type="pmid">16516157</pub-id>
</element-citation>
</ref>
<ref id="B128">
<label>128</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Chiara</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Marcocci</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Sgarbanti</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Infectious agents and neurodegeneration</article-title>
<source>
<italic>Molecular Neurobiology</italic>
</source>
<year>2012</year>
<volume>46</volume>
<issue>3</issue>
<fpage>614</fpage>
<lpage>638</lpage>
<pub-id pub-id-type="doi">10.1007/s12035-012-8320-7</pub-id>
<pub-id pub-id-type="pmid">22899188</pub-id>
</element-citation>
</ref>
<ref id="B129">
<label>129</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McGavern</surname>
<given-names>D. B.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>S. S.</given-names>
</name>
</person-group>
<article-title>Illuminating viral infections in the nervous system</article-title>
<source>
<italic>Nature Reviews Immunology</italic>
</source>
<year>2011</year>
<volume>11</volume>
<issue>5</issue>
<fpage>318</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="doi">10.1038/nri2971</pub-id>
<pub-id pub-id-type="other">2-s2.0-79955458125</pub-id>
</element-citation>
</ref>
<ref id="B130">
<label>130</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kristensson</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Microbes' roadmap to neurons</article-title>
<source>
<italic>Nature Reviews Neuroscience</italic>
</source>
<year>2011</year>
<volume>12</volume>
<issue>6</issue>
<fpage>345</fpage>
<lpage>357</lpage>
<pub-id pub-id-type="doi">10.1038/nrn3029</pub-id>
<pub-id pub-id-type="other">2-s2.0-79957526749</pub-id>
<pub-id pub-id-type="pmid">21587289</pub-id>
</element-citation>
</ref>
<ref id="B131">
<label>131</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Toovey</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jick</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Meier</surname>
<given-names>C. R.</given-names>
</name>
</person-group>
<article-title>Parkinson's disease or Parkinson symptoms following seasonal influenza</article-title>
<source>
<italic>Influenza and Other Respiratory Viruses</italic>
</source>
<year>2011</year>
<volume>5</volume>
<issue>5</issue>
<fpage>328</fpage>
<lpage>333</lpage>
<pub-id pub-id-type="doi">10.1111/j.1750-2659.2011.00232.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-80051571830</pub-id>
<pub-id pub-id-type="pmid">21668692</pub-id>
</element-citation>
</ref>
<ref id="B132">
<label>132</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ravenholt</surname>
<given-names>R. T.</given-names>
</name>
<name>
<surname>Foege</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>1918 influenza, encephalitis lethargica, parkinsonism</article-title>
<source>
<italic>The Lancet</italic>
</source>
<year>1982</year>
<volume>320</volume>
<issue>8303</issue>
<fpage>860</fpage>
<lpage>864</lpage>
<pub-id pub-id-type="doi">10.1016/s0140-6736(82)90820-0</pub-id>
<pub-id pub-id-type="other">2-s2.0-0020321970</pub-id>
</element-citation>
</ref>
<ref id="B133">
<label>133</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oxford</surname>
<given-names>J. S.</given-names>
</name>
</person-group>
<article-title>Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology</article-title>
<source>
<italic>Reviews in Medical Virology</italic>
</source>
<year>2000</year>
<volume>10</volume>
<issue>2</issue>
<fpage>119</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="doi">10.1002/(sici)1099-1654(200003/04)10:2<119::aid-rmv272>3.0.co;2-o</pub-id>
<pub-id pub-id-type="other">2-s2.0-0034103270</pub-id>
<pub-id pub-id-type="pmid">10713598</pub-id>
</element-citation>
</ref>
<ref id="B134">
<label>134</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rohn</surname>
<given-names>T. T.</given-names>
</name>
<name>
<surname>Catlin</surname>
<given-names>L. W.</given-names>
</name>
</person-group>
<article-title>Immunolocalization of influenza A virus and markers of inflammation in the human Parkinson's disease brain</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<year>2011</year>
<volume>6</volume>
<issue>5</issue>
<pub-id pub-id-type="publisher-id">e20495</pub-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0020495</pub-id>
<pub-id pub-id-type="other">2-s2.0-79957792153</pub-id>
</element-citation>
</ref>
<ref id="B135">
<label>135</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>D. E.</given-names>
</name>
<name>
<surname>Goldstein</surname>
<given-names>J. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phosphorylation of Ser-129 is the dominant pathological modification of
<italic>α</italic>
-synuclein in familial and sporadic lewy body disease</article-title>
<source>
<italic>The Journal of Biological Chemistry</italic>
