Serveur d'exploration autour du libre accès en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pharmacokinetic-Pharmacodynamic Modeling of the D2 and 5-HT2A Receptor Occupancy of Risperidone and Paliperidone in Rats

Identifieur interne : 000172 ( Pmc/Corpus ); précédent : 000171; suivant : 000173

Pharmacokinetic-Pharmacodynamic Modeling of the D2 and 5-HT2A Receptor Occupancy of Risperidone and Paliperidone in Rats

Auteurs : Magdalena Kozielska ; Martin Johnson ; Venkatesh Pilla Reddy ; An Vermeulen ; Cheryl Li ; Sarah Grimwood ; Rik De Greef ; Geny M. M. Groothuis ; Meindert Danhof ; Johannes H. Proost

Source :

RBID : PMC:3369128

Abstract

ABSTRACTPurpose

A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to describe the time course of brain concentration and dopamine D2 and serotonin 5-HT2A receptor occupancy (RO) of the atypical antipsychotic drugs risperidone and paliperidone in rats.

Methods

A population approach was utilized to describe the PK-PD of risperidone and paliperidone using plasma and brain concentrations and D2 and 5-HT2A RO data. A previously published physiology- and mechanism-based (PBPKPD) model describing brain concentrations and D2 receptor binding in the striatum was expanded to include metabolite kinetics, active efflux from brain, and binding to 5-HT2A receptors in the frontal cortex.

Results

A two-compartment model best fit to the plasma PK profile of risperidone and paliperidone. The expanded PBPKPD model described brain concentrations and D2 and 5-HT2A RO well. Inclusion of binding to 5-HT2A receptors was necessary to describe observed brain-to-plasma ratios accurately. Simulations showed that receptor affinity strongly influences brain-to-plasma ratio pattern.

Conclusion

Binding to both D2 and 5-HT2A receptors influences brain distribution of risperidone and paliperidone. This may stem from their high affinity for D2 and 5-HT2A receptors. Receptor affinities and brain-to-plasma ratios may need to be considered before choosing the best PK-PD model for centrally active drugs.


