Serveur d'exploration autour du libre accès en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design

Identifieur interne : 000067 ( Pmc/Corpus ); précédent : 000066; suivant : 000068

Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design

Auteurs : Debby Laukens ; Brigitta M. Brinkman ; Jeroen Raes ; Martine De Vos ; Peter Vandenabeele

Source :

RBID : PMC:4703068

Abstract

Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host–microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments.


Url:
DOI: 10.1093/femsre/fuv036
PubMed: 26323480
PubMed Central: 4703068

Links to Exploration step

PMC:4703068

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design</title>
<author>
<name sortKey="Laukens, Debby" sort="Laukens, Debby" uniqKey="Laukens D" first="Debby" last="Laukens">Debby Laukens</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Ghent University, B-9000 Ghent, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brinkman, Brigitta M" sort="Brinkman, Brigitta M" uniqKey="Brinkman B" first="Brigitta M." last="Brinkman">Brigitta M. Brinkman</name>
<affiliation>
<nlm:aff id="aff2">Inflammation Research Center, VIB, B-9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raes, Jeroen" sort="Raes, Jeroen" uniqKey="Raes J" first="Jeroen" last="Raes">Jeroen Raes</name>
<affiliation>
<nlm:aff id="aff4">Center for the Biology of Disease, VIB, B-3000 Leuven, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">Department Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Vos, Martine" sort="De Vos, Martine" uniqKey="De Vos M" first="Martine" last="De Vos">Martine De Vos</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Ghent University, B-9000 Ghent, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vandenabeele, Peter" sort="Vandenabeele, Peter" uniqKey="Vandenabeele P" first="Peter" last="Vandenabeele">Peter Vandenabeele</name>
<affiliation>
<nlm:aff id="aff2">Inflammation Research Center, VIB, B-9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Methusalem Program, Ghent University, B-9000 Ghent, Belgium</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26323480</idno>
<idno type="pmc">4703068</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703068</idno>
<idno type="RBID">PMC:4703068</idno>
<idno type="doi">10.1093/femsre/fuv036</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000067</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design</title>
<author>
<name sortKey="Laukens, Debby" sort="Laukens, Debby" uniqKey="Laukens D" first="Debby" last="Laukens">Debby Laukens</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Ghent University, B-9000 Ghent, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brinkman, Brigitta M" sort="Brinkman, Brigitta M" uniqKey="Brinkman B" first="Brigitta M." last="Brinkman">Brigitta M. Brinkman</name>
<affiliation>
<nlm:aff id="aff2">Inflammation Research Center, VIB, B-9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raes, Jeroen" sort="Raes, Jeroen" uniqKey="Raes J" first="Jeroen" last="Raes">Jeroen Raes</name>
<affiliation>
<nlm:aff id="aff4">Center for the Biology of Disease, VIB, B-3000 Leuven, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">Department Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Vos, Martine" sort="De Vos, Martine" uniqKey="De Vos M" first="Martine" last="De Vos">Martine De Vos</name>
<affiliation>
<nlm:aff id="aff1">Department of Gastroenterology, Ghent University, B-9000 Ghent, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vandenabeele, Peter" sort="Vandenabeele, Peter" uniqKey="Vandenabeele P" first="Peter" last="Vandenabeele">Peter Vandenabeele</name>
<affiliation>
<nlm:aff id="aff2">Inflammation Research Center, VIB, B-9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Methusalem Program, Ghent University, B-9000 Ghent, Belgium</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FEMS Microbiology Reviews</title>
<idno type="ISSN">0168-6445</idno>
<idno type="eISSN">1574-6976</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host–microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Albenberg, L" uniqKey="Albenberg L">L Albenberg</name>
</author>
<author>
<name sortKey="Esipova, Tv" uniqKey="Esipova T">TV Esipova</name>
</author>
<author>
<name sortKey="Judge, Cp" uniqKey="Judge C">CP Judge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, Ic" uniqKey="Allen I">IC Allen</name>