</source>
<year>2006</year>
<volume>281</volume>
<issue>40</issue>
<fpage>29739</fpage>
<lpage>29752</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.m600933200</pub-id>
<pub-id pub-id-type="other">2-s2.0-33749570292</pub-id>
<pub-id pub-id-type="pmid">16847063</pub-id>
</element-citation>
</ref>
<ref id="B136">
<label>136</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Boltz</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sturm-Ramirez</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2009</year>
<volume>106</volume>
<issue>33</issue>
<fpage>14063</fpage>
<lpage>14068</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0900096106</pub-id>
<pub-id pub-id-type="other">2-s2.0-69549120391</pub-id>
<pub-id pub-id-type="pmid">19667183</pub-id>
</element-citation>
</ref>
<ref id="B137">
<label>137</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Whitley</surname>
<given-names>R. J.</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Baron</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Herpesviruses</article-title>
<source>
<italic>Medical Microbiology</italic>
</source>
<year>1996</year>
<publisher-loc>Galveston, Tex, USA</publisher-loc>
<publisher-name>University of Texas Medical Branch at Galveston</publisher-name>
</element-citation>
</ref>
<ref id="B138">
<label>138</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ball</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
<article-title>Limbic predilection in Alzheimer dementia: is reactivated herpesvirus involved?</article-title>
<source>
<italic>Canadian Journal of Neurological Sciences</italic>
</source>
<year>1982</year>
<volume>9</volume>
<issue>3</issue>
<fpage>303</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="other">2-s2.0-0019961470</pub-id>
<pub-id pub-id-type="pmid">7116237</pub-id>
</element-citation>
</ref>
<ref id="B139">
<label>139</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gannicliffe</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sutton</surname>
<given-names>R. N.</given-names>
</name>
<name>
<surname>Itzhaki</surname>
<given-names>R. F.</given-names>
</name>
</person-group>
<article-title>Viruses, brain and immunosuppression</article-title>
<source>
<italic>Psychological Medicine</italic>
</source>
<year>1986</year>
<volume>16</volume>
<issue>2</issue>
<fpage>247</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="doi">10.1017/s0033291700009053</pub-id>
<pub-id pub-id-type="other">2-s2.0-0022597467</pub-id>
<pub-id pub-id-type="pmid">3014587</pub-id>
</element-citation>
</ref>
<ref id="B140">
<label>140</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wozniak</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Shipley</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Combrinck</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wilcock</surname>
<given-names>G. K.</given-names>
</name>
<name>
<surname>Itzhaki</surname>
<given-names>R. F.</given-names>
</name>
</person-group>
<article-title>Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer's disease patients</article-title>
<source>
<italic>Journal of Medical Virology</italic>
</source>
<year>2005</year>
<volume>75</volume>
<issue>2</issue>
<fpage>300</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="doi">10.1002/jmv.20271</pub-id>
<pub-id pub-id-type="other">2-s2.0-11144224060</pub-id>
<pub-id pub-id-type="pmid">15602731</pub-id>
</element-citation>
</ref>
<ref id="B141">
<label>141</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Itzhaki</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Wozniak</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
<article-title>Herpes simplex virus type 1 in Alzheimer's disease: the enemy within</article-title>
<source>
<italic>Journal of Alzheimer's Disease</italic>
</source>
<year>2008</year>
<volume>13</volume>
<issue>4</issue>
<fpage>393</fpage>
<lpage>405</lpage>
<pub-id pub-id-type="other">2-s2.0-47849119723</pub-id>
</element-citation>
</ref>
<ref id="B142">
<label>142</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wozniak</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Mee</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Itzhaki</surname>
<given-names>R. F.</given-names>
</name>
</person-group>
<article-title>Herpes simplex virus type 1 DNA is located within Alzheimer's disease amyloid plaques</article-title>
<source>
<italic>The Journal of Pathology</italic>
</source>
<year>2009</year>
<volume>217</volume>
<issue>1</issue>
<fpage>131</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="doi">10.1002/path.2449</pub-id>
<pub-id pub-id-type="other">2-s2.0-58449130099</pub-id>
<pub-id pub-id-type="pmid">18973185</pub-id>
</element-citation>
</ref>
<ref id="B143">