Url:
DOI: 10.1007/s11095-012-0722-8
PubMed: 22437487
PubMed Central: 3369128

Links to Exploration step

PMC:3369128

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pharmacokinetic-Pharmacodynamic Modeling of the D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
Receptor Occupancy of Risperidone and Paliperidone in Rats</title>
<author>
<name sortKey="Kozielska, Magdalena" sort="Kozielska, Magdalena" uniqKey="Kozielska M" first="Magdalena" last="Kozielska">Magdalena Kozielska</name>
<affiliation>
<nlm:aff id="Aff1">Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Martin" sort="Johnson, Martin" uniqKey="Johnson M" first="Martin" last="Johnson">Martin Johnson</name>
<affiliation>
<nlm:aff id="Aff1">Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pilla Reddy, Venkatesh" sort="Pilla Reddy, Venkatesh" uniqKey="Pilla Reddy V" first="Venkatesh" last="Pilla Reddy">Venkatesh Pilla Reddy</name>
<affiliation>
<nlm:aff id="Aff1">Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vermeulen, An" sort="Vermeulen, An" uniqKey="Vermeulen A" first="An" last="Vermeulen">An Vermeulen</name>
<affiliation>
<nlm:aff id="Aff2">Advanced PK-PD Modeling & Simulation, Janssen Research and Development Janssen Pharmaceutica NV, Beerse, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Cheryl" sort="Li, Cheryl" uniqKey="Li C" first="Cheryl" last="Li">Cheryl Li</name>
<affiliation>
<nlm:aff id="Aff3">Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grimwood, Sarah" sort="Grimwood, Sarah" uniqKey="Grimwood S" first="Sarah" last="Grimwood">Sarah Grimwood</name>
<affiliation>
<nlm:aff id="Aff3">Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Greef, Rik" sort="De Greef, Rik" uniqKey="De Greef R" first="Rik" last="De Greef">Rik De Greef</name>
<affiliation>
<nlm:aff id="Aff4">Clinical PK-PD, Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck Sharp & Dohme, Oss, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Groothuis, Geny M M" sort="Groothuis, Geny M M" uniqKey="Groothuis G" first="Geny M. M." last="Groothuis">Geny M. M. Groothuis</name>
<affiliation>
<nlm:aff id="Aff1">Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Danhof, Meindert" sort="Danhof, Meindert" uniqKey="Danhof M" first="Meindert" last="Danhof">Meindert Danhof</name>
<affiliation>
<nlm:aff id="Aff5">Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Proost, Johannes H" sort="Proost, Johannes H" uniqKey="Proost J" first="Johannes H." last="Proost">Johannes H. Proost</name>
<affiliation>
<nlm:aff id="Aff1">Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22437487</idno>
<idno type="pmc">3369128</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369128</idno>
<idno type="RBID">PMC:3369128</idno>
<idno type="doi">10.1007/s11095-012-0722-8</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000172</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Pharmacokinetic-Pharmacodynamic Modeling of the D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
Receptor Occupancy of Risperidone and Paliperidone in Rats</title>
<author>
<name sortKey="Kozielska, Magdalena" sort="Kozielska, Magdalena" uniqKey="Kozielska M" first="Magdalena" last="Kozielska">Magdalena Kozielska</name>
<affiliation>
<nlm:aff id="Aff1">Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Martin" sort="Johnson, Martin" uniqKey="Johnson M" first="Martin" last="Johnson">Martin Johnson</name>
<affiliation>
<nlm:aff id="Aff1">Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pilla Reddy, Venkatesh" sort="Pilla Reddy, Venkatesh" uniqKey="Pilla Reddy V" first="Venkatesh" last="Pilla Reddy">Venkatesh Pilla Reddy</name>
<affiliation>
<nlm:aff id="Aff1">Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vermeulen, An" sort="Vermeulen, An" uniqKey="Vermeulen A" first="An" last="Vermeulen">An Vermeulen</name>
<affiliation>
<nlm:aff id="Aff2">Advanced PK-PD Modeling & Simulation, Janssen Research and Development Janssen Pharmaceutica NV, Beerse, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Cheryl" sort="Li, Cheryl" uniqKey="Li C" first="Cheryl" last="Li">Cheryl Li</name>
<affiliation>
<nlm:aff id="Aff3">Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grimwood, Sarah" sort="Grimwood, Sarah" uniqKey="Grimwood S" first="Sarah" last="Grimwood">Sarah Grimwood</name>
<affiliation>
<nlm:aff id="Aff3">Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Greef, Rik" sort="De Greef, Rik" uniqKey="De Greef R" first="Rik" last="De Greef">Rik De Greef</name>
<affiliation>
<nlm:aff id="Aff4">Clinical PK-PD, Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck Sharp & Dohme, Oss, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Groothuis, Geny M M" sort="Groothuis, Geny M M" uniqKey="Groothuis G" first="Geny M. M." last="Groothuis">Geny M. M. Groothuis</name>
<affiliation>
<nlm:aff id="Aff1">Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Danhof, Meindert" sort="Danhof, Meindert" uniqKey="Danhof M" first="Meindert" last="Danhof">Meindert Danhof</name>
<affiliation>
<nlm:aff id="Aff5">Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Proost, Johannes H" sort="Proost, Johannes H" uniqKey="Proost J" first="Johannes H." last="Proost">Johannes H. Proost</name>
<affiliation>
<nlm:aff id="Aff1">Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pharmaceutical Research</title>
<idno type="ISSN">0724-8741</idno>
<idno type="eISSN">1573-904X</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>ABSTRACT</title>
<sec>
<title>Purpose</title>
<p>A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to describe the time course of brain concentration and dopamine D
<sub>2</sub>
and serotonin 5-HT
<sub>2A</sub>
receptor occupancy (RO) of the atypical antipsychotic drugs risperidone and paliperidone in rats.</p>
</sec>
<sec>
<title>Methods</title>
<p>A population approach was utilized to describe the PK-PD of risperidone and paliperidone using plasma and brain concentrations and D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
RO data. A previously published physiology- and mechanism-based (PBPKPD) model describing brain concentrations and D
<sub>2</sub>
receptor binding in the striatum was expanded to include metabolite kinetics, active efflux from brain, and binding to 5-HT
<sub>2A</sub>
receptors in the frontal cortex.</p>
</sec>
<sec>
<title>Results</title>
<p>A two-compartment model best fit to the plasma PK profile of risperidone and paliperidone. The expanded PBPKPD model described brain concentrations and D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
RO well. Inclusion of binding to 5-HT
<sub>2A</sub>
receptors was necessary to describe observed brain-to-plasma ratios accurately. Simulations showed that receptor affinity strongly influences brain-to-plasma ratio pattern.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Binding to both D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors influences brain distribution of risperidone and paliperidone. This may stem from their high affinity for D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors. Receptor affinities and brain-to-plasma ratios may need to be considered before choosing the best PK-PD model for centrally active drugs.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Carpenter, Wt" uniqKey="Carpenter W">WT Carpenter</name>
</author>
<author>
<name sortKey="Koenig, Ji" uniqKey="Koenig J">JI Koenig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pani, L" uniqKey="Pani L">L Pani</name>
</author>
<author>
<name sortKey="Pira, L" uniqKey="Pira L">L Pira</name>
</author>
<author>
<name sortKey="Marchese, G" uniqKey="Marchese G">G Marchese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meltzer, Hy" uniqKey="Meltzer H">HY Meltzer</name>
</author>
<author>
<name sortKey="Matsubara, S" uniqKey="Matsubara S">S Matsubara</name>
</author>
<author>
<name sortKey="Lee, Jc" uniqKey="Lee J">JC Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapur, S" uniqKey="Kapur S">S Kapur</name>
</author>
<author>
<name sortKey="Remington, G" uniqKey="Remington G">G Remington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meltzer, Hy" uniqKey="Meltzer H">HY Meltzer</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Kaneda, Y" uniqKey="Kaneda Y">Y Kaneda</name>
</author>
<author>
<name sortKey="Ichikawa, J" uniqKey="Ichikawa J">J Ichikawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olsen, Ck" uniqKey="Olsen C">CK Olsen</name>
</author>
<author>
<name sortKey="Brennum, Lt" uniqKey="Brennum L">LT Brennum</name>
</author>
<author>
<name sortKey="Kreilgaard, M" uniqKey="Kreilgaard M">M Kreilgaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danhof, M" uniqKey="Danhof M">M Danhof</name>
</author>
<author>
<name sortKey="Jongh, J" uniqKey="Jongh J">J Jongh</name>
</author>
<author>
<name sortKey="Lange, Ecm" uniqKey="Lange E">ECM Lange</name>
</author>
<author>
<name sortKey="Della Pasqua, O" uniqKey="Della Pasqua O">O Della Pasqua</name>
</author>
<author>
<name sortKey="Ploeger, Ba" uniqKey="Ploeger B">BA Ploeger</name>
</author>
<author>
<name sortKey="Voskuyl, Ra" uniqKey="Voskuyl R">RA Voskuyl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yassen, A" uniqKey="Yassen A">A Yassen</name>
</author>
<author>
<name sortKey="Olofsen, E" uniqKey="Olofsen E">E Olofsen</name>
</author>
<author>
<name sortKey="Dahan, A" uniqKey="Dahan A">A Dahan</name>
</author>
<author>
<name sortKey="Danhof, M" uniqKey="Danhof M">M Danhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, M" uniqKey="Johnson M">M Johnson</name>
</author>
<author>
<name sortKey="Kozielska, M" uniqKey="Kozielska M">M Kozielska</name>
</author>
<author>
<name sortKey="Pilla Reddy, V" uniqKey="Pilla Reddy V">V Pilla Reddy</name>
</author>
<author>
<name sortKey="Vermeulen, A" uniqKey="Vermeulen A">A Vermeulen</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Grimwood, S" uniqKey="Grimwood S">S Grimwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Js" uniqKey="Wang J">JS Wang</name>
</author>
<author>
<name sortKey="Ruan, Y" uniqKey="Ruan Y">Y Ruan</name>
</author>
<author>
<name sortKey="Taylor, Rm" uniqKey="Taylor R">RM Taylor</name>
</author>
<author>
<name sortKey="Donovan, Jl" uniqKey="Donovan J">JL Donovan</name>
</author>
<author>
<name sortKey="Markowitz, Js" uniqKey="Markowitz J">JS Markowitz</name>
</author>
<author>
<name sortKey="Vane, Cl" uniqKey="Vane C">CL Vane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knauer, Cs" uniqKey="Knauer C">CS Knauer</name>
</author>
<author>
<name sortKey="Campbell, Je" uniqKey="Campbell J">JE Campbell</name>
</author>
<author>
<name sortKey="Galvan, B" uniqKey="Galvan B">B Galvan</name>
</author>
<author>
<name sortKey="Bowman, C" uniqKey="Bowman C">C Bowman</name>
</author>
<author>
<name sortKey="Osgood, S" uniqKey="Osgood S">S Osgood</name>
</author>
<author>
<name sortKey="Buist, S" uniqKey="Buist S">S Buist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Natesan, S" uniqKey="Natesan S">S Natesan</name>
</author>
<author>
<name sortKey="Reckless, Ge" uniqKey="Reckless G">GE Reckless</name>
</author>
<author>
<name sortKey="Nobrega, Jn" uniqKey="Nobrega J">JN Nobrega</name>
</author>
<author>
<name sortKey="Fletcher, Pj" uniqKey="Fletcher P">PJ Fletcher</name>
</author>
<author>
<name sortKey="Kapur, S" uniqKey="Kapur S">S Kapur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beal, Ss" uniqKey="Beal S">SS Beal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keizer, Rj" uniqKey="Keizer R">RJ Keizer</name>
</author>
<author>
<name sortKey="Benten, M" uniqKey="Benten M">M Benten</name>
</author>
<author>
<name sortKey="Beijnen, Jh" uniqKey="Beijnen J">JH Beijnen</name>
</author>
<author>
<name sortKey="Schellens, Jhm" uniqKey="Schellens J">JHM Schellens</name>
</author>
<author>
<name sortKey="Huitema, Adr" uniqKey="Huitema A">ADR Huitema</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jonsson, En" uniqKey="Jonsson E">EN Jonsson</name>
</author>
<author>
<name sortKey="Karlsson, Mo" uniqKey="Karlsson M">MO Karlsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Xr" uniqKey="Liu X">XR Liu</name>
</author>
<author>
<name sortKey="Smith, Bj" uniqKey="Smith B">BJ Smith</name>
</author>
<author>
<name sortKey="Chen, Cp" uniqKey="Chen C">CP Chen</name>
</author>
<author>
<name sortKey="Callegari, E" uniqKey="Callegari E">E Callegari</name>
</author>
<author>
<name sortKey="Becker, Sl" uniqKey="Becker S">SL Becker</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersson, C" uniqKey="Andersson C">C Andersson</name>
</author>
<author>
<name sortKey="Hamer, Rm" uniqKey="Hamer R">RM Hamer</name>
</author>
<author>
<name sortKey="Lawler, Cp" uniqKey="Lawler C">CP Lawler</name>
</author>
<author>
<name sortKey="Mailman, Rb" uniqKey="Mailman R">RB Mailman</name>
</author>
<author>
<name sortKey="Lieberman, Ja" uniqKey="Lieberman J">JA Lieberman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mannens, G" uniqKey="Mannens G">G Mannens</name>
</author>
<author>
<name sortKey="Meuldermans, W" uniqKey="Meuldermans W">W Meuldermans</name>
</author>
<author>
<name sortKey="Snoeck, E" uniqKey="Snoeck E">E Snoeck</name>
</author>
<author>
<name sortKey="Heykants, J" uniqKey="Heykants J">J Heykants</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Xr" uniqKey="Liu X">XR Liu</name>
</author>
<author>
<name sortKey="Natta, K" uniqKey="Natta K">K Natta</name>
</author>
<author>
<name sortKey="Yeo, H" uniqKey="Yeo H">H Yeo</name>
</author>
<author>
<name sortKey="Vilenski, O" uniqKey="Vilenski O">O Vilenski</name>
</author>
<author>
<name sortKey="Weller, Pe" uniqKey="Weller P">PE Weller</name>
</author>
<author>
<name sortKey="Worboys, Pd" uniqKey="Worboys P">PD Worboys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoyer, D" uniqKey="Hoyer D">D Hoyer</name>
</author>
<author>
<name sortKey="Pazos, A" uniqKey="Pazos A">A Pazos</name>
</author>
<author>
<name sortKey="Probst, A" uniqKey="Probst A">A Probst</name>
</author>
<author>
<name sortKey="Palacios, Jm" uniqKey="Palacios J">JM Palacios</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mignini, F" uniqKey="Mignini F">F Mignini</name>
</author>
<author>
<name sortKey="Vitaioli, L" uniqKey="Vitaioli L">L Vitaioli</name>
</author>
<author>
<name sortKey="Sabbatini, M" uniqKey="Sabbatini M">M Sabbatini</name>
</author>
<author>
<name sortKey="Tomassoni, D" uniqKey="Tomassoni D">D Tomassoni</name>
</author>
<author>
<name sortKey="Amenta, F" uniqKey="Amenta F">F Amenta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindbom, L" uniqKey="Lindbom L">L Lindbom</name>
</author>
<author>
<name sortKey="Pihlgren, P" uniqKey="Pihlgren P">P Pihlgren</name>
</author>
<author>
<name sortKey="Jonsson, N" uniqKey="Jonsson N">N Jonsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beijsterveldt, Lec" uniqKey="Beijsterveldt L">LEC Beijsterveldt</name>
</author>
<author>
<name sortKey="Geerts, Rjf" uniqKey="Geerts R">RJF Geerts</name>
</author>
<author>
<name sortKey="Leysen, Je" uniqKey="Leysen J">JE Leysen</name>
</author>
<author>
<name sortKey="Megens, A" uniqKey="Megens A">A Megens</name>
</author>
<author>
<name sortKey="Vandeneynde, Hmj" uniqKey="Vandeneynde H">HMJ Vandeneynde</name>
</author>
<author>
<name sortKey="Meuldermans, Weg" uniqKey="Meuldermans W">WEG Meuldermans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meuldermans, W" uniqKey="Meuldermans W">W Meuldermans</name>
</author>
<author>
<name sortKey="Hendrickx, J" uniqKey="Hendrickx J">J Hendrickx</name>
</author>
<author>
<name sortKey="Mannens, G" uniqKey="Mannens G">G Mannens</name>
</author>
<author>
<name sortKey="Lavrijsen, K" uniqKey="Lavrijsen K">K Lavrijsen</name>
</author>
<author>
<name sortKey="Janssen, C" uniqKey="Janssen C">C Janssen</name>
</author>
<author>
<name sortKey="Bracke, J" uniqKey="Bracke J">J Bracke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aravagiri, M" uniqKey="Aravagiri M">M Aravagiri</name>
</author>
<author>
<name sortKey="Marder, Sr" uniqKey="Marder S">SR Marder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arakawa, R" uniqKey="Arakawa R">R Arakawa</name>
</author>
<author>
<name sortKey="Ito, H" uniqKey="Ito H">H Ito</name>
</author>
<author>
<name sortKey="Takano, A" uniqKey="Takano A">A Takano</name>
</author>
<author>
<name sortKey="Takahashi, H" uniqKey="Takahashi H">H Takahashi</name>
</author>
<author>
<name sortKey="Morimoto, T" uniqKey="Morimoto T">T Morimoto</name>
</author>
<author>
<name sortKey="Sassa, T" uniqKey="Sassa T">T Sassa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karlsson, P" uniqKey="Karlsson P">P Karlsson</name>
</author>
<author>
<name sortKey="Dencker, E" uniqKey="Dencker E">E Dencker</name>
</author>
<author>
<name sortKey="Nyberg, S" uniqKey="Nyberg S">S Nyberg</name>
</author>
<author>
<name sortKey="Mannaert, E" uniqKey="Mannaert E">E Mannaert</name>
</author>
<author>
<name sortKey="Boom, S" uniqKey="Boom S">S Boom</name>
</author>
<author>
<name sortKey="Talluri, K" uniqKey="Talluri K">K Talluri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doran, A" uniqKey="Doran A">A Doran</name>
</author>
<author>
<name sortKey="Obach, Rs" uniqKey="Obach R">RS Obach</name>
</author>
<author>
<name sortKey="Smith, Bj" uniqKey="Smith B">BJ Smith</name>
</author>
<author>
<name sortKey="Hosea, Na" uniqKey="Hosea N">NA Hosea</name>
</author>
<author>
<name sortKey="Becker, S" uniqKey="Becker S">S Becker</name>
</author>
<author>
<name sortKey="Callegari, E" uniqKey="Callegari E">E Callegari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ejsing, Tb" uniqKey="Ejsing T">TB Ejsing</name>
</author>
<author>
<name sortKey="Pedersen, Ad" uniqKey="Pedersen A">AD Pedersen</name>
</author>
<author>
<name sortKey="Linnet, K" uniqKey="Linnet K">K Linnet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, B" uniqKey="Feng B">B Feng</name>
</author>
<author>
<name sortKey="Mills, Jb" uniqKey="Mills J">JB Mills</name>
</author>
<author>
<name sortKey="Davidson, Re" uniqKey="Davidson R">RE Davidson</name>
</author>
<author>
<name sortKey="Mireles, Rj" uniqKey="Mireles R">RJ Mireles</name>
</author>
<author>
<name sortKey="Janiszewski, Js" uniqKey="Janiszewski J">JS Janiszewski</name>
</author>
<author>
<name sortKey="Troutman, Md" uniqKey="Troutman M">MD Troutman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boulton, Dw" uniqKey="Boulton D">DW Boulton</name>
</author>
<author>
<name sortKey="Devane, Cl" uniqKey="Devane C">CL DeVane</name>
</author>
<author>
<name sortKey="Liston, Hl" uniqKey="Liston H">HL Liston</name>
</author>
<author>
<name sortKey="Markowitz, Js" uniqKey="Markowitz J">JS Markowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cousein, E" uniqKey="Cousein E">E Cousein</name>
</author>
<author>
<name sortKey="Barthelemy, C" uniqKey="Barthelemy C">C Barthelemy</name>
</author>
<author>
<name sortKey="Poullain, S" uniqKey="Poullain S">S Poullain</name>
</author>
<author>
<name sortKey="Simon, N" uniqKey="Simon N">N Simon</name>
</author>
<author>
<name sortKey="Lestavel, S" uniqKey="Lestavel S">S Lestavel</name>
</author>
<author>
<name sortKey="Williame, V" uniqKey="Williame V">V Williame</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schotte, A" uniqKey="Schotte A">A Schotte</name>
</author>
<author>
<name sortKey="Janssen, Pfm" uniqKey="Janssen P">PFM Janssen</name>
</author>
<author>
<name sortKey="Gommeren, W" uniqKey="Gommeren W">W Gommeren</name>
</author>
<author>
<name sortKey="Luyten, W" uniqKey="Luyten W">W Luyten</name>
</author>
<author>
<name sortKey="Vangompel, P" uniqKey="Vangompel P">P VanGompel</name>
</author>
<author>
<name sortKey="Lesage, As" uniqKey="Lesage A">AS Lesage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seeman, P" uniqKey="Seeman P">P Seeman</name>
</author>
<author>
<name sortKey="Tallerico, T" uniqKey="Tallerico T">T Tallerico</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gauffre, Jc" uniqKey="Gauffre J">JC Gauffre</name>
</author>
<author>
<name sortKey="Aguerre, S" uniqKey="Aguerre S">S Aguerre</name>
</author>
<author>
<name sortKey="Mormede, P" uniqKey="Mormede P">P Mormede</name>
</author>
<author>
<name sortKey="Chaouloff, F" uniqKey="Chaouloff F">F Chaouloff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kulikov, Av" uniqKey="Kulikov A">AV Kulikov</name>
</author>
<author>
<name sortKey="Jeanningro, R" uniqKey="Jeanningro R">R Jeanningro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pazos, A" uniqKey="Pazos A">A Pazos</name>
</author>
<author>
<name sortKey="Cortes, R" uniqKey="Cortes R">R Cortes</name>
</author>
<author>
<name sortKey="Palacios, Jm" uniqKey="Palacios J">JM Palacios</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vicentic, A" uniqKey="Vicentic A">A Vicentic</name>
</author>
<author>
<name sortKey="Cabrera Vera, Tm" uniqKey="Cabrera Vera T">TM Cabrera-Vera</name>
</author>
<author>
<name sortKey="Pinto, W" uniqKey="Pinto W">W Pinto</name>
</author>
<author>
<name sortKey="Battaglia, G" uniqKey="Battaglia G">G Battaglia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barth, Vn" uniqKey="Barth V">VN Barth</name>
</author>
<author>
<name sortKey="Chernet, E" uniqKey="Chernet E">E Chernet</name>
</author>
<author>
<name sortKey="Martin, Lj" uniqKey="Martin L">LJ Martin</name>
</author>
<author>
<name sortKey="Need, Ab" uniqKey="Need A">AB Need</name>
</author>
<author>
<name sortKey="Rash, Ks" uniqKey="Rash K">KS Rash</name>
</author>
<author>
<name sortKey="Morin, M" uniqKey="Morin M">M Morin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Werf, Jf" uniqKey="Werf J">JF Werf</name>