</author>
<author>
<name sortKey="Tekippe, Em" uniqKey="Tekippe E">EM TeKippe</name>
</author>
<author>
<name sortKey="Woodford, Rm" uniqKey="Woodford R">RM Woodford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arumugam, M" uniqKey="Arumugam M">M Arumugam</name>
</author>
<author>
<name sortKey="Raes, J" uniqKey="Raes J">J Raes</name>
</author>
<author>
<name sortKey="Pelletier, E" uniqKey="Pelletier E">E Pelletier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="B Ckhed, F" uniqKey="B Ckhed F">F Bäckhed</name>
</author>
<author>
<name sortKey="Ding, H" uniqKey="Ding H">H Ding</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="B Ckhed, F" uniqKey="B Ckhed F">F Bäckhed</name>
</author>
<author>
<name sortKey="Ley, Re" uniqKey="Ley R">RE Ley</name>
</author>
<author>
<name sortKey="Sonnenburg, Jl" uniqKey="Sonnenburg J">JL Sonnenburg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="B Ckhed, F" uniqKey="B Ckhed F">F Bäckhed</name>
</author>
<author>
<name sortKey="Manchester, Jk" uniqKey="Manchester J">JK Manchester</name>
</author>
<author>
<name sortKey="Semenkovich, Cf" uniqKey="Semenkovich C">CF Semenkovich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bailey, Mt" uniqKey="Bailey M">MT Bailey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baker, D" uniqKey="Baker D">D Baker</name>
</author>
<author>
<name sortKey="Lidster, K Sottomayor" uniqKey="Lidster K">K, Sottomayor Lidster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bangsgaard Bendtsen, Km" uniqKey="Bangsgaard Bendtsen K">KM Bangsgaard Bendtsen</name>
</author>
<author>
<name sortKey="Krych, L" uniqKey="Krych L">L Krych</name>
</author>
<author>
<name sortKey="S Rensen, Db" uniqKey="S Rensen D">DB Sørensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauer, C" uniqKey="Bauer C">C Bauer</name>
</author>
<author>
<name sortKey="Duewell, P" uniqKey="Duewell P">P Duewell</name>
</author>
<author>
<name sortKey="Lehr, Ha" uniqKey="Lehr H">HA Lehr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauer, C" uniqKey="Bauer C">C Bauer</name>
</author>
<author>
<name sortKey="Duewell, P" uniqKey="Duewell P">P Duewell</name>
</author>
<author>
<name sortKey="Mayer, C" uniqKey="Mayer C">C Mayer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bercik, P" uniqKey="Bercik P">P Bercik</name>
</author>
<author>
<name sortKey="Denou, E" uniqKey="Denou E">E Denou</name>
</author>
<author>
<name sortKey="Collins, J" uniqKey="Collins J">J Collins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bergstrom, A" uniqKey="Bergstrom A">A Bergström</name>
</author>
<author>
<name sortKey="Kristensen, Mb" uniqKey="Kristensen M">MB Kristensen</name>
</author>
<author>
<name sortKey="Bahl, Mi" uniqKey="Bahl M">MI Bahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bleich, A" uniqKey="Bleich A">A Bleich</name>
</author>
<author>
<name sortKey="Hansen, Ak" uniqKey="Hansen A">AK Hansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouskra, D" uniqKey="Bouskra D">D Bouskra</name>
</author>
<author>
<name sortKey="Brezillon, C" uniqKey="Brezillon C">C Brézillon</name>
</author>
<author>
<name sortKey="Berard, M" uniqKey="Berard M">M Bérard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brinkman, Bm" uniqKey="Brinkman B">BM Brinkman</name>
</author>
<author>
<name sortKey="Becker, A" uniqKey="Becker A">A Becker</name>
</author>
<author>
<name sortKey="Ayiseh, Rb" uniqKey="Ayiseh R">RB Ayiseh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brinkman, Bm" uniqKey="Brinkman B">BM Brinkman</name>
</author>
<author>
<name sortKey="Hildebrand, F" uniqKey="Hildebrand F">F Hildebrand</name>
</author>
<author>
<name sortKey="Kubica, M" uniqKey="Kubica M">M Kubica</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brooks, Jp" uniqKey="Brooks J">JP Brooks</name>
</author>
<author>
<name sortKey="Edwards, Dj" uniqKey="Edwards D">DJ Edwards</name>
</author>
<author>
<name sortKey="Harwich, Md" uniqKey="Harwich M">MD Harwich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buchler, G" uniqKey="Buchler G">G Büchler</name>
</author>
<author>
<name sortKey="Wos Oxley, Ml" uniqKey="Wos Oxley M">ML Wos-Oxley</name>
</author>
<author>
<name sortKey="Smoczek, A" uniqKey="Smoczek A">A Smoczek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buddington, Rk" uniqKey="Buddington R">RK Buddington</name>