<label>143</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mori</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Naiki</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reactivation of HSV-1 in the brain of patients with familial Alzheimer's disease</article-title>
<source>
<italic>Journal of Medical Virology</italic>
</source>
<year>2004</year>
<volume>73</volume>
<issue>4</issue>
<fpage>605</fpage>
<lpage>611</lpage>
<pub-id pub-id-type="doi">10.1002/jmv.20133</pub-id>
<pub-id pub-id-type="other">2-s2.0-3042743250</pub-id>
<pub-id pub-id-type="pmid">15221907</pub-id>
</element-citation>
</ref>
<ref id="B144">
<label>144</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Letenneur</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pérès</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Fleury</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Seropositivity to herpes simplex virus antibodies and risk of Alzheimer's disease: a population-based cohort study</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<year>2008</year>
<volume>3</volume>
<issue>11</issue>
<pub-id pub-id-type="publisher-id">e3637</pub-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0003637</pub-id>
<pub-id pub-id-type="other">2-s2.0-56149113571</pub-id>
</element-citation>
</ref>
<ref id="B145">
<label>145</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santana</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Recuero</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bullido</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Valdivieso</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Aldudo</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Herpes simplex virus type I induces the accumulation of intracellular
<italic>β</italic>
-amyloid in autophagic compartments and the inhibition of the non-amyloidogenic pathway in human neuroblastoma cells</article-title>
<source>
<italic>Neurobiology of Aging</italic>
</source>
<year>2012</year>
<volume>33</volume>
<issue>2</issue>
<fpage>430.e19</fpage>
<lpage>430.e33</lpage>
<pub-id pub-id-type="doi">10.1016/j.neurobiolaging.2010.12.010</pub-id>
<pub-id pub-id-type="other">2-s2.0-82755189739</pub-id>
<pub-id pub-id-type="pmid">21272962</pub-id>
</element-citation>
</ref>
<ref id="B146">
<label>146</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piacentini</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Civitelli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ripoli</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HSV-1 promotes Ca
<sup>2+</sup>
-mediated APP phosphorylation and A
<italic>β</italic>
accumulation in rat cortical neurons</article-title>
<source>
<italic>Neurobiology of Aging</italic>
</source>
<year>2011</year>
<volume>32</volume>
<issue>12</issue>
<fpage>2323.e13</fpage>
<lpage>2323.e26</lpage>
<pub-id pub-id-type="doi">10.1016/j.neurobiolaging.2010.06.009</pub-id>
<pub-id pub-id-type="other">2-s2.0-80053646131</pub-id>
<pub-id pub-id-type="pmid">20674092</pub-id>
</element-citation>
</ref>
<ref id="B147">
<label>147</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Chiara</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Marcocci</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Civitelli</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<year>2010</year>
<volume>5</volume>
<issue>11</issue>
<pub-id pub-id-type="publisher-id">e13989</pub-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0013989</pub-id>
<pub-id pub-id-type="other">2-s2.0-78649757007</pub-id>
</element-citation>
</ref>
<ref id="B148">
<label>148</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lerchundi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Neira</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Valdivia</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tau cleavage at D421 by caspase-3 is induced in neurons and astrocytes infected with Herpes Simplex Virus Type 1</article-title>
<source>
<italic>Journal of Alzheimer's Disease</italic>
</source>
<year>2011</year>
<volume>23</volume>
<issue>3</issue>
<fpage>513</fpage>
<lpage>520</lpage>
<pub-id pub-id-type="doi">10.3233/JAD-2010-101386</pub-id>
<pub-id pub-id-type="other">2-s2.0-79951929670</pub-id>
</element-citation>
</ref>
<ref id="B149">
<label>149</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Porcellini</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Carbone</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ianni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Licastro</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Alzheimer's disease gene signature says: beware of brain viral infections</article-title>
<source>
<italic>Immunity and Ageing</italic>
</source>
<year>2010</year>
<volume>7, article 16</volume>
<pub-id pub-id-type="doi">10.1186/1742-4933-7-16</pub-id>
<pub-id pub-id-type="other">2-s2.0-78650000860</pub-id>