</author>
<author>
<name sortKey="Schip, F" uniqKey="Schip F">F Schip</name>
</author>
<author>
<name sortKey="Sebens, Jb" uniqKey="Sebens J">JB Sebens</name>
</author>
<author>
<name sortKey="Korf, J" uniqKey="Korf J">J Korf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leysen, Je" uniqKey="Leysen J">JE Leysen</name>
</author>
<author>
<name sortKey="Gommeren, W" uniqKey="Gommeren W">W Gommeren</name>
</author>
<author>
<name sortKey="Eens, A" uniqKey="Eens A">A Eens</name>
</author>
<author>
<name sortKey="Decourcelles, Dd" uniqKey="Decourcelles D">DD Decourcelles</name>
</author>
<author>
<name sortKey="Stoof, Jc" uniqKey="Stoof J">JC Stoof</name>
</author>
<author>
<name sortKey="Janssen, Paj" uniqKey="Janssen P">PAJ Janssen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leysen, Je" uniqKey="Leysen J">JE Leysen</name>
</author>
<author>
<name sortKey="Janssen, Pmf" uniqKey="Janssen P">PMF Janssen</name>
</author>
<author>
<name sortKey="Gommeren, W" uniqKey="Gommeren W">W Gommeren</name>
</author>
<author>
<name sortKey="Wynants, J" uniqKey="Wynants J">J Wynants</name>
</author>
<author>
<name sortKey="Pauwels, Pj" uniqKey="Pauwels P">PJ Pauwels</name>
</author>
<author>
<name sortKey="Janssen, Paj" uniqKey="Janssen P">PAJ Janssen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leysen, Je" uniqKey="Leysen J">JE Leysen</name>
</author>
<author>
<name sortKey="Janssen, Pmf" uniqKey="Janssen P">PMF Janssen</name>
</author>
<author>
<name sortKey="Schotte, A" uniqKey="Schotte A">A Schotte</name>
</author>
<author>
<name sortKey="Luyten, W" uniqKey="Luyten W">W Luyten</name>
</author>
<author>
<name sortKey="Megens, A" uniqKey="Megens A">A Megens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnt, J" uniqKey="Arnt J">J Arnt</name>
</author>
<author>
<name sortKey="Skarsfeldt, T" uniqKey="Skarsfeldt T">T Skarsfeldt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uchida, S" uniqKey="Uchida S">S Uchida</name>
</author>
<author>
<name sortKey="Kato, Y" uniqKey="Kato Y">Y Kato</name>
</author>
<author>
<name sortKey="Hirano, K" uniqKey="Hirano K">K Hirano</name>
</author>
<author>
<name sortKey="Kagawa, Y" uniqKey="Kagawa Y">Y Kagawa</name>
</author>
<author>
<name sortKey="Yamada, S" uniqKey="Yamada S">S Yamada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramakrishna, D" uniqKey="Ramakrishna D">D Ramakrishna</name>
</author>
<author>
<name sortKey="Subhash, Mn" uniqKey="Subhash M">MN Subhash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olmos, G" uniqKey="Olmos G">G Olmos</name>
</author>
<author>
<name sortKey="Miralles, A" uniqKey="Miralles A">A Miralles</name>
</author>
<author>
<name sortKey="Barturen, F" uniqKey="Barturen F">F Barturen</name>
</author>
<author>
<name sortKey="Garciasevilla, Ja" uniqKey="Garciasevilla J">JA Garciasevilla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ribas, C" uniqKey="Ribas C">C Ribas</name>
</author>
<author>
<name sortKey="Miralles, A" uniqKey="Miralles A">A Miralles</name>
</author>
<author>
<name sortKey="Busquets, X" uniqKey="Busquets X">X Busquets</name>
</author>
<author>
<name sortKey="Garcia Sevilla, Ja" uniqKey="Garcia Sevilla J">JA Garcia-Sevilla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, Dr" uniqKey="Thomas D">DR Thomas</name>
</author>
<author>
<name sortKey="Atkinson, Pj" uniqKey="Atkinson P">PJ Atkinson</name>
</author>
<author>
<name sortKey="Hastie, Pg" uniqKey="Hastie P">PG Hastie</name>
</author>
<author>
<name sortKey="Roberts, Jc" uniqKey="Roberts J">JC Roberts</name>
</author>
<author>
<name sortKey="Middlemiss, Dn" uniqKey="Middlemiss D">DN Middlemiss</name>
</author>
<author>
<name sortKey="Price, Gw" uniqKey="Price G">GW Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Callado, Lf" uniqKey="Callado L">LF Callado</name>
</author>
<author>
<name sortKey="Meana, Jj" uniqKey="Meana J">JJ Meana</name>
</author>
<author>
<name sortKey="Grijalba, B" uniqKey="Grijalba B">B Grijalba</name>
</author>
<author>
<name sortKey="Pazos, A" uniqKey="Pazos A">A Pazos</name>
</author>
<author>
<name sortKey="Sastre, M" uniqKey="Sastre M">M Sastre</name>
</author>
<author>
<name sortKey="Garcia Sevilla, Ja" uniqKey="Garcia Sevilla J">JA Garcia-Sevilla</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Pharm Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Pharm. Res</journal-id>
<journal-title-group>
<journal-title>Pharmaceutical Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">0724-8741</issn>
<issn pub-type="epub">1573-904X</issn>
<publisher>
<publisher-name>Springer US</publisher-name>
<publisher-loc>Boston</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22437487</article-id>
<article-id pub-id-type="pmc">3369128</article-id>
<article-id pub-id-type="publisher-id">722</article-id>
<article-id pub-id-type="doi">10.1007/s11095-012-0722-8</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Paper</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Pharmacokinetic-Pharmacodynamic Modeling of the D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
Receptor Occupancy of Risperidone and Paliperidone in Rats</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Kozielska</surname>
<given-names>Magdalena</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Johnson</surname>
<given-names>Martin</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pilla Reddy</surname>
<given-names>Venkatesh</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vermeulen</surname>
<given-names>An</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Cheryl</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Grimwood</surname>
<given-names>Sarah</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>de Greef</surname>
<given-names>Rik</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Groothuis</surname>
<given-names>Geny M. M.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Danhof</surname>
<given-names>Meindert</given-names>
</name>
<xref ref-type="aff" rid="Aff5">5</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Proost</surname>
<given-names>Johannes H.</given-names>
</name>
<address>
<phone>+31-50-3633292</phone>
<fax>+31-50-3633247</fax>
<email>j.h.proost@rug.nl</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands</aff>
<aff id="Aff2">
<label>2</label>
Advanced PK-PD Modeling & Simulation, Janssen Research and Development Janssen Pharmaceutica NV, Beerse, Belgium</aff>
<aff id="Aff3">
<label>3</label>
Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut USA</aff>
<aff id="Aff4">
<label>4</label>
Clinical PK-PD, Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck Sharp & Dohme, Oss, The Netherlands</aff>
<aff id="Aff5">
<label>5</label>
Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>22</day>
<month>3</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>22</day>
<month>3</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="ppub">
<month>7</month>
<year>2012</year>
</pub-date>
<volume>29</volume>
<issue>7</issue>
<fpage>1932</fpage>
<lpage>1948</lpage>
<history>
<date date-type="received">
<day>7</day>
<month>11</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>2</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2012</copyright-statement>
</permissions>
<abstract id="Abs1">
<title>ABSTRACT</title>
<sec>
<title>Purpose</title>
<p>A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to describe the time course of brain concentration and dopamine D
<sub>2</sub>
and serotonin 5-HT
<sub>2A</sub>
receptor occupancy (RO) of the atypical antipsychotic drugs risperidone and paliperidone in rats.</p>
</sec>
<sec>
<title>Methods</title>
<p>A population approach was utilized to describe the PK-PD of risperidone and paliperidone using plasma and brain concentrations and D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
RO data. A previously published physiology- and mechanism-based (PBPKPD) model describing brain concentrations and D
<sub>2</sub>
receptor binding in the striatum was expanded to include metabolite kinetics, active efflux from brain, and binding to 5-HT
<sub>2A</sub>
receptors in the frontal cortex.</p>
</sec>
<sec>
<title>Results</title>
<p>A two-compartment model best fit to the plasma PK profile of risperidone and paliperidone. The expanded PBPKPD model described brain concentrations and D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
RO well. Inclusion of binding to 5-HT
<sub>2A</sub>
receptors was necessary to describe observed brain-to-plasma ratios accurately. Simulations showed that receptor affinity strongly influences brain-to-plasma ratio pattern.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Binding to both D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors influences brain distribution of risperidone and paliperidone. This may stem from their high affinity for D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors. Receptor affinities and brain-to-plasma ratios may need to be considered before choosing the best PK-PD model for centrally active drugs.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>KEY WORDS</title>
<kwd>dopamine D
<sub>2</sub>
receptor occupancy</kwd>
<kwd>mechanism-based PK-PD</kwd>
<kwd>paliperidone</kwd>
<kwd>risperidone</kwd>
<kwd>serotonin 5-HT
<sub>2A</sub>
receptor occupancy</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Science+Business Media, LLC 2012</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>INTRODUCTION</title>
<p>Schizophrenia is a chronic psychiatric disorder which affects almost 1% of the population worldwide (
<xref ref-type="bibr" rid="CR1">1</xref>
). It is characterized by the presence of positive symptoms (e.g. hallucinations, delusions), negative symptoms (e.g. social withdrawal, reduced motivation) and cognitive impairments. The majority of drugs for schizophrenia target psychotic symptoms as their primary goal (
<xref ref-type="bibr" rid="CR1">1</xref>
). It has been hypothesized that elevated dopamine levels in the striatum lead to psychosis. This is consistent with the fact that all currently available antipsychotic drugs act as dopamine D
<sub>2</sub>
receptor antagonists (with one exception of a partial agonist - aripiprazole) (
<xref ref-type="bibr" rid="CR1">1</xref>
). Usually 65–80% D
<sub>2</sub>
receptor occupancy (RO) is believed to be necessary for a clinically relevant outcome, but occupancy above 80% leads to side effects, i.e. Extra Pyramidal Symptoms (EPS)(
<xref ref-type="bibr" rid="CR2">2</xref>
).</p>
<p>In addition to blocking D
<sub>2</sub>
receptors, newer antipsychotics (so-called second generation or atypical antipsychotics) have a high affinity towards other receptors. Specifically, many of them show a higher affinity towards serotonin 5-HT
<sub>2A</sub>
receptors than towards D
<sub>2</sub>
receptors. It has been hypothesized that this higher 5-HT
<sub>2A</sub>
/D
<sub>2</sub>
affinity ratio contributes to the lower incidence of side effects of atypical antipsychotic drugs: EPS and prolactin elevation (
<xref ref-type="bibr" rid="CR3">3</xref>
). Binding to 5-HT
<sub>2A</sub>
receptors could theoretically also lead to improved efficacy towards negative symptoms in schizophrenia (
<xref ref-type="bibr" rid="CR4">4</xref>
). 5-HT
<sub>2A</sub>
antagonism may confer atypicality on antipsychotic drugs with relatively weaker D
<sub>2</sub>
antagonism (or partial D
<sub>2</sub>
agonism) because of the ability of 5-HT
<sub>2A</sub>
receptors to modulate the activity of dopaminergic neurons differentially in different regions of the brain (
<xref ref-type="bibr" rid="CR5">5</xref>
).</p>
<p>Predicting human receptor occupancy in a quantitative manner based on animal studies is one of the challenges in the drug discovery and development process. Pharmacokinetic and pharmacodynamic (PK-PD) modeling tools are extensively used to describe drug distribution and effect (
<xref ref-type="bibr" rid="CR6">6</xref>
). Recently utilization of mechanistic factors in the PK-PD modeling has been strongly advocated (
<xref ref-type="bibr" rid="CR7">7</xref>
). Inclusion of mechanistic factors like biophase distribution and receptor association and dissociation kinetics allows for a better understanding of processes leading to the observed data (
<xref ref-type="bibr" rid="CR8">8</xref>
), as well as distinguishing between system- and drug-specific parameters and extrapolation of drug effects from rat to human (
<xref ref-type="bibr" rid="CR7">7</xref>
).</p>
<p>The aim of this study was to develop a population PK-PD model describing D
<sub>2</sub>
RO for the atypical antipsychotics risperidone and paliperidone in rats. As a starting point we used a hybrid physiologically-based PK-PD model which has recently been published for the atypical antipsychotic drug olanzapine in rats (
<xref ref-type="bibr" rid="CR9">9</xref>
). This model describes the plasma pharmacokinetics using conventional compartmental analysis techniques while processes in the brain are described in a more physiological manner, taking into account the distribution of a drug in the brain and association and dissociation kinetics at the D
<sub>2</sub>
receptors. Here, we apply this model to other antipsychotics: risperidone and 9-hydroxy-risperidone (paliperidone). Both drugs are atypical antipsychotics with high affinity for D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors. Risperidone is metabolized to paliperidone and both drugs show similar binding properties and clinical effect profiles. Therefore, to properly describe the RO of risperidone and eventually its clinical effects it is necessary to take into account the formation of paliperidone, its distribution to the brain and its binding to receptors. Therefore, we extended the previously published model to incorporate metabolite formation, its brain kinetics and its receptor binding parameters. Also, since both risperidone and paliperidone are known P-glycoprotein (P-gp) substrates (
<xref ref-type="bibr" rid="CR10">10</xref>
) we included an active efflux process at the blood-brain- barrier. We also investigated whether binding to 5-HT
<sub>2A</sub>
receptors influenced the PK and PD of both drugs.</p>
</sec>
<sec id="Sec2" sec-type="materials|methods">
<title>METHODS</title>
<sec id="Sec3">
<title>Data</title>
<p>This work was performed within the framework of the Dutch Top Institute Pharma project: Mechanism-based population PK–PD modeling (
<ext-link ext-link-type="uri" xlink:href="http://www.tipharma.com">http://www.tipharma.com</ext-link>
). This modeling platform involves leading global pharmaceutical companies and academic institutions from The Netherlands. Data used for the modeling were generated previously by the pharmaceutical companies: Janssen Research and Development (Belgium), Merck Sharp & Dohme Limited (The Netherlands) and Pfizer Global Research and Development (USA) and were anonimized before releasing to the modelers. Results from a number of studies were used including dose-response and time course studies. Male Sprague Dawley or Wistar rats were used for the experiments. Risperidone (RIS) was administrated intravenously (IV), intraperitoneally (IP) or subcutaneously (SC) in a wide range of single doses (0.01 to 40 mg/kg). In most experiments, RIS plasma and brain concentrations and its RO (either D
<sub>2</sub>
or 5-HT
<sub>2A</sub>
) were measured in one animal at one time point (since animals have to be euthanized for brain concentration and RO measurements). In a few studies paliperidone (PALI) concentrations were measured after RIS or PALI administration. An overview of the studies utilized is given in Table 
<xref rid="Tab1" ref-type="table">I</xref>
. For RO studies either the striatum or the frontal cortex was removed for the measurement of D
<sub>2</sub>
or 5-HT
<sub>2A</sub>
receptor occupancy, respectively. The rest of the brain was homogenized and drug concentration was measured. An
<italic>in vivo</italic>
or
<italic>ex vivo</italic>
method was used for both 5-HT
<sub>2A</sub>
and D
<sub>2</sub>
RO measurements. [
<sup>3</sup>
H]raclopride was used as a radioligand for D
<sub>2</sub>
RO studies and [
<sup>3</sup>
H]M100907 for 5-HT
<sub>2A</sub>
RO studies. The experimental procedures for the plasma sample collection, brain dissection, tissue homogenization and RO measurements were similar across the different study sites and these procedures were based on published reports (
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR12">12</xref>
).
<table-wrap id="Tab1">
<label>Table I</label>
<caption>
<p>Overview of Available Data Used in the PK-PD Analysis</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Study #</th>
<th># of rats</th>
<th>drug
<sup>1</sup>
</th>
<th>ROA
<sup>2</sup>
</th>
<th>dose [mg/kg]</th>
<th>time points [h]</th>
<th>observation type</th>
<th>RO method
<sup>3</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>RIS</td>
<td>IV</td>
<td>2.5</td>
<td>0.12, 0.33, 1, 2, 4, 8</td>
<td>PC-R</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>RIS</td>
<td>IV</td>
<td>2</td>
<td>0.12, 0.33, 1, 2, 4</td>
<td>PC-R</td>
<td>NA</td>
</tr>
<tr>
<td>3a</td>
<td>23</td>
<td>PALI</td>
<td>SC</td>
<td>5</td>
<td>0.25, 0.5, 1, 2, 4, 8</td>
<td>PC-P, StrC-P, CorC-P</td>
<td>NA</td>
</tr>
<tr>
<td>3b</td>
<td>23</td>
<td>RIS</td>
<td>SC</td>
<td>5</td>
<td>0.25, 0.5, 1, 2, 4, 8</td>
<td>PC-R, PC-P, StrC-R, StrC-P, CorC-R, CorC-P</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>RIS</td>
<td>IP</td>
<td>0.3, 3</td>
<td>0.25, 0.5, 1, 1.5, 2, 4, 7</td>
<td>PC-R, PC-P, BC-R, BC-P</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>RIS</td>
<td>IP</td>
<td>1</td>
<td>0.25, 0.5, 1, 1.5, 2</td>
<td>PC-R, BC-R, RO-D
<sub>2</sub>
</td>
<td>
<italic>in vivo</italic>
</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>RIS</td>
<td>IP</td>
<td>0.01, 0.03, 0.1, 0.3, 1, 3</td>
<td>1</td>
<td>PC-R, BC-R, RO-D
<sub>2</sub>
</td>
<td>
<italic>in vivo</italic>
</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td>RIS</td>
<td>SC</td>
<td>0.16, 10</td>
<td>0.5, 1, 2, 4, 8, 24</td>
<td>PC-R, BC-R, RO-D
<sub>2</sub>
</td>
<td>
<italic>ex vivo</italic>
</td>
</tr>
<tr>
<td>8a</td>
<td>12</td>
<td>PALI</td>
<td>SC</td>
<td>0.16, 0.63, 2.5, 10</td>
<td>1</td>
<td>RO-D
<sub>2</sub>
</td>
<td>
<italic>in vivo</italic>
</td>
</tr>
<tr>
<td>8b</td>
<td>18</td>
<td>RIS</td>
<td>SC</td>
<td>0.04, 0.16, 0.63, 2.5, 10, 40</td>
<td>1</td>
<td>RO-D
<sub>2</sub>
</td>
<td>
<italic>in vivo</italic>
</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>RIS</td>
<td>IP</td>
<td>0.01, 0.03, 0.01, 0.3, 1</td>
<td>1</td>
<td>PC-R, BC-R, RO-5HT
<sub>2A</sub>
</td>
<td>
<italic>in vivo</italic>
</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>RIS</td>
<td>IP</td>
<td>0.1</td>
<td>0.25, 0.5, 1, 1.5, 2</td>
<td>PC-R, BC-R, RO-5HT
<sub>2A</sub>
</td>
<td>
<italic>in vivo</italic>
</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>RIS</td>
<td>IP</td>
<td>0.01, 0.03, 0.01, 0.3, 1, 3</td>
<td>1</td>
<td>PC-R, RO-5HT
<sub>2A</sub>
</td>
<td>
<italic>ex vivo</italic>
</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>RIS</td>
<td>IP</td>
<td>0.1, 0.3, 0.8, 1</td>
<td>1</td>
<td>PC-R, RO-5HT
<sub>2A</sub>
</td>
<td>
<italic>in vivo</italic>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>RIS</italic>
risperidone,
<italic>PALI</italic>
paliperidone,
<italic>IV</italic>
intravascular,
<italic>IP</italic>
intraperitoneal,
<italic>SC</italic>
subcutaneous,
<italic>PC-R</italic>
RIS plasma concentration,
<italic>PC-P</italic>
PALI plasma concentration,
<italic>BC</italic>
brain concentration,
<italic>StrC</italic>
striatum concentration,
<italic>CorC</italic>
cortex concentration,
<italic>RO</italic>
receptor occupancy,
<italic>NA</italic>
not applicable</p>
<p>
<sup>1</sup>
drug administered</p>
<p>
<sup>2</sup>
route of administration</p>
<p>
<sup>3</sup>
method used for RO measurement</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec4">
<title>Model Development</title>
<p>We used a population approach to describe the pharmacokinetics and pharmacodynamics (receptor binding) of RIS and PALI and to obtain population parameter estimates together with the inter-individual variability. Modeling was done using the non-linear mixed effects modeling software NONMEM (version VII level 2) (
<xref ref-type="bibr" rid="CR13">13</xref>
). ADVAN 13 subroutine was used to allow explicit writing of differential equations describing receptor dynamics (
<xref rid="Sec16" ref-type="sec">Appendix</xref>
). Log-transformed plasma and brain drug concentrations were used for the data analysis, and concentrations below the limit of quantification were excluded from this analysis.</p>
<p>Inter-individual variability (IIV) on each parameter was modeled assuming a log-normal distribution. Additive, proportional and combined residual error models were tested.</p>
<p>A number of structurally different PK and PD models have been evaluated (see below). Model selection was based on the likelihood ratio test, parameter estimates and their relative standard errors, residual error values and goodness-of-fit plots. An additional structural parameter or inter-individual variability was included in the model, if the resulting change in objective function value (ΔOFV) was >6.64 (
<italic>p</italic>
 < 0.01 assuming χ
<sup>2</sup>
distribution). The following goodness-of-fit plots were inspected visually in order to assess the fit of the model to the data: observations
<italic>versus</italic>