</author>
<author>
<name sortKey="Williams, Ch" uniqKey="Williams C">CH Williams</name>
</author>
<author>
<name sortKey="Kostek, Bm" uniqKey="Kostek B">BM Kostek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campbell, Jh" uniqKey="Campbell J">JH Campbell</name>
</author>
<author>
<name sortKey="Foster, Cm" uniqKey="Foster C">CM Foster</name>
</author>
<author>
<name sortKey="Vishnivetskaya, T" uniqKey="Vishnivetskaya T">T Vishnivetskaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carlisle, Em" uniqKey="Carlisle E">EM Carlisle</name>
</author>
<author>
<name sortKey="Poroyko, V" uniqKey="Poroyko V">V Poroyko</name>
</author>
<author>
<name sortKey="Caplan, Ms" uniqKey="Caplan M">MS Caplan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castelhano Carlos, Mj" uniqKey="Castelhano Carlos M">MJ Castelhano-Carlos</name>
</author>
<author>
<name sortKey="Baumans, V" uniqKey="Baumans V">V Baumans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Hy" uniqKey="Chang H">HY Chang</name>
</author>
<author>
<name sortKey="Mitzner, W" uniqKey="Mitzner W">W Mitzner</name>
</author>
<author>
<name sortKey="Watson, J" uniqKey="Watson J">J Watson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cho, I" uniqKey="Cho I">I Cho</name>
</author>
<author>
<name sortKey="Yamanishi, S" uniqKey="Yamanishi S">S Yamanishi</name>
</author>
<author>
<name sortKey="Cox, L" uniqKey="Cox L">L Cox</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chung, H" uniqKey="Chung H">H Chung</name>
</author>
<author>
<name sortKey="Pamp, Sj" uniqKey="Pamp S">SJ Pamp</name>
</author>
<author>
<name sortKey="Hill, Ja" uniqKey="Hill J">JA Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Claus, Sp" uniqKey="Claus S">SP Claus</name>
</author>
<author>
<name sortKey="Ellero, Sl" uniqKey="Ellero S">SL Ellero</name>
</author>
<author>
<name sortKey="Berger, B" uniqKey="Berger B">B Berger</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cotillard, A" uniqKey="Cotillard A">A Cotillard</name>
</author>
<author>
<name sortKey="Kennedy, Sp" uniqKey="Kennedy S">SP Kennedy</name>
</author>
<author>
<name sortKey="Kong, Lc" uniqKey="Kong L">LC Kong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowles, Rl" uniqKey="Cowles R">RL Cowles</name>
</author>
<author>
<name sortKey="Lee, Jy" uniqKey="Lee J">JY Lee</name>
</author>
<author>
<name sortKey="Gallaher, Dd" uniqKey="Gallaher D">DD Gallaher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cox, Lm" uniqKey="Cox L">LM Cox</name>
</author>
<author>
<name sortKey="Blaser, Mj" uniqKey="Blaser M">MJ Blaser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cox, Lm" uniqKey="Cox L">LM Cox</name>
</author>
<author>
<name sortKey="Yamanishi, S" uniqKey="Yamanishi S">S Yamanishi</name>
</author>
<author>
<name sortKey="Sohn, J" uniqKey="Sohn J">J Sohn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Vos, M" uniqKey="De Vos M">M De Vos</name>
</author>
<author>
<name sortKey="Louis, Ej" uniqKey="Louis E">EJ Louis</name>
</author>
<author>
<name sortKey="Jahnsen, J" uniqKey="Jahnsen J">J Jahnsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deloris Alexander, A" uniqKey="Deloris Alexander A">A Deloris Alexander</name>
</author>
<author>
<name sortKey="Orcutt, Rp" uniqKey="Orcutt R">RP Orcutt</name>
</author>
<author>
<name sortKey="Henry, J" uniqKey="Henry J">J Henry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dethlefsen, L" uniqKey="Dethlefsen L">L Dethlefsen</name>
</author>
<author>
<name sortKey="Mcfall Ngai, M" uniqKey="Mcfall Ngai M">M McFall-Ngai</name>
</author>
<author>
<name sortKey="Relman, Da" uniqKey="Relman D">DA Relman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Devkota, S" uniqKey="Devkota S">S Devkota</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Musch, Mw" uniqKey="Musch M">MW Musch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dewhirst, Fe" uniqKey="Dewhirst F">FE Dewhirst</name>
</author>
<author>
<name sortKey="Chien, Cc" uniqKey="Chien C">CC Chien</name>
</author>
<author>
<name sortKey="Paster, Bj" uniqKey="Paster B">BJ Paster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, T" uniqKey="Ding T">T Ding</name>
</author>
<author>
<name sortKey="Schloss, Pd" uniqKey="Schloss P">PD Schloss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, Y" uniqKey="Du Y">Y Du</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M Yang</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dubos, R" uniqKey="Dubos R">R Dubos</name>