</element-citation>
</ref>
<ref id="B150">
<label>150</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Westarp</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Ferrante</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Perron</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Bartmann</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kornhuber</surname>
<given-names>H. H.</given-names>
</name>
</person-group>
<article-title>Sporadic ALS/MND: a global neurodegeneration with retroviral involvement?</article-title>
<source>
<italic>Journal of the Neurological Sciences</italic>
</source>
<year>1995</year>
<volume>129, supplement</volume>
<fpage>145</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="doi">10.1016/0022-510x(95)00087-i</pub-id>
<pub-id pub-id-type="other">2-s2.0-0029062762</pub-id>
<pub-id pub-id-type="pmid">7595609</pub-id>
</element-citation>
</ref>
<ref id="B151">
<label>151</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrante</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Westarp</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Mancuso</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HTLV tax-rex DNA and antibodies in idiopathic amyotrophic lateral sclerosis</article-title>
<source>
<italic>Journal of the Neurological Sciences</italic>
</source>
<year>1995</year>
<volume>129</volume>
<issue>supplement</issue>
<fpage>140</fpage>
<lpage>144</lpage>
<pub-id pub-id-type="doi">10.1016/0022-510x(95)00086-h</pub-id>
<pub-id pub-id-type="other">2-s2.0-0029043835</pub-id>
<pub-id pub-id-type="pmid">7595608</pub-id>
</element-citation>
</ref>
<ref id="B152">
<label>152</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>M. T. T.</given-names>
</name>
<name>
<surname>Leite</surname>
<given-names>A. C. C.</given-names>
</name>
<name>
<surname>Alamy</surname>
<given-names>A. H.</given-names>
</name>
<name>
<surname>Chimelli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Andrada-Serpa</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Araújo</surname>
<given-names>A. Q. C.</given-names>
</name>
</person-group>
<article-title>ALS syndrome in HTLV-I infection</article-title>
<source>
<italic>Neurology</italic>
</source>
<year>2005</year>
<volume>65</volume>
<issue>8</issue>
<fpage>1332</fpage>
<lpage>1333</lpage>
<pub-id pub-id-type="doi">10.1212/01.wnl.0000180962.47653.5e</pub-id>
<pub-id pub-id-type="other">2-s2.0-27144505481</pub-id>
<pub-id pub-id-type="pmid">16247078</pub-id>
</element-citation>
</ref>
<ref id="B153">
<label>153</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zachary</surname>
<given-names>J. F.</given-names>
</name>
<name>
<surname>Baszler</surname>
<given-names>T. V.</given-names>
</name>
<name>
<surname>French</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Kelley</surname>
<given-names>K. W.</given-names>
</name>
</person-group>
<article-title>Mouse Moloney leukemia virus infects microglia but not neurons even though it induces motor neuron disease</article-title>
<source>
<italic>Molecular Psychiatry</italic>
</source>
<year>1997</year>
<volume>2</volume>
<issue>2</issue>
<fpage>104</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="doi">10.1038/sj.mp.4000219</pub-id>
<pub-id pub-id-type="other">2-s2.0-0030946713</pub-id>
<pub-id pub-id-type="pmid">9106227</pub-id>
</element-citation>
</ref>
<ref id="B154">
<label>154</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steele</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Al-Chalabi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ferrante</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Cudkowicz</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>R. H.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Garson</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
<article-title>Detection of serum reverse transcriptase activity in patients with ALS and unaffected blood relatives</article-title>
<source>
<italic>Neurology</italic>
</source>
<year>2005</year>
<volume>64</volume>
<issue>3</issue>
<fpage>454</fpage>
<lpage>458</lpage>
<pub-id pub-id-type="doi">10.1212/01.WNL.0000150899.76130.71</pub-id>
<pub-id pub-id-type="other">2-s2.0-13244265475</pub-id>
<pub-id pub-id-type="pmid">15699374</pub-id>
</element-citation>
</ref>
<ref id="B155">
<label>155</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizutani</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Boettiger</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Temin</surname>
<given-names>H. M.</given-names>
</name>
</person-group>
<article-title>A DNA-depenent DNA polymerase and a DNA endonuclease in virions of Rous sarcoma virus</article-title>
<source>
<italic>Nature</italic>
</source>
<year>1970</year>
<volume>228</volume>
<issue>5270</issue>