population and individual predictions, individual weighted residuals
<italic>versus</italic>
individual predictions and conditional weighted residuals (CWRES)
<italic>versus</italic>
time.</p>
<p>During the analysis, Pirana software (
<xref ref-type="bibr" rid="CR14">14</xref>
) was used for NONMEM run management and Xpose package in R (
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR16">16</xref>
) for making diagnostic plots.</p>
</sec>
<sec id="Sec5">
<title>General Model Structure and Modeling Approach</title>
<p>We did a sequential analysis where we first described the plasma PK of RIS and PALI in a conventional compartmental way. We assumed that this analysis provides an adequate description of concentration in plasma, which in turn is the driving concentration for the brain distribution and receptor binding model. Therefore, it is appropriate to fix plasma parameters while simultaneously estimating brain distribution and receptor binding parameters from brain concentration and receptor occupancy data. This has been done in the second part of the analysis.</p>
</sec>
<sec id="Sec6">
<title>Plasma PK Model</title>
<p>One- and two-compartment models for both RIS and PALI were tested. For SC and IP administration different absorption models were tested: zero-order and first-order absorption in combination with a lag time. For IP dosing of RIS we checked models with and without first pass metabolism by assuming that part of the administered RIS dose is converted to PALI before reaching the systemic circulation. Bioavailability for IP and SC doses were estimated relative to IV dosing. Since there were no data after IV administration of PALI, we assumed that RIS and PALI have the same bioavailability for the SC route of administration. This allows estimating the volume of distribution and other absorption parameters of PALI. To account for metabolite formation we divided the elimination clearance for RIS into two clearances: metabolic clearance to PALI (CLmet) and clearance by other routes of elimination (CL
<sub>RIS</sub>
) (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). First-order conditional estimation method (FOCE) was used to obtain PK parameter estimates.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>A schematic representation of the plasma PK model. Plasma PK of both RIS and PALI follows a two-compartment model. IV and IP dosing goes directly to the central compartment. A fraction of the absorbed dose for IP RIS route of administration goes directly to the RIS central compartment and a fraction of the absorbed dose goes to the PALI central compartment (Fr
<sub>FPM</sub>
) representing first pass metabolism. Absorption after SC dosing is described by consecutive zero- and first order processes for both RIS and PALI. DR
<sub>SC</sub>
is the duration of the zero-order process after SC dosing. Total elimination clearance of RIS is divided into metabolic clearance (CL
<sub>met</sub>
) and the clearance by other routes of elimination (CL
<sub>RIS</sub>
).</p>
</caption>
<graphic xlink:href="11095_2012_722_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
</sec>
<sec id="Sec7">
<title>PK-PD Modeling</title>
<p>After finding the appropriate plasma PK model, population parameters for plasma (mean and inter-individual variability) were fixed after which brain concentrations and RO were fitted simultaneously. Initially only D
<sub>2</sub>
RO was taken into account as D
<sub>2</sub>
binding is assumed to be crucial for the drug’s antipsychotic action (
<xref ref-type="bibr" rid="CR2">2</xref>
). We started with the previously published hybrid physiologically-based PK-PD model (
<xref ref-type="bibr" rid="CR9">9</xref>
), but also checked simplifications of this model, i.e. binding not affecting brain kinetics (simplified model from (
<xref ref-type="bibr" rid="CR9">9</xref>
)) and reduction in the number of brain compartments by merging intra- and extra-vascular compartments together or assuming only one compartment for drug not bound to receptors in the brain.</p>
<p>The hybrid physiology-based PK-PD model consists of four compartments in brain: vascular, extra-vascular, striatum free and striatum bound compartment (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). Volumes of these compartments were fixed to physiological values: 0.00024, 0.00656, 0.0002 L/kg for vascular, total extra-vascular and striatum, respectively (
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
). Clearance between plasma and vascular compartment (CL
<sub>bv</sub>
) was assumed to be equal to cerebral blood flow in rats, which is 0.312 L/h/kg (
<xref ref-type="bibr" rid="CR17">17</xref>
), for both RIS and PALI. In the model, transport of RIS and PALI between the vascular and extra-vascular compartment across the blood-brain barrier (BBB) was governed by two processes: passive diffusion and active efflux. Separate values of passive clearance (CL
<sub>bev</sub>
) and active efflux clearance (CL
<sub>efflux</sub>
) were estimated for RIS and PALI when possible. We checked whether linear or saturable efflux processes described the data best. Only unbound drug could cross the brain-blood barrier (BBB). Plasma protein binding is constant over wide range of concentrations in humans (
<xref ref-type="bibr" rid="CR19">19</xref>
). We assumed that the same is true for rats and plasma and brain fraction unbound were fixed to literature values: fu
<sub>plasma-RIS</sub>
 = 0.0798, fu
<sub>brain-RIS</sub>
 = 0.0699, fu
<sub>plasma-PALI</sub>
 = 0.129, fu
<sub>brain-PALI</sub>
 = 0.0755 (
<xref ref-type="bibr" rid="CR20">20</xref>
).
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>(
<bold>a</bold>
) A schematic representation of the PK-PD model. The plasma PK has been omitted (see Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) and brain kinetics and receptor binding have been presented here for one drug only because of the complexity of the model. The same model structure applies for RIS and PALI. (
<bold>b</bold>
) Representation of the competitive binding to the same receptors by RIS and PALI. Measured RO is the sum of occupancies obtained by both drugs. Here only binding to D
<sub>2</sub>
receptors is shown. The same principle applies for 5-HT
<sub>2A</sub>
receptors. [D
<sub>2</sub>
] - concentration of free D
<sub>2</sub>
receptors, [R] – unbound concentration of RIS, [D
<sub>2</sub>
R] - concentration of D
<sub>2</sub>
receptor complex with RIS, [P] – unbound concentration of PALI, [D
<sub>2</sub>
P] - concentration of D
<sub>2</sub>
receptor complex with PALI. D
<sub>2</sub>
receptor occupancy (RO) is the sum of RO exerted by both drugs.</p>
</caption>
<graphic xlink:href="11095_2012_722_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>We assumed fast equilibration between the extra-vascular and striatum free compartments. This was achieved by fixing the corresponding clearance (CL
<sub>str</sub>
) to a high value (500 L/h/kg). In striatum, RIS and PALI reversibly bind to D
<sub>2</sub>
receptors. Binding to receptors was described using kon as the receptor association rate constant (nM
<sup>−1</sup>
h
<sup>−1</sup>
), koff as the receptor dissociation rate constant (h
<sup>−1</sup>
), and B
<sub>max</sub>
as the maximum binding capacity of these drugs to the receptor. Including explicit binding kinetics is justified because of the hysteresis observed between D
<sub>2</sub>
(or 5-HT
<sub>2A</sub>
) receptor occupancy and brain concentration when excluding striatum or frontal cortex (from D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
occupancy studies, respectively; data not shown). RIS and PALI compete for the same receptors and hence the measured RO is the sum of occupancies obtained by both drugs.</p>
<p>Both RIS and PALI have a strong affinity towards 5-HT
<sub>2A</sub>
receptors. Therefore, we decided to evaluate also an extended model in which we included binding to these receptors in the frontal cortex, where the density of 5-HT
<sub>2A</sub>
receptors is the highest (
<xref ref-type="bibr" rid="CR21">21</xref>
). To that end, we included two additional compartments: cortex free and cortex bound. We fixed the volume of frontal cortex to 0.0035 L/kg (
<xref ref-type="bibr" rid="CR22">22</xref>
). As for striatum, we assumed fast equilibration between brain extra-vascular and cortex free compartments. Binding to 5-HT
<sub>2A</sub>
receptors was described using kon, koff and B
<sub>max</sub>
values specific for these receptors. Kd (dissociation rate constant) and koff were estimated from the model and kon was calculated as koff/Kd. We checked whether we could estimate different binding constants for data obtained from
<italic>in vivo</italic>
and
<italic>ex vivo</italic>
binding experiments.</p>
<p>First-order conditional estimation method (FOCE) was used to fit the models.</p>
</sec>
<sec id="Sec8">
<title>Model Evaluation</title>
<p>For the plasma PK model a bootstrap analysis was done to determine the precision of the parameter estimates. In the bootstrap technique, bootstrap replicates are generated by randomly sampling individuals from the original dataset with replacement. 1000 samples were used and they were stratified by study. Parameter estimates for each of the re-sampled datasets were obtained by fitting the final plasma PK model using NONMEM. Median, 5-th and 95-th percentiles were calculated for all the parameters and medians of bootstrap estimates were compared with parameter values obtained from the original dataset.</p>
<p>Additionally, since the original dataset is rather heterogeneous and bootstrapping may lead to biased results, we also did log-likelihood profiling (LLP). In this method each parameter is in turn fixed to lower or higher values than the one estimated by the model and the reduced model is fit to the data. Obtained OFV is compared with the OFV of the original model. The 90% confidence interval (CI) of a parameter is calculated by finding the value of the parameter at which the difference in OFV is 3.84 (
<italic>p</italic>
 = 0.05 assuming χ
<sup>2</sup>
distribution). Bootstrap analysis and log-likelihood profiling were done with the help of the software package Perl Speaks NONMEM (PsN) (
<xref ref-type="bibr" rid="CR23">23</xref>
).</p>
<p>Due to the great heterogeneity of the dataset and very long run times we did not perform a bootstrap analysis for the PD model. However, we did the log-likelihood profiling to find 90% CIs of the parameter values.</p>
<p>In order to check the predictive performance of the model we simulated 1000 datasets from the final PK-PD model. Then we graphically compared the observed plasma and brain concentrations and D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
RO with median and 90% prediction intervals calculated from the simulated data for each dose and route of administration separately.</p>
</sec>
<sec id="Sec9">
<title>Brain-To-Plasma Ratios</title>
<p>We simulated brain and plasma concentrations based on population parameter estimates (without inter-individual and residual variability) for doses and time points corresponding to the ones seen in the data set. For each simulated time point we calculated brain-to-plasma ratios and compared them graphically with the observed brain-to-plasma ratios, plotting only brain-to-plasma values if both plasma and brain concentrations were above the level of quantification. To check the influence of different parameters, we also simulated the brain-to-plasma ratio pattern in the absence of active efflux and with a 10 times higher value of brain clearances and of increases or decreases of the receptor association and dissociation constants kon and koff. To that end, we either fixed CL
<sub>efflux</sub>
to zero or used CL
<sub>bev</sub>
and CL
<sub>efflux</sub>
10 times higher than estimated from the model, or kon/koff values 10 times lower or higher than estimated by the model. All other parameter values were the same as estimated by the model. We used R software for the simulations.</p>
</sec>
</sec>
<sec id="Sec10" sec-type="results">
<title>RESULTS</title>
<sec id="Sec11">
<title>Plasma PK</title>
<p>Plasma PK was best described by a two-compartment model for both RIS and PALI (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). For the SC route of administration consecutive zero- and first-order absorption described the data best. For the IP route absorption parameters could not be estimated and it was assumed that dosing was directly to the central compartment. However, including first pass metabolism where a fraction of the RIS dose goes directly to the PALI central compartment improved the fit of the model. Parameter estimates of the final model are given in Table 
<xref rid="Tab2" ref-type="table">II</xref>
. In the final model six inter-individual variability parameters (for F
<sub>IP</sub>
, Ka
<sub>SC-RIS</sub>
, Ka
<sub>SC-PALI</sub>
, DR
<sub>SC-RIS</sub>
, CL
<sub>RIS</sub>
, CL
<sub>PALI</sub>
) were retained.
<table-wrap id="Tab2">
<label>Table II</label>
<caption>
<p>Parameter Estimates of the Plasma PK Model from the Original Dataset and from 1,000 Bootstrap Replicates</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Parameter estimate (% RSE)</th>
<th>Bootstrap median</th>
<th>5th-95th percentile from bootstrap</th>
<th>90% CI obtained from log-likelihood profiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>F
<sub>IP-RIS</sub>
</td>
<td>0.412 (12)</td>
<td>0.413</td>
<td>0.314–0.540</td>
<td>0.321–0.530</td>
</tr>
<tr>
<td>F
<sub>SC</sub>
</td>
<td>0.816 (9)</td>
<td>0.810</td>
<td>0.654–1.03</td>
<td>0.672–0.987</td>
</tr>
<tr>
<td>Fr
<sub>FPM</sub>
</td>
<td>0.268 (12)</td>
<td>0.271</td>
<td>0.213–0.337</td>
<td>0.209–0.332</td>
</tr>
<tr>
<td>Ka
<sub>SC-RIS</sub>
(1/h)</td>
<td>2.84 (20)</td>
<td>2.90</td>
<td>2.25–4.07</td>
<td>2.13–4.16</td>
</tr>
<tr>
<td>Ka
<sub>SC-PALI</sub>
(1/h)</td>
<td>1.31 (22)</td>
<td>1.31</td>
<td>1.00–1.77</td>
<td>0.969–1.84</td>
</tr>
<tr>
<td>DR
<sub>SC-RIS</sub>
(h)</td>
<td>0.161 (55)</td>
<td>0.170</td>
<td>0.0157–0.313</td>
<td>0.0490–0.283</td>
</tr>
<tr>
<td>DR
<sub>SC-PALI</sub>
(h)</td>
<td>0.162 (54)</td>
<td>0.167</td>
<td>0.0848–0.261</td>
<td>0.0276–0.320</td>
</tr>
<tr>
<td>V
<sub>c-RIS</sub>
(L/kg)</td>
<td>1.29 (6)</td>
<td>1.28</td>
<td>1.07–1.56</td>
<td>1.11–1.49</td>
</tr>
<tr>
<td>CL
<sub>RIS</sub>
(L/h/kg)</td>
<td>1.62 (9)</td>
<td>1.62</td>
<td>1.29–2.07</td>
<td>1.34–1.95</td>
</tr>
<tr>
<td>CL
<sub>met</sub>
(L/h/kg)</td>
<td>0.775 (11)</td>
<td>0.757</td>
<td>0.591–0.974</td>
<td>0.623–0.961</td>
</tr>
<tr>
<td>V
<sub>p-RIS</sub>
(L/kg)</td>
<td>0.169 (16)</td>
<td>0.168</td>
<td>0.128–0.223</td>
<td>0.131–0.220</td>
</tr>
<tr>
<td>Q
<sub>RIS</sub>
(L/h/kg)</td>
<td>0.0882 (25)</td>
<td>0.0891</td>
<td>0.0529–0.137</td>
<td>0.0601–0.132</td>
</tr>
<tr>
<td>V
<sub>c-PALI</sub>
(L/kg)</td>
<td>1.27 (15)</td>
<td>1.21</td>
<td>0.0647–1.64</td>
<td>0.0087–1.66</td>
</tr>
<tr>
<td>CL
<sub>PALI</sub>
(L/h/kg)</td>
<td>1.06 (10)</td>
<td>1.04</td>
<td>0.768–1.36</td>
<td>0.847–1.32</td>
</tr>
<tr>
<td>V
<sub>p-PALI</sub>
(L/kg)</td>
<td>0.251 (54)</td>
<td>0.281</td>
<td>0.119–2.11</td>
<td>0.0767–75.5</td>
</tr>
<tr>
<td>Q
<sub>PALI</sub>
(L/h/kg)</td>
<td>0.269 (128)</td>
<td>0.245</td>
<td>0.0428–23.4</td>
<td>0.0294–48.3</td>
</tr>
<tr>
<td colspan="5">Inter-individual variability</td>
</tr>
<tr>
<td>IIV-FIP (%CV)</td>
<td>80.6 (7.7)</td>
<td>80.4</td>
<td>70.8–89.7</td>
<td>70.0–92.9</td>
</tr>
<tr>
<td>IIV-Ka
<sub>SC-RIS</sub>
(%CV)</td>
<td>46.4 (52.3)</td>
<td>47.9</td>
<td>29.5–70.5</td>
<td>27.1–84.3</td>
</tr>
<tr>
<td>IIV-Ka
<sub>SC-PALI</sub>
(%CV)</td>
<td>34.4 (30.2)</td>
<td>33.0</td>
<td>11.12–50.6</td>
<td>17.0–58.7</td>
</tr>
<tr>
<td>IIV-DR
<sub>SC-RIS</sub>
(%CV)</td>
<td>91.2 (80.6)</td>
<td>84.2</td>
<td>0.912–287</td>
<td>17.3–211</td>
</tr>
<tr>
<td>IIV-CL
<sub>RIS</sub>
(%CV)</td>
<td>30.5 (13.3)</td>
<td>29.7</td>
<td>16.3–38.2</td>
<td>23.2–39.0</td>
</tr>
<tr>
<td>IIV-CL
<sub>PALI</sub>
(%CV)</td>
<td>16.2 (32.8)</td>
<td>16.0</td>
<td>10.4–22.6</td>
<td>10.9–24.5</td>
</tr>
<tr>
<td colspan="5">Proportional residual error</td>
</tr>
<tr>
<td>Risperidone</td>
<td>0.233 (16.5)</td>
<td>0.220</td>
<td>0.174–0.279</td>
<td>0.192–0.288</td>
</tr>
<tr>
<td>Paliperidone</td>
<td>0.186 (14.2)</td>
<td>0.171</td>
<td>0.131–0.214</td>
<td>0.147–0.238</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>% RSE - Relative Standard Error as calculated by NONMEM covariance step</p>
<p>Inter-individual variability is expressed as percent coefficient of variation</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Parameters for the rate of zero-order absorption and volume of distribution and inter-compartmental clearance for PALI could not be estimated precisely (Table 
<xref rid="Tab2" ref-type="table">II</xref>
). However, we decided to keep them in the model since removing them led to a significantly worse fit and it was important to describe the plasma PK as precisely as possible for the description of brain kinetics and receptor binding.</p>
<p>Goodness-of-fit plots did not show any systematic deviation between observations and population and individual predictions nor any trends in conditional weighted residuals
<italic>versus</italic>
time, which demonstrates that this model adequately describes the plasma PK of RIS and PALI (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
).
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Goodness-of-fit plots of the PK-PD model. Presented are scatter plots of plasma and brain concentrations and D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
RO versus population predictions and conditional weighted residuals (CWRES) versus time.</p>
</caption>
<graphic xlink:href="11095_2012_722_Fig3_HTML" id="MO3"></graphic>
</fig>
</p>
</sec>
<sec id="Sec12">
<title>PK-PD</title>
<p>The previously published hybrid physiology-based PK-PD model (
<xref ref-type="bibr" rid="CR9">9</xref>
) fitted the data best after adjusting for binding to 5-HT
<sub>2A</sub>
receptors (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). A model with only D
<sub>2</sub>
receptor binding (
<xref ref-type="bibr" rid="CR9">9</xref>
) led to high residual error (>60%) for brain concentration. Using a combined error model reduced the proportional error to some extent. However, this model did not explain the observed brain-to-plasma ratio adequately (Fig. 
<xref rid="Fig6" ref-type="fig">6a–b</xref>
). These problems were overcome when the model was extended to include 5-HT
<sub>2A</sub>
receptor binding in frontal cortex.</p>
<p>Our data did not allow us to estimate reliably all brain clearance parameters (CL
<sub>bev-RIS</sub>
, CL
<sub>efflux-RIS</sub>
, CL
<sub>bev-PALI</sub>
, CL
<sub>efflux-PALI</sub>
). Change in parameter values within relatively wide range did not lead to changes in model fit. Therefore, we assumed that CL
<sub>bev</sub>
or CL
<sub>efflux</sub>
is the same for RIS and PALI. Assuming a single CL
<sub>efflux</sub>
parameter led to termination problems. However, the model with a single CL
<sub>bev</sub>
value had an OFV only slightly lower (<0.5) than the model with four clearance parameters and RSE values obtained from the covariance step were acceptable. Therefore, in the final model CL
<sub>bev</sub>
was assumed to be the same for RIS and PALI.</p>
<p>Different Kd and koff values for D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
were estimated by the model. However, we were not able to estimate different Kd and koff values for RIS and PALI, therefore we assumed that Kd and koff values are the same for RIS and PALI, which is consistent with literature
<italic>in vitro</italic>
values (
<xref ref-type="bibr" rid="CR24">24</xref>
). Similarly, we also had to assume that the binding rate constants for both
<italic>in vivo</italic>
and
<italic>ex vivo</italic>
binding RO measurements were the same. Describing active efflux from brain as a saturable process did not improve the fit therefore in the final model the active efflux was assumed to be linear. Due to the complexity of the model we were not able to estimate IIV variability for the brain PK-PD model parameters. Therefore, we fixed the IIV parameters to zero. Final parameter estimates of the model are given in Table 
<xref rid="Tab3" ref-type="table">III</xref>
.
<table-wrap id="Tab3">
<label>Table III</label>
<caption>
<p>Parameter Estimates of the PK-PD Model and Their Relative Standard Error</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Parameter estimate</th>
<th>% RSE</th>
<th>90% CI obtained from log-likelihood profiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL
<sub>bev-RIS</sub>
(L/h/kg)</td>
<td>2.13</td>
<td>29</td>
<td>0.333–>1000
<sup>c</sup>
</td>
</tr>
<tr>
<td>CL
<sub>bev-PALI</sub>
<sup>a</sup>
(L/h/kg)</td>
<td>2.13</td>
<td>29</td>
<td>0.333–>1000
<sup>c</sup>
</td>
</tr>
<tr>
<td>CL
<sub>efflux-RIS</sub>
(L/h/kg)</td>
<td>9.97</td>
<td>28</td>
<td>1.49–>1000
<sup>c</sup>
</td>
</tr>
<tr>
<td>CL
<sub>efflux-PALI</sub>
(L/h/kg)</td>
<td>47.0</td>
<td>28</td>
<td>7.24–>1000
<sup>c</sup>
</td>
</tr>
<tr>
<td>Kd
<sub>D2</sub>
(nM)</td>
<td>0.463</td>
<td>14</td>
<td>0.336–0.628</td>
</tr>
<tr>
<td>koff
<sub>D2</sub>
(1/h)</td>
<td>0.671</td>
<td>19</td>
<td>0.427–1.03</td>
</tr>
<tr>
<td>kon
<sub arrange="stack">D2</sub>
<sup arrange="stack">b</sup>
(1/nM/h)</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B
<sub>max-D2</sub>
(nM)</td>
<td>245</td>
<td>15</td>
<td>194–305</td>
</tr>
<tr>
<td>Kd
<sub>5-HT2A</sub>
(nM)</td>
<td>0.219</td>
<td>15</td>
<td>0.134–0.313</td>
</tr>
<tr>
<td>koff
<sub>5-HT2A</sub>
(1/h)</td>
<td>0.525</td>
<td>25</td>
<td>0.257–0.970</td>
</tr>
<tr>
<td>kon
<sub arrange="stack">5-HT2A</sub>
<sup arrange="stack">b</sup>
(1/nM/h)</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B
<sub>max-5-HT2A</sub>
(nM)</td>
<td>46.5</td>
<td>11</td>
<td>37.3–58.9</td>
</tr>
<tr>
<td colspan="4">Residual error</td>
</tr>
<tr>
<td>proportional BC RIS</td>
<td>0.362</td>
<td>7</td>
<td>0.315–0.419</td>
</tr>
<tr>
<td>proportional BC PALI</td>
<td>0.424</td>
<td>18</td>
<td>0.351–0.519</td>
</tr>
<tr>
<td>additive % D
<sub>2</sub>
RO</td>
<td>17.7</td>
<td>8</td>
<td>15.1–20.7</td>
</tr>
<tr>
<td>additive % 5-HT
<sub>2A</sub>
RO</td>
<td>18.2</td>
<td>7</td>
<td>1.49–22.4</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>% RSE - percent Relative Standard Error as calculated by NONMEM covariance step</p>
<p>
<italic>BC</italic>
brain concentration</p>
<p>
<sup>a</sup>
assumed to be the same as CL
<sub>bev-RIS</sub>
</p>
<p>
<sup>b</sup>
calculated as kon=koff/Kd</p>
<p>
<sup>c</sup>
OFV does not change with increasing parameter value</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Goodness-of-fit plots did not show any systematic deviation between observations and population and individual predictions nor trends in CWRES
<italic>versus</italic>
time, which demonstrates that this model adequately describes the brain concentrations of RIS and PALI and their D
<sub>2</sub>
RO (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). Some time course pattern can be seen in the plot of CWRES
<italic>versus</italic>
time for 5-HT
<sub>2A</sub>
RO, but CWRES values are relatively low.</p>
</sec>
<sec id="Sec13">
<title>Model Evaluation</title>
<p>Median bootstrap parameter estimates of the PK model were in good agreement with model estimated population values (Table 
<xref rid="Tab2" ref-type="table">II</xref>
). 90% confidence intervals were large for some parameters, especially related to absorption and for the PALI peripheral compartment.</p>
<p>Results of log-likelihood profiling for brain parameters show that most parameters are estimated precisely with exception of the brain clearance parameters (Table 
<xref rid="Tab3" ref-type="table">III</xref>
). Further inspection of results showed that the values of clearance parameters (CL
<sub>bev</sub>
, CL
<sub>efflux-RIS</sub>
and CL
<sub>efflux-PALI</sub>
) did not influence model fit and other parameter estimates much. The upper limits of CI for these parameters could not be found, showing that the transport is fast and equilibration between brain and plasma is not much affected by the exact values of clearances. Moreover, close inspection of the results show that relative value of active efflux clearance to passive clearance seems to be very constant. For all the values of CL
<sub>bev</sub>
, CL
<sub>efflux-RIS</sub>
and CL
<sub>efflux-PALI</sub>
inspected by LLP, the ratio of CL
<sub>efflux-RIS</sub>
to CL
<sub>bev</sub>
was in range of 4.57-4.87 while ratio of CL
<sub>efflux-PALI</sub>
to CL
<sub>bev</sub>
was in range of 21.1-22.2.</p>
<p>Some of the predictive check results are depicted in Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
. We present the result for the IP route of administration for doses of 0.1 and 1 mg/kg since for these doses there were time course data available for 5-HT
<sub>2A</sub>
and D
<sub>2</sub>
RO and they had more data points than other doses. Practically all observations fall within the range of the 5-th and 95-th percentile. Median time course of D
<sub>2</sub>
RO is predicted well. For 5-HT
<sub>2A</sub>
, RO seemed to be underestimated for later time points. Prediction intervals are very wide since the residual error in our model is also relatively big. However, it should be noted that the variability of the data is also large (see for example 5-HT
<sub>2A</sub>
RO at 1 h).
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Predictive check of the PK-PD model. (
<bold>a</bold>
<bold>c</bold>
) Risperidone plasma concentration, risperidone brain concentration after removing striatum and D
<sub>2</sub>
RO after IP administration of a 1 mg/kg dose of risperidone, respectively. (
<bold>d</bold>
<bold>f</bold>
) Risperidone plasma concentration, risperidone brain concentration after removing frontal cortex and 5-HT
<sub>2A</sub>
RO after IP administration of a 0.1 mg/kg dose of risperidone, respectively. Dots represent the observed data; the dashed line represents the median of the observed data; the shaded area represents 90% prediction interval based on 1000 simulated datasets; the grey line represents the median of the simulated data.</p>
</caption>
<graphic xlink:href="11095_2012_722_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
<p>Inspection of the model-predicted plasma and brain concentrations for the cases where observations were reported to be below the level of quantification (LOQ), shows that exclusion of the observations below LOQ from the analysis did not lead to a significant bias. For the studies where LOQ was known, only around 15% of observations were above LOQ and in less than 5% of the cases in total predicted concentrations were outside the confidence intervals based on the residual standard error. For the studies where LOQ was not known the predicted concentrations were also low.</p>
</sec>
<sec id="Sec14">
<title>Brain-To-Plasma Ratios</title>
<p>The observed brain-to-plasma ratios were higher at lower plasma concentrations and even out as plasma (or brain) concentration increases, both for RIS and PALI (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
). Even after multiplication of the brain-to-plasma ratio by fu
<sub>brain</sub>
/fu
<sub>plasma</sub>
 = 0.876 and obtaining “free brain-to-plasma ratio”, the brain-to-plasma ratio at higher concentrations is lower than one due to active efflux from the brain. This brain-to-plasma ratio pattern was seen for both the total brain concentration and the concentration measured in brain excluding striatum (from the studies where D
<sub>2</sub>
RO was measured) or excluding frontal cortex (from studies where 5-HT
<sub>2A</sub>
RO was measured). A model with only D
<sub>2</sub>
receptor binding in striatum did not predict higher brain-to-plasma ratios for lower concentrations (Fig. 
<xref rid="Fig6" ref-type="fig">6a–b</xref>
). Including binding to 5-HT
<sub>2A</sub>
receptors in the model predicted brain-to-plasma ratios well (Fig. 
<xref rid="Fig6" ref-type="fig">6a–c</xref>
) over the entire concentration range.
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>Brain-to-plasma ratios against plasma concentrations. (
<bold>a</bold>
) Data from studies where total brain concentration was measured; circles - RIS, triangles -PALI. (
<bold>b</bold>
) Data from D
<sub>2</sub>
RO studies where brain concentration was measured after removing striatum. (
<bold>c</bold>
) Data from 5-HT
<sub>2A</sub>
RO studies where brain concentration was measured after removing frontal cortex. For b and c only RIS data was available and different symbols represent different studies.</p>
</caption>
<graphic xlink:href="11095_2012_722_Fig5_HTML" id="MO5"></graphic>
</fig>
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>Observed and simulated brain-to-plasma ratios. Open circles in panels a-c represent observed brain-to-plasma ratios for total brain (
<bold>a</bold>
), brain excluding striatum - from D
<sub>2</sub>
RO studies (
<bold>b</bold>
) and brain excluding frontal cortex - from 5-HT
<sub>2A</sub>
RO studies (
<bold>c</bold>
). In all the panels gray dots represent predictions of our final model. Black dots represent prediction of the model with only D
<sub>2</sub>
receptor binding (
<bold>a–b</bold>
), or prediction of final model but assuming no efflux (
<bold>d</bold>
), kon and koff values 10 times higher (
<bold>e</bold>
) or koff values 10 times higher (
<bold>f</bold>
) than in the final model. Only total brain-to-plasma ratios are depicted in panels d-f. Qualitatively similar results were obtained for brain concentrations from D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
studies.</p>
</caption>
<graphic xlink:href="11095_2012_722_Fig6_HTML" id="MO6"></graphic>
</fig>
</p>
<p>Fixing CL
<sub>efflux</sub>
to zero led to an increase of brain-to-plasma ratios, but the general pattern stayed the same (Fig. 
<xref rid="Fig6" ref-type="fig">6d</xref>
). Increasing CL
<sub>bev</sub>
and CL
<sub>efflux</sub>
had virtually no effect on the brain-to-plasma ratios (not shown). If koff and kon values for both D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors were 10 times higher (implying no change in Kd) then brain-to-plasma ratios at lower concentrations were slightly lower and at higher concentrations they were the same as in the original model (Fig. 
<xref rid="Fig6" ref-type="fig">6e</xref>
). The same effect was visible with and without efflux. Increasing Kd by increasing koff leads to an almost constant brain-to-plasma ratio (Fig. 
<xref rid="Fig6" ref-type="fig">6f</xref>
). Increasing Kd by decreasing kon had a similar effect, but less pronounced (data not shown). If we increased koff for D
<sub>2</sub>
receptors only, then brain-to-plasma ratios became constant only for brain concentrations excluding cortex (brain concentration measured in 5-HT
<sub>2A</sub>
RO studies; data not shown). If we increased koff only for 5-HT
<sub>2A</sub>
receptors then brain-to-plasma ratios became constant only for brain concentrations excluding striatum (brain concentration measured in D
<sub>2</sub>
RO studies; data not shown).</p>
</sec>
</sec>
<sec id="Sec15" sec-type="discussion">
<title>DISCUSSION</title>
<p>In this paper we present an extension of the previously published PK-PD model for olanzapine (
<xref ref-type="bibr" rid="CR9">9</xref>
) to two other antipsychotic drugs: risperidone and paliperidone. This model describes the time course of D
<sub>2</sub>
receptor occupancy after administration of the antipsychotics and takes brain distribution into account. Here, we expand the model by taking into account metabolite formation and its receptor binding, active efflux from the brain and binding to 5-HT
<sub>2A</sub>
receptors.</p>
<p>Some antipsychotic drugs (such as risperidone and aripiprazole) have active metabolites. The active metabolite of risperidone, paliperidone, achieves high concentrations in plasma and brain (
<xref ref-type="bibr" rid="CR25">25</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
). It also shows potent binding to D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors and is by itself a potent antipsychotic drug (
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
). Therefore, to describe receptor occupancy of a parent drug in a mechanistic way, it is necessary to take into account formation, brain kinetics and receptor binding of the metabolite.</p>
<p>It has been shown in
<italic>in vitro</italic>
studies and studies with knockout mice, that both risperidone and paliperidone are P-gp substrates (
<xref ref-type="bibr" rid="CR10">10</xref>
). Inclusion of active efflux at the BBB in the model was indeed necessary to describe the data properly. Relative values of model predicted parameters for active efflux at the BBB for both drugs are in line with previous experimental studies. Most of the studies with mdr1a knockout mice (
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
) show that the difference in brain-to-plasma ratios between the knockout and the wild-type mice is considerably larger for paliperidone in comparison to risperidone (with one exception where the ratio is slightly higher for risperidone (
<xref ref-type="bibr" rid="CR30">30</xref>
)). Similar results have been found in
<italic>in vitro</italic>
experiments with MDCK cells in an transwell assay (
<xref ref-type="bibr" rid="CR31">31</xref>
) and are in line with our results. It has been assumed in our model that the active efflux is a linear process. This seems to be a valid assumption for risperidone and paliperidone, since modeling the active transport as a saturable process did not improve the fit. This is in line with the finding that the highest brain concentrations of risperidone and paliperidone seen in our dataset were around 2 μM, while the Km values (concentration of substrate yielding half maximum activity) for P-gp transport from
<italic>in vitro</italic>
studies range between 5.6 to 26 μM (
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR33">33</xref>
). So clearly, the concentrations observed
<italic>in vivo</italic>
are far below the saturation levels for risperidone and paliperidone.</p>
<p>Paliperidone is less lipophilic than risperidone, therefore one would expect that it will diffuse slower through biological membranes. However,
<italic>in vitro</italic>
essays show that passive permeability of risperidone and paliperidone are quite similar (
<xref ref-type="bibr" rid="CR31">31</xref>
). Therefore, assuming the same value for passive clearance through BBB can be justified. Probably more data, especially for paliperidone, would be needed to estimate separate parameters of both drugs. However, it should be noted that it might be difficult to estimate passive and active clearance parameters reliably. It seems that, at least in our dataset, brain concentration is only informative about the ratio of active and passive processes. Extensive simulation study would be probably necessary to establish what data is needed in order to be able to estimate precisely brain clearance parameters.</p>
<p>Another extension of the previous model developed for olanzapine is the inclusion of binding to 5-HT
<sub>2A</sub>
receptors. We included binding to 5-HT
<sub>2A</sub>
receptors when we observed that the model with binding only to D
<sub>2</sub>
receptors in striatum did not provide a good fit to the data and also after inspecting observed and model predicted brain-to-plasma ratio plots (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
,
<xref rid="Fig6" ref-type="fig">6a–c</xref>
). The brain-to-plasma ratio was not constant for risperidone, suggesting the influence of specific binding to receptors on the brain kinetics. Similar plots made for olanzapine show that the brain-to-plasma ratio is practically constant and that the brain concentrations of olanzapine are higher than those for risperidone (data not shown). This suggests that olanzapine shows a different pattern of brain kinetics than risperidone and paliperidone. Therefore, we explored the influence of the different parameters on the brain-to-plasma ratio. First, we simulated brain-to-plasma ratios assuming no active efflux, to see if higher brain concentrations would lead to more constant brain-to-plasma ratios. Our simulations show that even without efflux, the brain-to-plasma ratios were not constant (Fig. 
<xref rid="Fig6" ref-type="fig">6d</xref>
), suggesting that the higher brain-to-plasma ratio was not related to the active efflux process. Next we investigated whether the pattern could be explained by the disequilibrium between plasma and brain caused by slow transport between the two. However, increasing brain clearance had virtually no effect on brain-to-plasma ratios. We also looked at the influence of receptor binding parameters on the brain-to-plasma ratios. Therefore, we simulated the influence of increasing values for both koff and kon ten-fold, reflecting a more rapid equilibration of receptor binding, without changing the receptor affinity Kd. This resulted in slightly lower brain-to-plasma ratios at the lowest concentrations (Fig. 
<xref rid="Fig6" ref-type="fig">6e</xref>
). This suggests that the increased brain-to-plasma ratio may be only partly explained by disequilibrium between unbound and bound drug. Finally, an increase of the Kd values by increasing koff or decreasing kon ten-fold led to more constant brain-to-plasma ratios (Fig. 
<xref rid="Fig6" ref-type="fig">6f</xref>
). A higher Kd implies that receptor occupancy is lower at the same unbound brain concentration, and therefore the contribution of the bound drug to the total brain concentration is less pronounced, resulting in a lower brain-to-plasma ratio.</p>
<p>Olanzapine has lower binding affinity for D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors than risperidone and paliperidone (
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR34">34</xref>
). According to our model, brain-to-plasma ratios are constant under these conditions. The lower D
<sub>2</sub>
binding affinity of olanzapine as compared with risperidone may explain why for olanzapine a simpler model with only binding to D
<sub>2</sub>
receptor and binding not affecting brain kinetics could explain the data well (
<xref ref-type="bibr" rid="CR9">9</xref>
). Risperidone and paliperidone have relatively low values of the dissociation constant for 5-HT
<sub>2A</sub>
receptors compared to other antipsychotics (
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
), so one would expect that a simpler model (where binding to 5-HT
<sub>2A</sub>
receptors does not affect brain distribution) could be appropriate for these drugs. Even in cases where kon and koff values are unknown, plotting brain-to-plasma ratios against plasma concentrations would indicate whether a simpler model would be appropriate.</p>
<p>In the model for olanzapine, the receptor density (B
<sub>max</sub>
) did not influence the model fit and could be removed from the model (
<xref ref-type="bibr" rid="CR9">9</xref>
). For risperidone and paliperidone, receptor binding influenced brain kinetics, therefore receptor density was an important parameter. This was demonstrated by the precise estimate of B
<sub>max</sub>
for both D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors (Table 
<xref rid="Tab3" ref-type="table">III</xref>
). B
<sub>max</sub>
values estimated by the model were 245 nM and 47.0 nM for D
<sub>2</sub>
receptors in striatum and 5-HT
<sub>2A</sub>
receptors in frontal cortex, respectively. This 5-HT
<sub>2A</sub>
receptor density is in line with the values of 25–60 nM estimated from
<italic>in vitro</italic>
studies (
<xref ref-type="bibr" rid="CR36">36</xref>
<xref ref-type="bibr" rid="CR39">39</xref>
) (assuming 10% protein content (
<xref ref-type="bibr" rid="CR40">40</xref>
)). Average D
<sub>2</sub>
receptor density from
<italic>in vitro</italic>
studies is 48 nM (
<xref ref-type="bibr" rid="CR40">40</xref>
) with a highest estimated value of 75 nM (
<xref ref-type="bibr" rid="CR41">41</xref>
). This is approximately 3 to 5 times lower than the value estimated by the model. However, some discrepancy is not surprising since in our model B
<sub>max</sub>
represents the theoretical receptor density, while in
<italic>in vitro</italic>
assays it represents the density of receptors available for the radioligand used. Fixing B
<sub>max</sub>
to values different than the ones estimated by the model worsened the model fit (results not shown). Simulations showed that changing B
<sub>max</sub>
values lead to considerable changes in brain concentration and receptor occupancy (data not shown).</p>
<p>To our knowledge, no values are published for
<italic>in vivo</italic>
or
<italic>in vitro</italic>
association and dissociation constants for D
<sub>2</sub>
or 5-HT
<sub>2A</sub>
receptors in rats for risperidone and paliperidone.
<italic>In vitro</italic>
binding constant (Ki) values (which can approximate Kd values) for D
<sub>2</sub>
binding found in literature are usually around 2 to 3 nM (
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
<xref ref-type="bibr" rid="CR44">44</xref>
), however a value of 0.44 for risperidone has also been reported (
<xref ref-type="bibr" rid="CR45">45</xref>
). For 5-HT
<sub>2A</sub>
binding
<italic>in vitro</italic>
Ki values of 0.12–0.39 and 0.25 nM for risperidone and paliperidone, respectively, have been reported (
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
,
<xref ref-type="bibr" rid="CR43">43</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
). Therefore, the
<italic>in vivo</italic>
values obtained in our model are within the range of
<italic>in vitro</italic>
values in rat tissues for 5-HT
<sub>2A</sub>
binding and somehow on the lower end of the
<italic>in vitro</italic>
range for D
<sub>2</sub>
binding. Difference between values obtained
<italic>in vivo</italic>
and
<italic>in vitro</italic>
may be caused by different radioligands used in
<italic>in vitro</italic>
and
<italic>in vivo</italic>
studies. It is also conceivable that the receptor-binding properties of drugs in brain neuronal cells under
<italic>in vivo</italic>
conditions differ significantly from those in brain homogenates and membrane fractions (
<xref ref-type="bibr" rid="CR46">46</xref>
).</p>
<p>We assumed the same binding affinities for risperidone and paliperidone, since our data sets did not allow estimation of separate kon and koff values for risperidone and paliperidone. More receptor occupancy data for paliperidone would be necessary to estimate paliperidone association and dissociation rate constants. However, since published
<italic>in vitro</italic>
Ki values in rat brain tissues are similar for risperidone and paliperidone (
<xref ref-type="bibr" rid="CR34">34</xref>