<fpage>424</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="doi">10.1038/228424a0</pub-id>
<pub-id pub-id-type="other">2-s2.0-0014969825</pub-id>
<pub-id pub-id-type="pmid">4320562</pub-id>
</element-citation>
</ref>
<ref id="B156">
<label>156</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viola</surname>
<given-names>M. V.</given-names>
</name>
<name>
<surname>Frazier</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Brody</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Spiegelman</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>RNA instructed DNA polymerase activity in a cytoplasmic particulate fraction in brains from Guamanian patients</article-title>
<source>
<italic>Journal of Experimental Medicine</italic>
</source>
<year>1975</year>
<volume>142</volume>
<issue>2</issue>
<fpage>483</fpage>
<lpage>494</lpage>
<pub-id pub-id-type="doi">10.1084/jem.142.2.483</pub-id>
<pub-id pub-id-type="other">2-s2.0-0016768260</pub-id>
<pub-id pub-id-type="pmid">49390</pub-id>
</element-citation>
</ref>
<ref id="B157">
<label>157</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>MacGowan</surname>
<given-names>D. J. L.</given-names>
</name>
<name>
<surname>Scelsa</surname>
<given-names>S. N.</given-names>
</name>
<name>
<surname>Imperato</surname>
<given-names>T. E.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>K.-N.</given-names>
</name>
<name>
<surname>Baron</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Polsky</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>A controlled study of reverse transcriptase in serum and CSF of HIV-negative patients with ALS</article-title>
<source>
<italic>Neurology</italic>
</source>
<year>2007</year>
<volume>68</volume>
<issue>22</issue>
<fpage>1944</fpage>
<lpage>1946</lpage>
<pub-id pub-id-type="doi">10.1212/01.wnl.0000263188.77797.99</pub-id>
<pub-id pub-id-type="other">2-s2.0-34249802918</pub-id>
<pub-id pub-id-type="pmid">17536052</pub-id>
</element-citation>
</ref>
<ref id="B158">
<label>158</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCormick</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>R. H.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Cudkowicz</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Al-Chalabi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Garson</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
<article-title>Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate</article-title>
<source>
<italic>Neurology</italic>
</source>
<year>2008</year>
<volume>70</volume>
<issue>4</issue>
<fpage>278</fpage>
<lpage>283</lpage>
<pub-id pub-id-type="doi">10.1212/01.wnl.0000297552.13219.b4</pub-id>
<pub-id pub-id-type="other">2-s2.0-38549107484</pub-id>
<pub-id pub-id-type="pmid">18209202</pub-id>
</element-citation>
</ref>
<ref id="B159">
<label>159</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alfahad</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nath</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Retroviruses and amyotrophic lateral sclerosis</article-title>
<source>
<italic>Antiviral Research</italic>
</source>
<year>2013</year>
<volume>99</volume>
<issue>2</issue>
<fpage>180</fpage>
<lpage>187</lpage>
<pub-id pub-id-type="doi">10.1016/j.antiviral.2013.05.006</pub-id>
<pub-id pub-id-type="other">2-s2.0-84879232244</pub-id>
<pub-id pub-id-type="pmid">23707220</pub-id>
</element-citation>
</ref>
<ref id="B160">
<label>160</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oluwole</surname>
<given-names>S. O. A.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Conradi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kristensson</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Karlsson</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Elevated levels of transcripts encoding a human retroviral envelope protein (syncytin) in muscles from patients with motor neuron disease</article-title>
<source>
<italic>Amyotrophic Lateral Sclerosis</italic>
</source>
<year>2007</year>
<volume>8</volume>
<issue>2</issue>
<fpage>67</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1080/17482960600864207</pub-id>
<pub-id pub-id-type="other">2-s2.0-34247224412</pub-id>
<pub-id pub-id-type="pmid">17453631</pub-id>
</element-citation>
</ref>
<ref id="B161">
<label>161</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M.-H.</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human endogenous retrovirus-K contributes to motor neuron disease</article-title>
<source>
<italic>Science Translational Medicine</italic>
</source>
<year>2015</year>
<volume>7</volume>
<issue>307</issue>
<fpage>p. 307ra153</fpage>
<pub-id pub-id-type="doi">10.1126/scitranslmed.aac8201</pub-id>
</element-citation>
</ref>
<ref id="B162">
<label>162</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ciriolo</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Palamara</surname>