), assuming the same rate constants for both drugs should not lead to much bias, especially since the parameters were estimated quite precisely (RSE between 14 and 25%).</p>
<p>Assuming the same values for binding constants for risperidone and paliperidone may theoretically be one of the reasons why there are relatively big residual errors for brain concentrations and receptor occupancy estimated in our model (Table 
<xref rid="Tab3" ref-type="table">III</xref>
). This could also apply to RO measurements obtained from
<italic>in vivo</italic>
and
<italic>ex vivo</italic>
studies. Trying to estimate separate binding parameters for
<italic>in vivo</italic>
and
<italic>ex vivo</italic>
measurements or excluding the less common
<italic>ex vivo</italic>
RO data from the analysis resulted in problems with model convergence and in less precise parameter estimates. Use of different rat strains could also theoretically explain at least a part of the intra- and inter-individual variability. However, when we plotted individual post-hoc estimates for different parameters, we did not see any difference between the different rat strains or different RO measurement methods.</p>
<p>Considerable residual errors both in PK and PD may stem partly from differences in experimental procedures (especially brain dissection) on different occasions and at the different pharmaceutical companies that provided the data. Body weight variations could also potentially explain a part of the observed inter-individual variability, but we had no information of body weight of the rats allowing us to use it as a covariate in the model. Residual errors could probably be reduced if there was an inter-individual variability in brain PK-PD parameters. However, we were not able to estimate these variabilities and decided to fix them to zero.</p>
<p>A predictive check of the PK-PD model showed that it can predict D
<sub>2</sub>
RO reasonably well up to 8 h (Figs. 
<xref rid="Fig3" ref-type="fig">3e</xref>
and
<xref rid="Fig5" ref-type="fig">5</xref>
). But the model seems to lead to under-prediction at 24 h (Fig. 
<xref rid="Fig3" ref-type="fig">3e</xref>
). Median 5-HT
<sub>2A</sub>
RO also seems to be under-predicted for later time points (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). Only two studies had a time course of D
<sub>2</sub>
RO and one study a time course of 5-HT
<sub>2A</sub>
RO while most of the studies had only observations at the 1 h time point. On the one hand, this unbalanced dataset could lead to parameter estimates which explain all data well, but with some model misspecification for the later time points. On the other hand, with just a few observations for later time points it is difficult to judge if a deviation between observation and prediction is not just a random error. More D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
RO time course data are necessary in order to obtain better description of the full time course of receptor occupancy by the model.</p>
<p>Our dataset shows that binding to receptors influences brain concentrations and that D
<sub>2</sub>
binding alone could not explain the data well. In the model we included binding to D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors (the only available data), but both risperidone and paliperidone also bind to other receptors.
<italic>In vitro</italic>
data with rat tissue or rat cloned cells show that risperidone and paliperidone have high affinity (Ki not more than 5 times higher than Ki for D
<sub>2</sub>
receptors) for α1 and α2 adrenoceptors and for serotonin 5-HT
<sub>7</sub>
receptors (
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR44">44</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
). However, densities of all of these receptors in rat brain are relatively low (below 100 fmol/mg of protein) (
<xref ref-type="bibr" rid="CR47">47</xref>
<xref ref-type="bibr" rid="CR50">50</xref>
). Therefore, we would not expect the influence of binding to these receptors on brain kinetics to be significant. Risperidone and paliperidone bind also to histamine H
<sub>1</sub>
receptors and other subtypes of dopamine and serotonin receptors (
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
). However, since Ki values for these receptors are more than 5 times higher than Ki values for D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors, based on our simulations of brain-to-plasma ratio we would not expect this binding to affect the rat brain distribution. Similarly, based on
<italic>in vitro</italic>
binding to human cloned receptors and receptor densities in the human brain (
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR51">51</xref>
) binding to other receptors should not strongly influence brain kinetics in human.</p>
<p>Our model can be utilized for the human prediction of D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
RO. Using the sequential approach, human plasma PK models can be developed separately in a conventional way and receptor occupancy can be predicted afterwards. Usage of a physiology-based approach in describing brain distribution and receptor binding allows utilization of human physiological values,
<italic>in vitro</italic>
information and rat-to-human scaling to predict human receptor occupancy. This translational approach can also be used for drugs which have an active metabolite or show active efflux at the brain-blood barrier. Since it is known that D
<sub>2</sub>
RO is linked with clinical outcome and side effects of antipsychotics (
<xref ref-type="bibr" rid="CR2">2</xref>
), but that it is difficult and costly to measure, the ability to predict human D
<sub>2</sub>
RO based on plasma data can help with linking different doses of drugs with their clinical effect. This work is ongoing in our research group.</p>
<p>In conclusion, we have shown that the previously published hybrid physiologically-based model structure developed for olanzapine (
<xref ref-type="bibr" rid="CR9">9</xref>
) can be utilized to describe the PK-PD of risperidone and paliperidone in rats. However, some drug-specific adjustments were necessary. Addition of active metabolite formation and active efflux was straight-forward. Additionally, binding to 5-HT
<sub>2A</sub>
receptors has been included in order to describe the brain distribution well. This may stem from the fact that risperidone and paliperidone have higher affinity to D
<sub>2</sub>
and 5-HT
<sub>2A</sub>
receptors than olanzapine. Therefore, receptor affinities and brain-to-plasma ratios may need to be considered before choosing the best PK-PD model for centrally active drugs.</p>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGMENTS & DISCLOSURES</title>
<p>The work presented in this article was prepared within the framework of project no. D2-104 of the Dutch Top Institute Pharma (Leiden, The Netherlands;
<ext-link ext-link-type="uri" xlink:href="http://www.tipharma.com">www.tipharma.com</ext-link>
). The authors have no conflicts of interest that are directly relevant to the content of this article.</p>
<sec id="d29e3269">
<title>Open Access</title>
<p>This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.</p>
</sec>
</ack>
<ref-list id="Bib1">
<title>REFERENCES</title>
<ref id="CR1">
<label>1.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carpenter</surname>
<given-names>WT</given-names>
</name>
<name>
<surname>Koenig</surname>
<given-names>JI</given-names>
</name>
</person-group>
<article-title>The evolution of drug development in schizophrenia: past issues and future opportunities</article-title>
<source>Neuropsychopharmacology</source>
<year>2008</year>
<volume>33</volume>
<issue>9</issue>
<fpage>2061</fpage>
<lpage>2079</lpage>
<pub-id pub-id-type="doi">10.1038/sj.npp.1301639</pub-id>
<pub-id pub-id-type="pmid">18046305</pub-id>
</mixed-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pani</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Pira</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Marchese</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Antipsychotic efficacy: relationship to optimal D
<sub>2</sub>
receptor occupancy</article-title>
<source>Eur Psychiatry</source>
<year>2007</year>
<volume>22</volume>
<issue>5</issue>
<fpage>267</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="doi">10.1016/j.eurpsy.2007.02.005</pub-id>
<pub-id pub-id-type="pmid">17419008</pub-id>
</mixed-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meltzer</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Matsubara</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Classification of typical and atypical antipsychotic drugs on the basis of Dopamine D-1, D-2 and Serotonin
<sub>2</sub>
Pk
<sub>i</sub>
Values</article-title>
<source>J Pharmacol Exp Ther</source>
<year>1989</year>
<volume>251</volume>
<issue>1</issue>
<fpage>238</fpage>
<lpage>246</lpage>
<pub-id pub-id-type="pmid">2571717</pub-id>
</mixed-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kapur</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Remington</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Serotonin-dopamine interaction and its relevance to schizophrenia</article-title>
<source>Am J Psychiatry</source>
<year>1996</year>
<volume>153</volume>
<issue>4</issue>
<fpage>466</fpage>
<lpage>476</lpage>
<pub-id pub-id-type="pmid">8599393</pub-id>
</mixed-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meltzer</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Kaneda</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ichikawa</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Serotonin receptors: their key role in drugs to treat schizophrenia</article-title>
<source>Prog Neuropsychopharmacol Biol Psychiatry</source>
<year>2003</year>
<volume>27</volume>
<issue>7</issue>
<fpage>1159</fpage>
<lpage>1172</lpage>
<pub-id pub-id-type="doi">10.1016/j.pnpbp.2003.09.010</pub-id>
<pub-id pub-id-type="pmid">14642974</pub-id>
</mixed-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olsen</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Brennum</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>Kreilgaard</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Using pharmacokinetic-pharmacodynamic modelling as a tool for prediction of therapeutic effective plasma levels of antipsychotics</article-title>
<source>Eur J Pharmacol</source>
<year>2008</year>
<volume>584</volume>
<issue>2–3</issue>
<fpage>318</fpage>
<lpage>327</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejphar.2008.02.005</pub-id>
<pub-id pub-id-type="pmid">18325493</pub-id>
</mixed-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danhof</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jongh</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lange</surname>
<given-names>ECM</given-names>
</name>
<name>
<surname>Della Pasqua</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Ploeger</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Voskuyl</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis</article-title>
<source>Ann Rev Pharmacol Toxicol</source>
<year>2007</year>
<volume>47</volume>
<fpage>357</fpage>
<lpage>400</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.pharmtox.47.120505.105154</pub-id>
<pub-id pub-id-type="pmid">17067280</pub-id>
</mixed-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yassen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Olofsen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Dahan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Danhof</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine and fentanyl in rats: role of receptor equilibration kinetics</article-title>
<source>J Pharmacol Exp Ther</source>
<year>2005</year>
<volume>313</volume>
<issue>3</issue>
<fpage>1136</fpage>
<lpage>1149</lpage>
<pub-id pub-id-type="doi">10.1124/jpet.104.082560</pub-id>
<pub-id pub-id-type="pmid">15701707</pub-id>
</mixed-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kozielska</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pilla Reddy</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Vermeulen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Grimwood</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanism-based pharmacokinetic-pharmacodynamic modeling of the dopamine D
<sub>2</sub>
receptor occupancy of olanzapine in rats</article-title>
<source>Pharm Res</source>
<year>2011</year>
<volume>28</volume>
<issue>10</issue>
<fpage>2490</fpage>
<lpage>2504</lpage>
<pub-id pub-id-type="doi">10.1007/s11095-011-0477-7</pub-id>
<pub-id pub-id-type="pmid">21647790</pub-id>
</mixed-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Ruan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Donovan</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Markowitz</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Vane</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>The brain entry of risperidone and 9-hydroxyrisperidone is greatly limited by P-glycoprotein</article-title>
<source>Int J Neuropsychopharmacol</source>
<year>2004</year>
<volume>7</volume>
<issue>4</issue>
<fpage>415</fpage>
<lpage>419</lpage>
<pub-id pub-id-type="doi">10.1017/S1461145704004390</pub-id>
<pub-id pub-id-type="pmid">15683552</pub-id>
</mixed-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knauer</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Galvan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Osgood</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Buist</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Validation of a rat
<italic>in vivo</italic>
[
<sup>3</sup>
H] M100907 binding assay to determine a translatable measure of 5-HT
<sub>2A</sub>
receptor occupancy</article-title>
<source>Eur J Pharmacol</source>
<year>2008</year>
<volume>591</volume>
<issue>1–3</issue>
<fpage>136</fpage>
<lpage>141</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejphar.2008.06.063</pub-id>
<pub-id pub-id-type="pmid">18593577</pub-id>
</mixed-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Natesan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Reckless</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Nobrega</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Fletcher</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Kapur</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Dissociation between in vivo occupancy and functional antagonism of dopamine D
<sub>2</sub>
receptors: comparing aripiprazole to other antipsychotics in animal models</article-title>
<source>Neuropsychopharmacology</source>
<year>2006</year>
<volume>31</volume>
<issue>9</issue>
<fpage>1854</fpage>
<lpage>1863</lpage>
<pub-id pub-id-type="doi">10.1038/sj.npp.1300983</pub-id>
<pub-id pub-id-type="pmid">16319908</pub-id>
</mixed-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Beal</surname>
<given-names>SS</given-names>
</name>
</person-group>
<source>NONMEM user’s guides</source>
<year>2010</year>
<publisher-loc>Ellicott City</publisher-loc>
<publisher-name>Icon Development Solutions</publisher-name>
</mixed-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keizer</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Benten</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Beijnen</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Schellens</surname>
<given-names>JHM</given-names>
</name>
<name>
<surname>Huitema</surname>
<given-names>ADR</given-names>
</name>
</person-group>
<article-title>Pirana and PCluster: a modeling environment and cluster infrastructure for NONMEM</article-title>
<source>Comput Methods Prog Biomed</source>
<year>2011</year>
<volume>101</volume>
<issue>1</issue>
<fpage>72</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmpb.2010.04.018</pub-id>
</mixed-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<mixed-citation publication-type="other">R Development Core Team. R: A language and environment for statistical computing. R Fundation for Statistical Computing, Vienna, Austria; 2011.
<ext-link ext-link-type="uri" xlink:href="http://www.R-project.org">http://www.R-project.org</ext-link>
.</mixed-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jonsson</surname>
<given-names>EN</given-names>
</name>
<name>
<surname>Karlsson</surname>
<given-names>MO</given-names>
</name>
</person-group>
<article-title>Xpose - an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM</article-title>
<source>Comput Methods Prog Biomed</source>
<year>1999</year>
<volume>58</volume>
<issue>1</issue>
<fpage>51</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1016/S0169-2607(98)00067-4</pub-id>
</mixed-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>XR</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Callegari</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding</article-title>
<source>J Pharmacol Exp Ther</source>
<year>2005</year>
<volume>313</volume>
<issue>3</issue>
<fpage>1254</fpage>
<lpage>1262</lpage>
<pub-id pub-id-type="doi">10.1124/jpet.104.079319</pub-id>
<pub-id pub-id-type="pmid">15743928</pub-id>
</mixed-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andersson</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hamer</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Lawler</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Mailman</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Lieberman</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Striatal volume changes in the rat following long-term administration of typical and atypical antipsychotic drugs</article-title>
<source>Neuropsychopharmacology</source>
<year>2002</year>
<volume>27</volume>
<issue>2</issue>
<fpage>143</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="doi">10.1016/S0893-133X(02)00287-7</pub-id>
<pub-id pub-id-type="pmid">12093588</pub-id>
</mixed-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mannens</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Meuldermans</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Snoeck</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Heykants</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Plasma-protein binding of risperidone and its distribution in blood</article-title>
<source>Psychopharmacology</source>
<year>1994</year>
<volume>114</volume>
<issue>4</issue>
<fpage>566</fpage>
<lpage>572</lpage>
<pub-id pub-id-type="doi">10.1007/BF02244986</pub-id>
<pub-id pub-id-type="pmid">7531854</pub-id>
</mixed-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>XR</given-names>
</name>
<name>
<surname>Natta</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yeo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vilenski</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Weller</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Worboys</surname>
<given-names>PD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid</article-title>
<source>Drug Metab Dispos</source>
<year>2009</year>
<volume>37</volume>
<issue>4</issue>
<fpage>787</fpage>
<lpage>793</lpage>
<pub-id pub-id-type="doi">10.1124/dmd.108.024125</pub-id>
<pub-id pub-id-type="pmid">19116265</pub-id>
</mixed-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoyer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pazos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Probst</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Palacios</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Serotonin receptors in the human brain. 2. Characterization and autoradiographic localization of 5-HT
<sub>1c</sub>
and 5-HT
<sub>2</sub>
recognition sites</article-title>
<source>Brain Res</source>
<year>1986</year>
<volume>376</volume>
<issue>1</issue>
<fpage>97</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="doi">10.1016/0006-8993(86)90903-0</pub-id>
<pub-id pub-id-type="pmid">2941113</pub-id>
</mixed-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mignini</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Vitaioli</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sabbatini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tomassoni</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Amenta</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>The cerebral cortex of spontaneously hypertensive rats: a quantitative microanatomical study</article-title>
<source>Clin Exp Hypertens</source>
<year>2004</year>
<volume>26</volume>
<issue>4</issue>
<fpage>287</fpage>
<lpage>303</lpage>
<pub-id pub-id-type="doi">10.1081/CEH-120034135</pub-id>
<pub-id pub-id-type="pmid">15195685</pub-id>
</mixed-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindbom</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Pihlgren</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jonsson</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>PsN-toolkit - a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM</article-title>
<source>Comput Methods Prog Biomed</source>
<year>2005</year>
<volume>79</volume>
<issue>3</issue>
<fpage>241</fpage>
<lpage>257</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmpb.2005.04.005</pub-id>
</mixed-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beijsterveldt</surname>
<given-names>LEC</given-names>
</name>
<name>
<surname>Geerts</surname>
<given-names>RJF</given-names>
</name>
<name>
<surname>Leysen</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Megens</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vandeneynde</surname>
<given-names>HMJ</given-names>
</name>
<name>
<surname>Meuldermans</surname>
<given-names>WEG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regional brain distribution of risperidone and its active metabolite 9-hydroxy-risperidone in the rat</article-title>
<source>Psychopharmacology</source>
<year>1994</year>
<volume>114</volume>
<issue>1</issue>
<fpage>53</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1007/BF02245444</pub-id>
<pub-id pub-id-type="pmid">7531352</pub-id>
</mixed-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meuldermans</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Hendrickx</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mannens</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lavrijsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bracke</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The metabolism and excretion of risperidone after oral administration in rats and dogs</article-title>
<source>Drug Metab Dispos</source>
<year>1994</year>
<volume>22</volume>
<issue>1</issue>
<fpage>129</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="pmid">7512019</pub-id>
</mixed-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aravagiri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Marder</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Brain, plasma and tissue pharmacokinetics of risperidone and 9-hydroxyrisperidone after separate oral administration to rats</article-title>
<source>Psychopharmacology</source>
<year>2002</year>
<volume>159</volume>
<issue>4</issue>
<fpage>424</fpage>
<lpage>431</lpage>
<pub-id pub-id-type="doi">10.1007/s00213-001-0933-x</pub-id>
<pub-id pub-id-type="pmid">11823895</pub-id>
</mixed-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arakawa</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takano</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Morimoto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sassa</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dose-finding study of paliperidone ER based on striatal and extrastriatal dopamine D
<sub>2</sub>
receptor occupancy in patients with schizophrenia</article-title>
<source>Psychopharmacology</source>
<year>2008</year>
<volume>197</volume>
<issue>2</issue>
<fpage>229</fpage>
<lpage>235</lpage>
<pub-id pub-id-type="doi">10.1007/s00213-007-1029-z</pub-id>
<pub-id pub-id-type="pmid">18058087</pub-id>
</mixed-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karlsson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Dencker</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nyberg</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mannaert</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Boom</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Talluri</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pharmacokinetics and dopamine D
<sub>2</sub>
and serotonin 5-HT
<sub>2A</sub>
receptor occupancy of paliperidone in healthy subjects: Two open-label, single-dose studies</article-title>
<source>Clin Pharmacol Ther</source>
<year>2006</year>
<volume>79</volume>
<issue>2</issue>
<fpage>P74</fpage>
<pub-id pub-id-type="doi">10.1016/j.clpt.2005.12.265</pub-id>
</mixed-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doran</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Obach</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Hosea</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Callegari</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model</article-title>
<source>Drug Metab Dispos</source>
<year>2005</year>
<volume>33</volume>
<issue>1</issue>
<fpage>165</fpage>
<lpage>174</lpage>
<pub-id pub-id-type="doi">10.1124/dmd.104.001230</pub-id>
<pub-id pub-id-type="pmid">15502009</pub-id>
</mixed-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ejsing</surname>
<given-names>TB</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Linnet</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments</article-title>
<source>Hum Psychopharmacol Clin Exp</source>
<year>2005</year>
<volume>20</volume>
<issue>7</issue>
<fpage>493</fpage>
<lpage>500</lpage>
<pub-id pub-id-type="doi">10.1002/hup.720</pub-id>
</mixed-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mills</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Mireles</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Janiszewski</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Troutman</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system</article-title>
<source>Drug Metab Dispos</source>
<year>2008</year>
<volume>36</volume>
<issue>2</issue>
<fpage>268</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="doi">10.1124/dmd.107.017434</pub-id>
<pub-id pub-id-type="pmid">17962372</pub-id>
</mixed-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boulton</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>DeVane</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Liston</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Markowitz</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>In vitro P-glycoprotein affinity for atypical and conventional antipsychotics</article-title>
<source>Life Sci</source>
<year>2002</year>
<volume>71</volume>
<issue>2</issue>
<fpage>163</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1016/S0024-3205(02)01680-6</pub-id>
<pub-id pub-id-type="pmid">12031686</pub-id>
</mixed-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cousein</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Barthelemy</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Poullain</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lestavel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Williame</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>P-glycoprotein and cytochrome P450 3A4 involvement in risperidone transport using an
<italic>in vitro</italic>
Caco-2/TC7 model and an
<italic>in vivo</italic>
model</article-title>
<source>Prog Neuropsychopharmacol Biol Psychiatry</source>
<year>2007</year>
<volume>31</volume>
<issue>4</issue>
<fpage>878</fpage>
<lpage>886</lpage>
<pub-id pub-id-type="doi">10.1016/j.pnpbp.2007.01.028</pub-id>
<pub-id pub-id-type="pmid">17337319</pub-id>
</mixed-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schotte</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>PFM</given-names>
</name>
<name>
<surname>Gommeren</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Luyten</surname>
<given-names>W</given-names>
</name>
<name>
<surname>VanGompel</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lesage</surname>
<given-names>AS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Risperidone compared with new and reference antipsychotic drugs:
<italic>in vitro</italic>
and
<italic>in vivo</italic>
receptor binding</article-title>
<source>Psychopharmacology</source>
<year>1996</year>
<volume>124</volume>
<issue>1–2</issue>
<fpage>57</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1007/BF02245606</pub-id>
<pub-id pub-id-type="pmid">8935801</pub-id>
</mixed-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seeman</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tallerico</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Antipsychotic drugs which elicit little or no Parkinsonism bind more loosely than dopamine to brain D
<sub>2</sub>
receptors, yet occupy high levels of these receptors</article-title>
<source>Mol Psychiatry</source>
<year>1998</year>
<volume>3</volume>
<issue>2</issue>
<fpage>123</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="doi">10.1038/sj.mp.4000336</pub-id>
<pub-id pub-id-type="pmid">9577836</pub-id>
</mixed-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gauffre</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Aguerre</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mormede</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chaouloff</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Cortical [
<sup>3</sup>
H] ketanserin binding and 5-HT
<sub>2A</sub>
receptor-mediated inositol phosphate production in the spontaneously hypertensive rat and Lewis rat strains</article-title>
<source>Neurosci Lett</source>
<year>1997</year>
<volume>236</volume>
<issue>2</issue>
<fpage>112</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="doi">10.1016/S0304-3940(97)00716-7</pub-id>
<pub-id pub-id-type="pmid">9404824</pub-id>
</mixed-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kulikov</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Jeanningro</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>The effects of hypothyroidism on 5-HT
<sub>1A</sub>
and 5-HT
<sub>2A</sub>
receptors and the serotonin transporter protein in the rat brain</article-title>
<source>Neurosci Behav Physiol</source>
<year>2001</year>
<volume>31</volume>
<issue>4</issue>
<fpage>445</fpage>
<lpage>449</lpage>
<pub-id pub-id-type="doi">10.1023/A:1010401015064</pub-id>
<pub-id pub-id-type="pmid">11508497</pub-id>
</mixed-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pazos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cortes</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Palacios</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Quantitative autoradiographic mapping of serotoning receptors in the rat brain. 2. serotonin-2 receptors</article-title>
<source>Brain Res</source>
<year>1985</year>
<volume>346</volume>
<issue>2</issue>
<fpage>231</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="doi">10.1016/0006-8993(85)90857-1</pub-id>
<pub-id pub-id-type="pmid">4052777</pub-id>
</mixed-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vicentic</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cabrera-Vera</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Pinto</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Battaglia</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>5-HT
<sub>1A</sub>
and 5-HT
<sub>2A</sub>
serotonin receptor turnover in adult rat offspring prenatally exposed to cocaine</article-title>
<source>Brain Res</source>
<year>2000</year>
<volume>877</volume>
<fpage>141</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-8993(00)02668-8</pub-id>
<pub-id pub-id-type="pmid">10986326</pub-id>
</mixed-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barth</surname>
<given-names>VN</given-names>
</name>
<name>
<surname>Chernet</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Need</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Rash</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Morin</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparison of rat dopamine D
<sub>2</sub>
receptor occupancy for a series of antipsychotic drugs measured using radiolabeled or nonlabeled raclopride tracer</article-title>
<source>Life Sci</source>
<year>2006</year>
<volume>78</volume>
<issue>26</issue>
<fpage>3007</fpage>
<lpage>3012</lpage>
<pub-id pub-id-type="doi">10.1016/j.lfs.2005.11.031</pub-id>
<pub-id pub-id-type="pmid">16434058</pub-id>
</mixed-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Werf</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Schip</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sebens</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Korf</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Quantification of
<italic>in vivo</italic>
spiperone binding in the rat striatum after lesions produced by kainate or decortication</article-title>
<source>Eur J Pharmacol</source>
<year>1984</year>
<volume>102</volume>
<fpage>387</fpage>
<lpage>399</lpage>
<pub-id pub-id-type="doi">10.1016/0014-2999(84)90558-2</pub-id>
<pub-id pub-id-type="pmid">6436037</pub-id>
</mixed-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leysen</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Gommeren</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Eens</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Decourcelles</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Stoof</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>PAJ</given-names>
</name>
</person-group>
<article-title>Biochemical profile of risperidone, a new antipsychotic</article-title>
<source>J Pharmacol Exp Ther</source>
<year>1988</year>
<volume>247</volume>
<issue>2</issue>
<fpage>661</fpage>
<lpage>670</lpage>
<pub-id pub-id-type="pmid">2460616</pub-id>
</mixed-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leysen</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>PMF</given-names>
</name>
<name>
<surname>Gommeren</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wynants</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pauwels</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>PAJ</given-names>
</name>
</person-group>
<article-title>
<italic>In vitro</italic>
and
<italic>in vivo</italic>
receptor-binding and effects on monoamine turnover in rat-brain regions of the novel antipsychotics risperidone and ocaperidone</article-title>
<source>Mol Pharmacol</source>
<year>1992</year>
<volume>41</volume>
<issue>3</issue>
<fpage>494</fpage>
<lpage>508</lpage>
<pub-id pub-id-type="pmid">1372084</pub-id>
</mixed-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leysen</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>PMF</given-names>
</name>
<name>
<surname>Schotte</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Luyten</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Megens</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Interaction of antipsychotic drugs with neurotransmitter receptor sites
<italic>in vitro</italic>
and
<italic>in vivo</italic>
in relation to pharmacological and clinical effects - role of 5HT
<sub>2</sub>
Receptors</article-title>
<source>Psychopharmacology</source>
<year>1993</year>
<volume>112</volume>
<issue>1</issue>
<fpage>S40</fpage>
<lpage>S54</lpage>
<pub-id pub-id-type="doi">10.1007/BF02245006</pub-id>
<pub-id pub-id-type="pmid">7530377</pub-id>
</mixed-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arnt</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Skarsfeldt</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence</article-title>
<source>Neuropsychopharmacology</source>
<year>1998</year>
<volume>18</volume>
<issue>2</issue>
<fpage>63</fpage>
<lpage>101</lpage>
<pub-id pub-id-type="doi">10.1016/S0893-133X(97)00112-7</pub-id>
<pub-id pub-id-type="pmid">9430133</pub-id>
</mixed-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uchida</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hirano</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kagawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Brain neurotransmitter receptor-binding characteristics in rats after oral administration of haloperidol, risperidone and olanzapine</article-title>
<source>Life Sci</source>
<year>2007</year>
<volume>80</volume>
<issue>17</issue>
<fpage>1635</fpage>
<lpage>1640</lpage>
<pub-id pub-id-type="doi">10.1016/j.lfs.2007.01.038</pub-id>
<pub-id pub-id-type="pmid">17316700</pub-id>
</mixed-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramakrishna</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Subhash</surname>
<given-names>MN</given-names>
</name>
</person-group>
<article-title>Differential modulation of alpha-1 adrenoceptor subtypes by antidepressants in the rat brain</article-title>
<source>J Neural Transm</source>
<year>2010</year>
<volume>117</volume>
<issue>12</issue>
<fpage>1423</fpage>
<lpage>1430</lpage>
<pub-id pub-id-type="doi">10.1007/s00702-010-0522-4</pub-id>
<pub-id pub-id-type="pmid">21136124</pub-id>
</mixed-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olmos</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Miralles</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Barturen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Garciasevilla</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Decreased density and sensitivity of α
<sub>2</sub>
-adrenoceptors in the brain of spontaneously hypersensitive rats</article-title>
<source>Eur J Pharmacol</source>
<year>1991</year>
<volume>205</volume>
<issue>1</issue>
<fpage>93</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1016/0014-2999(91)90776-M</pub-id>
<pub-id pub-id-type="pmid">1667385</pub-id>
</mixed-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ribas</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Miralles</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Busquets</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Garcia-Sevilla</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Brain α
<sub>2</sub>
-adrenoceptors in monoamine-depleted rats: increased receptor density, G coupling proteins, receptor turnover and receptor mRNA</article-title>
<source>Brit J Pharmacol</source>
<year>2001</year>
<volume>132</volume>
<issue>7</issue>
<fpage>1467</fpage>
<lpage>1476</lpage>
<pub-id pub-id-type="doi">10.1038/sj.bjp.0703963</pub-id>
<pub-id pub-id-type="pmid">11264240</pub-id>
</mixed-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thomas</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Atkinson</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Hastie</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Middlemiss</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>GW</given-names>
</name>
</person-group>
<article-title>[
<sup>3</sup>
H] -SB-269970 radiolabels 5-HT
<sub>7</sub>
receptors in rodent, pig and primate brain tissues</article-title>
<source>Neuropharmacology</source>
<year>2002</year>
<volume>42</volume>
<issue>1</issue>
<fpage>74</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="doi">10.1016/S0028-3908(01)00151-4</pub-id>
<pub-id pub-id-type="pmid">11750917</pub-id>
</mixed-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Callado</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Meana</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Grijalba</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pazos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sastre</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Garcia-Sevilla</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Selective increase of α
<sub>2A</sub>
-adrenoceptor agonist binding sites in brains of depressed suicide victims</article-title>
<source>J Neurochem</source>
<year>1998</year>
<volume>70</volume>
<issue>3</issue>
<fpage>1114</fpage>
<lpage>1123</lpage>
<pub-id pub-id-type="doi">10.1046/j.1471-4159.1998.70031114.x</pub-id>
<pub-id pub-id-type="pmid">9489732</pub-id>
</mixed-citation>
</ref>
</ref-list>
<app-group>
<app id="App1">
<sec id="Sec16">
<title>APPENDIX</title>
<p>Differential equations used to describe plasma PK:
<disp-formula id="Equa">
<alternatives>
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{d}}\left( {{{\text{A}}_{{{\text{depot}} - {\text{RIS}}}}}} \right)/{\text{dt}} = {\text{DOS}}{{\text{E}}_{{{\text{SC}} - {\text{RIS}}}}}/{\text{D}}{{\text{R}}_{\text{RIS}}}\left( {{\text{t}} < {\text{D}}{{\text{R}}_{\text{SC--RIS}}}} \right) - {\text{k}}{{\text{a}}_{{{\text{SC}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{depot}} - {\text{RIS}}}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equa.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equb">
<alternatives>
<tex-math id="M2">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \matrix{{*{20}{c}} {{\text{d}}\left( {{{\text{A}}_{{{\text{c}} - {\text{RIS}}}}}} \right)/{\text{dt}} = {\text{k}}{{\text{a}}_{{{\text{SC}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{depot}} - {\text{RIS}}}}} + \left( {{{\text{Q}}_{\text{RIS}}}/{{\text{V}}_{{{\text{p}} - {\text{RIS}}}}}} \right) * {{\text{A}}_{{{\text{p}} - {\text{RIS}}}}} - \left( {{{\text{Q}}_{\text{RIS}}}/{{\text{V}}_{{{\text{c}} - {\text{RIS}}}}}} \right) * {{\text{A}}_{{{\text{c}} - {\text{RIS}}}}} - \left( {{\text{C}}{{\text{L}}_{\text{RIS}}}/{{\text{V}}_{{{\text{c}} - {\text{RIS}}}}}} \right) * {{\text{A}}_{{{\text{c}} - {\text{RIS}}}}} - ({\text{C}}{{\text{L}}_{\text{met}}}/{{\text{V}}_{{{\text{c}} - }}}} \hfill \\ {_{\text{RIS}}) * {{\text{A}}_{{{\text{c}} - {\text{RIS}}}}}} \hfill \\ } $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equb.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equc">
<alternatives>
<tex-math id="M3">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{d}}\left( {{{\text{A}}_{{{\text{p}} - {\text{RIS}}}}}} \right)/{\text{dt}} = \left( {{{\text{Q}}_{\text{RIS}}}/{{\text{V}}_{{{\text{c}} - {\text{RIS}}}}}} \right) * {{\text{A}}_{{{\text{c}} - {\text{RIS}}}}} - \left( {{{\text{Q}}_{\text{RIS}}}/{{\text{V}}_{{{\text{p}} - {\text{RIS}}}}}} \right) * {{\text{A}}_{{{\text{p}} - {\text{RIS}}}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equc.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equd">
<alternatives>
<tex-math id="M4">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{d}}\left( {{{\text{A}}_{{{\text{depot}} - {\text{PALI}}}}}} \right)/{\text{dt}} = {\text{DOS}}{{\text{E}}_{{{\text{SC}} - {\text{PALI}}}}}/{\text{D}}{{\text{R}}_{\text{PALI}}}\left( {{\text{t}} < {\text{D}}{{\text{R}}_{\text{SC--PALI}}}} \right) - {\text{k}}{{\text{a}}_{{{\text{SC}} - {\text{PALI}}}}} * {{\text{A}}_{{{\text{depot}} - {\text{PALI}}}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equd.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Eque">
<alternatives>