<given-names>A. T.</given-names>
</name>
<name>
<surname>Incerpi</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection</article-title>
<source>
<italic>The Journal of Biological Chemistry</italic>
</source>
<year>1997</year>
<volume>272</volume>
<issue>5</issue>
<fpage>2700</fpage>
<lpage>2708</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.272.5.2700</pub-id>
<pub-id pub-id-type="other">2-s2.0-0031026137</pub-id>
<pub-id pub-id-type="pmid">9006907</pub-id>
</element-citation>
</ref>
<ref id="B163">
<label>163</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gong</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Waris</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tanveer</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Siddiqui</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-
<italic>κ</italic>
B</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2001</year>
<volume>98</volume>
<issue>17</issue>
<fpage>9599</fpage>
<lpage>9604</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.171311298</pub-id>
<pub-id pub-id-type="other">2-s2.0-0035859871</pub-id>
<pub-id pub-id-type="pmid">11481452</pub-id>
</element-citation>
</ref>
<ref id="B164">
<label>164</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaul</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Biagioli</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
<article-title>Rhinovirus-induced oxidative stress and interleukin-8 elaboration involves p47-phox but is independent of attachment to intercellular adhesion molecule-1 and viral replication</article-title>
<source>
<italic>Journal of Infectious Diseases</italic>
</source>
<year>2000</year>
<volume>181</volume>
<issue>6</issue>
<fpage>1885</fpage>
<lpage>1890</lpage>
<pub-id pub-id-type="doi">10.1086/315504</pub-id>
<pub-id pub-id-type="other">2-s2.0-0034047053</pub-id>
<pub-id pub-id-type="pmid">10837166</pub-id>
</element-citation>
</ref>
<ref id="B165">
<label>165</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nencioni</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Iuvara</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Aquilano</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influenza A virus replication is dependent on an antioxidant pathway that involves GSH and Bcl-2</article-title>
<source>
<italic>The FASEB Journal</italic>
</source>
<year>2003</year>
<volume>17</volume>
<issue>6</issue>
<fpage>758</fpage>
<lpage>760</lpage>
<pub-id pub-id-type="other">2-s2.0-0037390720</pub-id>
<pub-id pub-id-type="pmid">12594179</pub-id>
</element-citation>
</ref>
<ref id="B166">
<label>166</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peterhans</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation</article-title>
<source>
<italic>Journal of Nutrition</italic>
</source>
<year>1997</year>
<volume>127</volume>
<issue>supplement 5</issue>
<fpage>962S</fpage>
<lpage>965S</lpage>
<pub-id pub-id-type="other">2-s2.0-33749148093</pub-id>
<pub-id pub-id-type="pmid">9164274</pub-id>
</element-citation>
</ref>
<ref id="B167">
<label>167</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enquist</surname>
<given-names>L. W.</given-names>
</name>
<name>
<surname>Husak</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Banfield</surname>
<given-names>B. W.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>G. A.</given-names>
</name>
</person-group>
<article-title>Infection and spread of alphaherpesviruses in the nervous system</article-title>
<source>
<italic>Advances in Virus Research</italic>
</source>
<year>1998</year>
<volume>51</volume>
<fpage>237</fpage>
<lpage>347</lpage>
<pub-id pub-id-type="doi">10.1016/s0065-3527(08)60787-3</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032247683</pub-id>
<pub-id pub-id-type="pmid">9891589</pub-id>
</element-citation>
</ref>
<ref id="B168">
<label>168</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wickham</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ash</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Carr</surname>
<given-names>D. J. J.</given-names>
</name>
</person-group>
<article-title>Chemokine receptor deficiency is associated with increased chemokine expression in the peripheral and central nervous systems and increased resistance to herpetic encephalitis</article-title>
<source>
<italic>Journal of Neuroimmunology</italic>
</source>
<year>2005</year>
<volume>162</volume>
<issue>1-2</issue>
<fpage>51</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="doi">10.1016/j.jneuroim.2005.01.001</pub-id>
<pub-id pub-id-type="other">2-s2.0-17044376329</pub-id>
<pub-id pub-id-type="pmid">15833359</pub-id>
</element-citation>
</ref>
<ref id="B169">
<label>169</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nucci</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Palamara</surname>