<tex-math id="M5">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \matrix{{*{20}{c}} {{\text{d}}\left( {{{\text{A}}_{{{\text{c}} - {\text{PALI}}}}}} \right)/{\text{dt}} = {\text{k}}{{\text{a}}_{{{\text{SC}} - {\text{PALI}}}}} * {{\text{A}}_{{{\text{depot}} - {\text{PALI}}}}} + \left( {{{\text{Q}}_{\text{PALI}}}/{{\text{V}}_{{{\text{p}} - {\text{PALI}}}}}} \right) * {{\text{A}}_{{{\text{p}} - {\text{PALI}}}}} - \left( {{{\text{Q}}_{\text{PALI}}}/{{\text{V}}_{{{\text{c}} - {\text{PALI}}}}}} \right) * {{\text{A}}_{{{\text{c}} - {\text{PALI}}}}} - \left( {{\text{C}}{{\text{L}}_{\text{PALI}}}/{{\text{V}}_{{{\text{c}} - {\text{PALI}}}}}} \right) * {{\text{A}}_{{{\text{c}} - {\text{PALI}}}}} + } \hfill \\ {\left( {{\text{C}}{{\text{L}}_{\text{met}}}/{{\text{V}}_{{{\text{c}} - {\text{RIS}}}}}} \right) * {{\text{A}}_{{{\text{c}} - {\text{RIS}}}}}} \hfill \\ } $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Eque.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equf">
<alternatives>
<tex-math id="M6">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{d}}\left( {{{\text{A}}_{{{\text{p}} - {\text{PALI}}}}}} \right)/{\text{dt}} = \left( {{\text{Q}_{\text{PALI}}}/{{\text{V}}_{{{\text{c}} - {\text{PALI}}}}}} \right) * {{\text{A}}_{{{\text{c}} - {\text{PALI}}}}} - \left( {{\text{Q} {\text{PALI}}}/{{\text{V}}_{{{\text{p}} - {\text{PALI}}}}}} \right) * {{\text{A}}_{{{\text{p}} - {\text{PALI}}}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equf.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
</p>
<p>Differential equations used to describe brain kinetics and receptor binding:
<disp-formula id="Equg">
<alternatives>
<tex-math id="M7">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \matrix{{*{20}{c}} {{\text{d}}\left( {{{\text{A}}_{{{\text{bv}} - {\text{RIS}}}}}} \right)/{\text{dt}} = \left( {{\text{C}}{{\text{L}}_{\text{bv}}}/{{\text{V}}_{\text{c}}}} \right) * {{\text{A}}_{{{\text{c}} - {\text{RIS}}}}} - \left( {{\text{C}}{{\text{L}}_{\text{bv}}}/{{\text{V}}_{\text{bv}}}} \right) * {{\text{A}}_{{{\text{bv}} - {\text{RIS}}}}} - \left( {{\text{C}}{{\text{L}}_{{{\text{bev}} - {\text{RIS}}}}}/{{\text{V}}_{\text{bv}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{plasma}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{bv}} - {\text{RIS}}}}} + \left( {{\text{C}}{{\text{L}}_{{{\text{bev}} - {\text{RIS}}}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - }}}} \hfill \\ {_{\text{RIS}} * {{\text{A}}_{{{\text{bev}} - {\text{RIS}}}}} + \left( {{\text{C}}{{\text{L}}_{{{\text{efflux}} - {\text{RIS}}}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{bevF}} - {\text{RIS}}}}}} \hfill \\ } $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equg.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equh">
<alternatives>
<tex-math id="M8">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \matrix{{*{20}{c}} {{\text{d}}\left( {{{\text{A}}_{{{\text{bev}} - {\text{RIS}}}}}} \right)/{\text{dt}} = \left( {{\text{C}}{{\text{L}}_{{{\text{bev}} - {\text{RIS}}}}}/{{\text{V}}_{\text{bv}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{plasma}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{bv}} - {\text{RIS}}}}} - \left( {{\text{C}}{{\text{L}}_{{{\text{bev}} - {\text{RIS}}}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{bev}} - {\text{RIS}}}}} - \left( {{\text{C}}{{\text{L}}_{{{\text{efflux}} - {\text{RIS}}}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - }}}} \hfill \\ {_{\text{RIS}} * {{\text{A}}_{{{\text{bev}} - {\text{RIS}}}}} - \left( {{\text{C}}{{\text{L}}_{\text{str}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{bev}} - {\text{RIS}}}}} + \left( {{\text{C}}{{\text{L}}_{\text{str}}}/{{\text{V}}_{\text{str}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{strF}} - {\text{RIS}}}}} - \left( {{\text{C}}{{\text{L}}_{\text{cor}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{bev}} - }}}} \hfill \\ {_{\text{RIS}} + \left( {{\text{C}}{{\text{L}}_{\text{cor}}}/{{\text{V}}_{\text{cor}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{corF}} - {\text{RIS}}}}}} \hfill \\ } $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equh.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equi">
<alternatives>
<tex-math id="M9">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \matrix{{*{20}{c}} {{\text{d}}\left( {{{\text{A}}_{{{\text{strF}} - {\text{RIS}}}}}} \right)/{\text{dt}} = \left( {{\text{C}}{{\text{L}}_{\text{str}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{bev}} - {\text{RIS}}}}} - \left( {{\text{C}}{{\text{L}}_{\text{str}}}/{{\text{V}}_{\text{str}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{strF}} - {\text{RIS}}}}} - {\text{ko}}{{\text{n}}_{\text{D2}}} * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{strF}} - {\text{RIS}}}}} * ({{\text{B}}_{{{ \max }}}}_{{ - {\text{D2}}}} - } \hfill \\ {{\text{C}}{{\text{B}}_{{{\text{D2}} - {\text{RIS}}}}} - {\text{C}}{{\text{B}}_{{{\text{D2}} - {\text{PALI}}}}}) + {\text{kof}}{{\text{f}}_{\text{D2}}} * {{\text{A}}_{{{\text{strB}} - {\text{RIS}}}}}} \hfill \\ } $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equi.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equj">
<alternatives>
<tex-math id="M10">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{d}}\left( {{{\text{A}}_{{{\text{strB}} - {\text{RIS}}}}}} \right)/{\text{dt}} = {\text{ko}}{{\text{n}}_{\text{D2}}} * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{strF}} - {\text{RIS}}}}} * ({{\text{B}}_{{{ \max }}}}_{{ - {\text{D2}}}} - {\text{C}}{{\text{B}}_{{{\text{D2}} - {\text{RIS}}}}} - {\text{C}}{{\text{B}}_{{{\text{D2}} - {\text{PALI}}}}}) - {\text{kof}}{{\text{f}}_{\text{D2}}} * {{\text{A}}_{{{\text{strB}} - {\text{RIS}}}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equj.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equk">
<alternatives>
<tex-math id="M11">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \matrix{{*{20}{c}} {{\text{d}}\left( {{{\text{A}}_{{{\text{corF}} - {\text{RIS}}}}}} \right)/{\text{dt}} = \left( {{\text{C}}{{\text{L}}_{\text{cor}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{bev}} - {\text{RIS}}}}} - \left( {{\text{C}}{{\text{L}}_{\text{cor}}}/{{\text{V}}_{\text{cor}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{corF}} - {\text{RIS}}}}} - {\text{ko}}{{\text{n}}_{{5}}}_{{ - {\text{HT2A}}}} * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{corF}} - }}}} \hfill \\ {_{\text{RIS}} * ({{\text{B}}_{{{ \max }}}}_{{ - {5} - {\text{HT2A}}}} - {\text{C}}{{\text{B}}_{{{5} - {\text{HT2A}}--{\text{RIS}}}}} - {\text{C}}{{\text{B}}_{{{5} - {\text{HT2A}} - {\text{PALI}}}}}) + {\text{kof}}{{\text{f}}_{{5}}}_{{ - {\text{HT2A}}}} * {{\text{A}}_{{{\text{corB}} - {\text{RIS}}}}}} \hfill \\ } $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equk.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equl">
<alternatives>
<tex-math id="M12">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{d}}\left( {{{\text{A}}_{{{\text{corB}} - {\text{RIS}}}}}} \right)/{\text{dt}} = {\text{ko}}{{\text{n}}_{{5}}}_{{ - {\text{HT2A}}}} * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{RIS}}}}} * {{\text{A}}_{{{\text{corF}} - {\text{RIS}}}}} * ({{\text{B}}_{{{ \max }}}}_{{ - {5} - {\text{HT2A}}}} - {\text{C}}{{\text{B}}_{{{5} - {\text{HT2A}} - {\text{RIS}}}}} - {\text{C}}{{\text{B}}_{{{5} - {\text{HT2A}} - {\text{PALI}}}}}) - {\text{kof}}{{\text{f}}_{{5}}}_{{ - {\text{HT2A}}}} * {{\text{A}}_{{{\text{corB}} - {\text{RIS}}}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equl.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equm">
<alternatives>
<tex-math id="M13">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \matrix{{*{20}{c}} {{\text{d}}\left( {{{\text{A}}_{{{\text{bv}} - {\text{PALI}}}}}} \right)/{\text{dt}} = \left( {{\text{C}}{{\text{L}}_{\text{bv}}}/{{\text{V}}_{{{\text{c}} - {\text{PALI}}}}}} \right) * {{\text{A}}_{{{\text{c}} - {\text{PALI}}}}} - \left( {{\text{C}}{{\text{L}}_{\text{bv}}}/{{\text{V}}_{\text{bv}}}} \right) * {{\text{A}}_{{{\text{bv}} - {\text{PALI}}}}} - \left( {{\text{C}}{{\text{L}}_{{{\text{bev}} - {\text{PALI}}}}}/{{\text{V}}_{\text{bv}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{plasma}} - {\text{PALI}}}}} * {{\text{A}}_{{{\text{bvv}} - }}}} \hfill \\ {_{\text{PALI}} + \left( {{\text{C}}{{\text{L}}_{\text{bev PALI}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{PALI}}}}} * {{\text{A}}_{{{\text{bev}} - {\text{PALI}}}}} + \left( {{\text{C}}{{\text{L}}_{{{\text{efflux}} - {\text{PALI}}}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{PALI}}}}} * {{\text{A}}_{{{\text{bev}} - {\text{PALI}}}}}} \hfill \\ } $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equm.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equn">
<alternatives>
<tex-math id="M14">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{*{20}l} {{{\text{d}}{\left( {{\text{A}}_{{{\text{bev}} - {\text{PALI}}}} } \right)}/{\text{dt}} = {\left( {{\text{CL}}_{{{\text{bev}} - {\text{PALI}}}} /{\text{V}}_{{{\text{bv}}}} } \right)} * {\text{fu}}_{{{\text{plasma}} - {\text{PALI}}}} * {\text{A}}_{{{\text{bv}} - {\text{PALI}}}} - {\left( {{\text{CL}}_{{{\text{bev}} - {\text{PALI}}}} /{\text{V}}_{{{\text{bev}}}} } \right)} * {\text{fu}}_{{{\text{brain}} - {\text{PALI}}}} * {\text{A}}_{{{\text{bev}} - {\text{PALI}}}} - ({\text{CL}}_{{{\text{efflux}} - {\text{PALI}}}} } \hfill} \\ {{/{\text{V}}_{{{\text{bev}}}} ) * {\text{fu}}_{{{\text{brain}} - {\text{PALI}}}} * {\text{A}}_{{{\text{bev}} - {\text{PALI}}}} - {\left( {{\text{CL}}_{{{\text{str}}}} /{\text{V}}_{{{\text{bev}}}} } \right)} * {\text{fu}}_{{{\text{brain}} - {\text{PALI}}}} * {\text{A}}_{{{\text{bev}} - {\text{PALI}}}} + {\left( {{\text{CL}}_{{{\text{str}}}} /{\text{V}}_{{{\text{str}}}} } \right)} * {\text{fu}}_{{{\text{brain}} - {\text{PALI}}}} * {\text{A}}_{{{\text{strF}} - {\text{PALI}}}} - } \hfill} \\ {{{\left( {{\text{CL}}_{{{\text{cor}}}} /{\text{V}}_{{{\text{bev}}}} } \right)} * {\text{fu}}_{{{\text{brain}} - {\text{PALI}}}} * {\text{A}}_{{{\text{bev}} - {\text{PALI}}}} + {\left( {{\text{CL}}_{{{\text{cor}}}} /{\text{V}}_{{{\text{cor}}}} } \right)} * {\text{fu}}_{{{\text{brain}} - {\text{PALI}}}} * {\text{A}}_{{{\text{corF}} - {\text{PALI}}}} } \hfill} \\ \end{array} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equn.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equo">
<alternatives>
<tex-math id="M15">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{d}}{\left( {{\text{A}}_{{{\text{strF}} - {\text{PALI}}}} } \right)}/{\text{dt}} = {\left( {{\text{CL}}_{{{\text{str}}}} /{\text{V}}_{{{\text{bev}}}} } \right)}*{\text{fu}}_{{{\text{brain}} - {\text{PALI}}}} *{\text{A}}_{{{\text{bev}} - {\text{PALI}}}} - {\left( {{\text{CL}}_{{{\text{str}}}} /{\text{V}}_{{{\text{str}}}} } \right)}*{\text{fu}}_{{{\text{brain}} - {\text{PALI}}}} *{\text{A}}_{{{\text{strF}} - {\text{PALI}}}} - {\text{kon}}_{{{\text{D}}2}} *{\text{fu}}_{{{\text{brain}} - {\text{PALI}}}} *{\text{A}}_{{{\text{strF}} - {\text{PALI}}}} *{\left( {{\text{B}}_{{\max - {\text{D}}2}} - {\text{CB}}_{{{\text{D}}2 - {\text{RIS}}}} - {\text{CB}}_{{{\text{D}}2 - {\text{PALI}}}} } \right)} + {\text{koff}}_{{{\text{D}}2}} *{\text{A}}_{{{\text{strB}} - {\text{PALI}}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equo.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equp">
<alternatives>
<tex-math id="M16">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{d}}\left( {{{\text{A}}_{{{\text{strB}} - {\text{PALI}}}}}} \right)/{\text{dt}} = {\text{ko}}{{\text{n}}_{\text{D2}}} * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{PALI}}}}} * {{\text{A}}_{{{\text{strF}} - {\text{PALI}}}}} * ({{\text{B}}_{{{ \max } - }}}_{\text{D2}} - {\text{C}}{{\text{B}}_{{{\text{D2}} - {\text{RIS}}}}} - {\text{C}}{{\text{B}}_{{{\text{D2}} - {\text{PALI}}}}}) - {\text{kof}}{{\text{f}}_{\text{D2}}} * {{\text{A}}_{{{\text{strB}} - {\text{PALI}}}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equp.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equq">
<alternatives>
<tex-math id="M17">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \matrix{{*{20}{c}} {{\text{d}}\left( {{{\text{A}}_{{{\text{corF}} - {\text{PALI}}}}}} \right)/{\text{dt}} = \left( {{\text{C}}{{\text{L}}_{\text{cor}}}/{{\text{V}}_{\text{bev}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{PALI}}}}} * {{\text{A}}_{{{\text{bev}} - {\text{PALI}}}}} - \left( {{\text{C}}{{\text{L}}_{\text{cor}}}/{{\text{V}}_{\text{cor}}}} \right) * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{PALI}}}}} * {{\text{A}}_{{{\text{corF}} - {\text{PALI}}}}} - {\text{ko}}{{\text{n}}_{{5}}}_{{ - {\text{HT2A}}}} * {\text{f}}{{\text{u}}_{{{\text{brain}} - }}}} \hfill \\ {_{\text{PALI}} * {{\text{A}}_{{{\text{corF}} - {\text{PALI}}}}} * ({{\text{B}}_{{{ \max }}}}_{{ - {5} - {\text{HT2A}}}} - {\text{C}}{{\text{B}}_{{{5} - {\text{HT2A}}--{\text{RIS}}}}} - {\text{C}}{{\text{B}}_{{{5} - {\text{HT2A}} - {\text{PALI}}}}}) + {\text{kof}}{{\text{f}}_{{5}}}_{{ - {\text{HT2A}}}} * {{\text{A}}_{{{\text{corB}} - {\text{PALI}}}}}} \hfill \\ } $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equq.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equr">
<alternatives>
<tex-math id="M18">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \matrix{{*{20}{c}} {{\text{d}}\left( {{{\text{A}}_{{{\text{corB}} - {\text{PALI}}}}}} \right)/{\text{dt}} = {\text{ko}}{{\text{n}}_{{5}}}_{{ - {\text{HT2A}}}} * {\text{f}}{{\text{u}}_{{{\text{brain}} - {\text{PALI}}}}} * {{\text{A}}_{{{\text{corF}} - {\text{PALI}}}}} * ({{\text{B}}_{{{ \max }}}}_{{ - {5} - {\text{HT2A}}}} - {\text{C}}{{\text{B}}_{{{5} - {\text{HT2A }}--{\text{RIS}}}}} - {\text{C}}{{\text{B}}_{{{5} - {\text{HT2A}} - {\text{PALI}}}}}) - {\text{kof}}{{\text{f}}_{{5}}}_{ - }} \hfill \\ {_{\text{HT2A}} * {{\text{A}}_{{{\text{corB}} - {\text{PALI}}}}}} \hfill \\ } $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equr.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
</p>
<p>Where subscripts RIS and PALI denote parameters referring to risperidone and paliperidone, respectively. Subscripts depot, p, c, bv, bev, strF, strB, corF, corB represent volumes (V) and amounts (A) in depot (only for SC dosing), central, peripheral, brain vascular, brain extravascular, striatum free, striatum bound, frontal cortex free, frontal cortex bound compartments. DR
<sub>SC</sub>
represents duration of zero-order absorption process for SC dosing. ka
<sub>SC</sub>
is the absorption rate constant for SC dosing. CL, Q, CL
<sub>bv</sub>
, CL
<sub>str</sub>
, CL
<sub>cor</sub>
represent clearance in the central, peripheral, brain vascular, striatum free, cortex free compartments, respectively. CL
<sub>met</sub>
represent metabolic conversion of RIS to PALI. CL
<sub>bev</sub>
and CL
<sub>efflux</sub>
represent passive diffusion and active efflux through the BBB. B
<sub>max</sub>
is the receptor density. CB are concentrations bound to receptor in nM. They are calculated as follows:
<disp-formula id="Equs">
<alternatives>
<tex-math id="M19">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{C}}{{\text{B}}_{{{\text{D2}} - {\text{RIS}}}}} = {1}000 * {{\text{A}}_{{{\text{strB}} - {\text{RIS}}}}}/{{\text{V}}_{\text{str}}}/{\text{M}}{{\text{W}}_{\text{RIS}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equs.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equt">
<alternatives>
<tex-math id="M20">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{C}}{{\text{B}}_{{{\text{D2}} - {\text{PALI}}}}} = {1}000 * {{\text{A}}_{{{\text{strB}} - {\text{PALI}}}}}/{{\text{V}}_{\text{str}}}/{\text{M}}{{\text{W}}_{\text{PALI}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equt.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equu">
<alternatives>
<tex-math id="M21">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{C}}{{\text{B}}_{{{5} - {\text{HT2A}} - {\text{RIS}}}}} = {1}000 * {{\text{A}}_{{{\text{corB}} - {\text{RIS}}}}}/{{\text{V}}_{\text{cor}}}/{\text{M}}{{\text{W}}_{\text{RIS}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equu.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equv">
<alternatives>
<tex-math id="M22">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{C}}{{\text{B}}_{{{5} - {\text{HT2A}} - {\text{PALI}}}}} = {1}000 * {{\text{A}}_{{{\text{corB}} - {\text{PALI}}}}}/{{\text{V}}_{\text{cor}}}/{\text{M}}{{\text{W}}_{\text{PALI}}} $$\end{document}</tex-math>
<graphic xlink:href="11095_2012_722_Article_Equv.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
</p>
<p>Where MW is a molecular weight.</p>
<p>RO is calculated as
<inline-formula id="IEq1">
<alternatives>
<tex-math id="M23">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ({\text{C}}{{\text{B}}_{\text{RIS}}} + {\text{C}}{{\text{B}}_{\text{PALI}}})/{{\text{B}}_{{{ \max }}}} $$\end{document}</tex-math>
<inline-graphic xlink:href="11095_2012_722_Article_IEq1.gif"></inline-graphic>
</alternatives>
</inline-formula>
.</p>
</sec>
</app>
</app-group>
<glossary>
<def-list>
<def-list>
<def-item>
<term>BBB</term>
<def>
<p>blood-brain barrier</p>
</def>
</def-item>
<def-item>
<term>B
<sub>max</sub>
</term>
<def>
<p>receptor density</p>
</def>
</def-item>
<def-item>
<term>CL</term>
<def>
<p>systemic clearance</p>
</def>
</def-item>
<def-item>
<term>CL
<sub>bev</sub>
</term>
<def>
<p>passive brain-extravascular clearance</p>
</def>
</def-item>
<def-item>
<term>CL
<sub>bv</sub>
</term>
<def>
<p>brain-vascular clearance</p>
</def>
</def-item>
<def-item>
<term>CL
<sub>cor</sub>
</term>
<def>
<p>brain-cortex clearance</p>
</def>
</def-item>
<def-item>
<term>CL
<sub>efflux</sub>
</term>
<def>
<p>active efflux clearance</p>
</def>
</def-item>
<def-item>
<term>CL
<sub>met</sub>
</term>
<def>
<p>metabolic clearance of RIS to PALI</p>
</def>
</def-item>
<def-item>
<term>CL
<sub>PALI</sub>
</term>
<def>
<p>systemic clearance of PALI</p>
</def>
</def-item>
<def-item>
<term>CL
<sub>RIS</sub>
</term>
<def>
<p>systemic clearance of RIS by other routes than metabolism to PALI</p>
</def>
</def-item>
<def-item>
<term>CL
<sub>str</sub>
</term>
<def>
<p>brain-striatum clearance</p>
</def>
</def-item>
<def-item>
<term>CWRES</term>
<def>
<p>conditional weighted residuals</p>
</def>
</def-item>
<def-item>
<term>F
<sub>IP</sub>
</term>
<def>
<p>bioavailability for intraperitoneal route of administration</p>
</def>
</def-item>
<def-item>
<term>FOCE</term>
<def>
<p>first order conditional estimation method</p>
</def>
</def-item>
<def-item>
<term>Fr
<sub>FPM</sub>
</term>
<def>
<p>fraction of the absorbed RIS IP dose going directly to PALI central compartment</p>
</def>
</def-item>
<def-item>
<term>F
<sub>SC</sub>
</term>
<def>
<p>bioavailability for subcutaneous route of administration</p>
</def>
</def-item>
<def-item>
<term>fu
<sub>brain</sub>
</term>
<def>
<p>unbound fraction in brain</p>
</def>
</def-item>
<def-item>
<term>fu
<sub>plasma</sub>
</term>
<def>
<p>unbound fraction in plasma</p>
</def>
</def-item>
<def-item>
<term>GOF</term>
<def>
<p>goodness-of-fit plots</p>
</def>
</def-item>
<def-item>
<term>IIV</term>
<def>
<p>inter-individual variability</p>
</def>
</def-item>
<def-item>
<term>IP</term>
<def>
<p>intraperitoneal</p>
</def>
</def-item>
<def-item>
<term>IV</term>
<def>
<p>intravenous</p>
</def>
</def-item>
<def-item>
<term>Kd</term>
<def>
<p>receptor dissociation constant</p>
</def>
</def-item>
<def-item>
<term>koff</term>
<def>
<p>receptor dissociation rate constant</p>
</def>
</def-item>
<def-item>
<term>kon</term>
<def>
<p>receptor association rate constant</p>
</def>
</def-item>
<def-item>
<term>nM</term>
<def>
<p>nanomoles/litre</p>
</def>
</def-item>
<def-item>
<term>OFV</term>
<def>
<p>objective function value</p>
</def>
</def-item>
<def-item>
<term>PALI</term>
<def>
<p>paliperidone</p>
</def>
</def-item>
<def-item>
<term>P-gp</term>
<def>
<p>P-glycoprotein</p>
</def>
</def-item>
<def-item>
<term>PK-PD</term>
<def>
<p>pharmacokinetic and pharmacodynamic</p>
</def>
</def-item>
<def-item>
<term>Q</term>
<def>
<p>intercompartmental flow between central and peripheral compartment</p>
</def>
</def-item>
<def-item>
<term>RIS</term>
<def>
<p>risperidone</p>
</def>
</def-item>
<def-item>
<term>RO</term>
<def>
<p>receptor occupancy</p>
</def>
</def-item>
<def-item>
<term>RSE</term>
<def>
<p>relative Standard Error</p>
</def>
</def-item>
<def-item>
<term>SC</term>
<def>
<p>subcutaneous</p>
</def>
</def-item>
<def-item>
<term>V
<sub>bev</sub>
</term>
<def>
<p>volume of brain-extravascular compartment</p>
</def>
</def-item>
<def-item>
<term>V
<sub>bv</sub>
</term>
<def>
<p>volume of brain-vascular compartment</p>
</def>
</def-item>
<def-item>
<term>V
<sub>c</sub>
</term>
<def>
<p>volume of the central compartment</p>
</def>
</def-item>
<def-item>
<term>V
<sub>cor</sub>
</term>
<def>
<p>volume of frontal cortex compartment</p>
</def>
</def-item>
<def-item>
<term>V
<sub>p</sub>
</term>
<def>
<p>volume of the peripheral compartment</p>
</def>
</def-item>
<def-item>
<term>V
<sub>str</sub>
</term>
<def>
<p>volume of striatum compartment</p>
</def>
</def-item>
</def-list>
</def-list>
</glossary>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Belgique/explor/OpenAccessBelV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000172 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000172 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Belgique
   |area=    OpenAccessBelV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3369128
   |texte=   Pharmacokinetic-Pharmacodynamic Modeling of the D2 and 5-HT2A Receptor Occupancy of Risperidone and Paliperidone in Rats
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:22437487" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OpenAccessBelV2 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Dec 1 00:43:49 2016. Site generation: Wed Mar 6 14:51:30 2024