<given-names>A. T.</given-names>
</name>
<name>
<surname>Ciriolo</surname>
<given-names>M. R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Imbalance in corneal redox state during herpes simplex virus 1-induced keratitis in rabbits. Effectiveness of exogenous glutathione supply</article-title>
<source>
<italic>Experimental Eye Research</italic>
</source>
<year>2000</year>
<volume>70</volume>
<issue>2</issue>
<fpage>215</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="doi">10.1006/exer.1999.0782</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033843916</pub-id>
<pub-id pub-id-type="pmid">10655147</pub-id>
</element-citation>
</ref>
<ref id="B170">
<label>170</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palamara</surname>
<given-names>A. T.</given-names>
</name>
<name>
<surname>Perno</surname>
<given-names>C.-F.</given-names>
</name>
<name>
<surname>Ciriolo</surname>
<given-names>M. R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication</article-title>
<source>
<italic>Antiviral Research</italic>
</source>
<year>1995</year>
<volume>27</volume>
<issue>3</issue>
<fpage>237</fpage>
<lpage>253</lpage>
<pub-id pub-id-type="doi">10.1016/0166-3542(95)00008-A</pub-id>
<pub-id pub-id-type="other">2-s2.0-0029078775</pub-id>
<pub-id pub-id-type="pmid">8540746</pub-id>
</element-citation>
</ref>
<ref id="B171">
<label>171</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valyi-Nagy</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Dermody</surname>
<given-names>T. S.</given-names>
</name>
</person-group>
<article-title>Role of oxidative damage in the pathogenesis of viral infections of the nervous system</article-title>
<source>
<italic>Histology and Histopathology</italic>
</source>
<year>2005</year>
<volume>20</volume>
<issue>3</issue>
<fpage>957</fpage>
<lpage>967</lpage>
<pub-id pub-id-type="other">2-s2.0-21644464144</pub-id>
<pub-id pub-id-type="pmid">15944946</pub-id>
</element-citation>
</ref>
<ref id="B172">
<label>172</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schachtele</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Little</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Lokensgard</surname>
<given-names>J. R.</given-names>
</name>
</person-group>
<article-title>Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2</article-title>
<source>
<italic>Journal of Neuroinflammation</italic>
</source>
<year>2010</year>
<volume>7, article 35</volume>
<pub-id pub-id-type="doi">10.1186/1742-2094-7-35</pub-id>
<pub-id pub-id-type="other">2-s2.0-77953947353</pub-id>
</element-citation>
</ref>
<ref id="B173">
<label>173</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kavouras</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Prandovszky</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Valyi-Nagy</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Herpes simplex virus type 1 infection induces oxidative stress and the release of bioactive lipid peroxidation by-products in mouse P19N neural cell cultures</article-title>
<source>
<italic>Journal of NeuroVirology</italic>
</source>
<year>2007</year>
<volume>13</volume>
<issue>5</issue>
<fpage>416</fpage>
<lpage>425</lpage>
<pub-id pub-id-type="doi">10.1080/13550280701460573</pub-id>
<pub-id pub-id-type="other">2-s2.0-36148964750</pub-id>
<pub-id pub-id-type="pmid">17994426</pub-id>
</element-citation>
</ref>
<ref id="B174">
<label>174</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fujii</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Akaike</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Role of nitric oxide in pathogenesis of herpes simplex virus encephalitis in rats</article-title>
<source>
<italic>Virology</italic>
</source>
<year>1999</year>
<volume>256</volume>
<issue>2</issue>
<fpage>203</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="doi">10.1006/viro.1999.9610</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033541374</pub-id>
<pub-id pub-id-type="pmid">10191185</pub-id>
</element-citation>
</ref>
<ref id="B175">
<label>175</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santana</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sastre</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Recuero</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bullido</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Aldudo</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Oxidative stress enhances neurodegeneration markers induced by herpes simplex virus type 1 infection in human neuroblastoma cells</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<year>2013</year>
<volume>8</volume>
<issue>10</issue>
<pub-id pub-id-type="publisher-id">e75842</pub-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0075842</pub-id>
<pub-id pub-id-type="other">2-s2.0-84885025510</pub-id>
</element-citation>
</ref>
<ref id="B176">
<label>176</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sgarbanti</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nencioni</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Amatore</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Redox regulation of the influenza hemagglutinin maturation process: a new cell-mediated strategy for anti-influenza therapy</article-title>
<source>
<italic>Antioxidants and Redox Signaling</italic>
</source>
<year>2011</year>
<volume>15</volume>
<issue>3</issue>
<fpage>593</fpage>
<lpage>606</lpage>
<pub-id pub-id-type="doi">10.1089/ars.2010.3512</pub-id>
<pub-id pub-id-type="other">2-s2.0-79960012670</pub-id>
<pub-id pub-id-type="pmid">21366409</pub-id>
</element-citation>
</ref>
<ref id="B177">
<label>177</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nencioni</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>De Chiara</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sgarbanti</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bcl-2 expression and p38MAPK activity in cells infected with influenza A virus: impact on virally induced apoptosis and viral replication</article-title>
<source>
<italic>The Journal of Biological Chemistry</italic>
</source>
<year>2009</year>
<volume>284</volume>
<issue>23</issue>
<fpage>16004</fpage>
<lpage>16015</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.m900146200</pub-id>
<pub-id pub-id-type="other">2-s2.0-67650156471</pub-id>
<pub-id pub-id-type="pmid">19336399</pub-id>
</element-citation>
</ref>
<ref id="B178">
<label>178</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garaci</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Palamara</surname>
<given-names>A. T.</given-names>
</name>
<name>
<surname>Ciriolo</surname>
<given-names>M. R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intracellular GSH content and HIV replication in human macrophages</article-title>
<source>
<italic>Journal of Leukocyte Biology</italic>
</source>
<year>1997</year>
<volume>62</volume>
<issue>1</issue>
<fpage>54</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="other">2-s2.0-0030809090</pub-id>
<pub-id pub-id-type="pmid">9225993</pub-id>
</element-citation>
</ref>
<ref id="B179">
<label>179</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reddy</surname>
<given-names>P. V. B.</given-names>
</name>
<name>
<surname>Gandhi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Samikkannu</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: role in HIV associated neurocognitive disorder</article-title>
<source>
<italic>Neurochemistry International</italic>
</source>
<year>2012</year>
<volume>61</volume>
<issue>5</issue>
<fpage>807</fpage>
<lpage>814</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuint.2011.06.011</pub-id>
<pub-id pub-id-type="other">2-s2.0-84867575550</pub-id>
<pub-id pub-id-type="pmid">21756955</pub-id>
</element-citation>
</ref>
<ref id="B180">
<label>180</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dasuri</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>J. N.</given-names>
</name>
</person-group>
<article-title>Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis</article-title>
<source>
<italic>Free Radical Biology and Medicine</italic>
</source>
<year>2013</year>
<volume>62</volume>
<fpage>170</fpage>
<lpage>185</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2012.09.016</pub-id>
<pub-id pub-id-type="other">2-s2.0-84884863139</pub-id>
<pub-id pub-id-type="pmid">23000246</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Main characteristics that occur in neurodegenerative diseases.</p>
</caption>
<graphic xlink:href="OMCL2016-6547248.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Different genetic and/or environmental factors lead to ROS increase during neurodegeneration. This accumulation triggered the activation of glia cells and the release of proinflammatory markers, stimulating thus a neuroinflammatory response. These events contribute to neuronal damage (DNA damage, lipid peroxidation, and protein oxidation) and axon degeneration, which ultimately caused neuronal death. In addition, virus infection can strengthen the ROS-mediated neurodegenerative signs in neurons and glia cells, producing functional and molecular hallmarks of neurodegeneration.</p>
</caption>
<graphic xlink:href="OMCL2016-6547248.002"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/TelematiV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0000850 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0000850 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    TelematiV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Thu Nov 2 16:09:04 2017. Site generation: Sun Mar 10 16:42:28 2024