</author>
<author>
<name sortKey="Schaedler, Rw" uniqKey="Schaedler R">RW Schaedler</name>
</author>
<author>
<name sortKey="Costello, Rl" uniqKey="Costello R">RL Costello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dupaul Chicoine, J" uniqKey="Dupaul Chicoine J">J Dupaul-Chicoine</name>
</author>
<author>
<name sortKey="Yeretssian, G" uniqKey="Yeretssian G">G Yeretssian</name>
</author>
<author>
<name sortKey="Doiron, K" uniqKey="Doiron K">K Doiron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eberl, G" uniqKey="Eberl G">G Eberl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Aidy, S" uniqKey="El Aidy S">S El Aidy</name>
</author>
<author>
<name sortKey="Van Baarlen, P" uniqKey="Van Baarlen P">P van Baarlen</name>
</author>
<author>
<name sortKey="Derrien, M" uniqKey="Derrien M">M Derrien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elinav, E" uniqKey="Elinav E">E Elinav</name>
</author>
<author>
<name sortKey="Strowig, T" uniqKey="Strowig T">T Strowig</name>
</author>
<author>
<name sortKey="Kau, Al" uniqKey="Kau A">AL Kau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faith, Jj" uniqKey="Faith J">JJ Faith</name>
</author>
<author>
<name sortKey="Guruge, Jl" uniqKey="Guruge J">JL Guruge</name>
</author>
<author>
<name sortKey="Charbonneau, M" uniqKey="Charbonneau M">M Charbonneau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friswell, Mk" uniqKey="Friswell M">MK Friswell</name>
</author>
<author>
<name sortKey="Gika, H" uniqKey="Gika H">H Gika</name>
</author>
<author>
<name sortKey="Stratford, Ij" uniqKey="Stratford I">IJ Stratford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fuhrer, A" uniqKey="Fuhrer A">A Fuhrer</name>
</author>
<author>
<name sortKey="Sprenger, N" uniqKey="Sprenger N">N Sprenger</name>
</author>
<author>
<name sortKey="Kurakevich, E" uniqKey="Kurakevich E">E Kurakevich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujiwara, R" uniqKey="Fujiwara R">R Fujiwara</name>
</author>
<author>
<name sortKey="Watanabe, J" uniqKey="Watanabe J">J Watanabe</name>
</author>
<author>
<name sortKey="Sonoyama, K" uniqKey="Sonoyama K">K Sonoyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fushuku, S" uniqKey="Fushuku S">S Fushuku</name>
</author>
<author>
<name sortKey="Fukuda, K" uniqKey="Fukuda K">K Fukuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fushuku, S" uniqKey="Fushuku S">S Fushuku</name>
</author>
<author>
<name sortKey="Fukuda, K" uniqKey="Fukuda K">K Fukuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garrett, Ws" uniqKey="Garrett W">WS Garrett</name>
</author>
<author>
<name sortKey="Lord, Gm" uniqKey="Lord G">GM Lord</name>
</author>
<author>
<name sortKey="Punit, S" uniqKey="Punit S">S Punit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gomez, A" uniqKey="Gomez A">A Gomez</name>
</author>
<author>
<name sortKey="Luckey, D" uniqKey="Luckey D">D Luckey</name>
</author>
<author>
<name sortKey="Yeoman, Cj" uniqKey="Yeoman C">CJ Yeoman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hadis, U" uniqKey="Hadis U">U Hadis</name>
</author>
<author>
<name sortKey="Wahl, B" uniqKey="Wahl B">B Wahl</name>
</author>
<author>
<name sortKey="Schulz, O" uniqKey="Schulz O">O Schulz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hansen, Ch" uniqKey="Hansen C">CH Hansen</name>
</author>
<author>
<name sortKey="Nielsen, Ds" uniqKey="Nielsen D">DS Nielsen</name>
</author>
<author>
<name sortKey="Kverka, M" uniqKey="Kverka M">M Kverka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanson, La" uniqKey="Hanson L">LA Hanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hildebrand, F" uniqKey="Hildebrand F">F Hildebrand</name>
</author>
<author>
<name sortKey="Nguyen, Tl" uniqKey="Nguyen T">TL Nguyen</name>
</author>
<author>
<name sortKey="Brinkman, B" uniqKey="Brinkman B">B Brinkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hildebrandt, Ma" uniqKey="Hildebrandt M">MA Hildebrandt</name>
</author>
<author>
<name sortKey="Hoffmann, C" uniqKey="Hoffmann C">C Hoffmann</name>
</author>
<author>
<name sortKey="Sherrill Mix, Sa" uniqKey="Sherrill Mix S">SA Sherrill-Mix</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hill, Da" uniqKey="Hill D">DA Hill</name>
</author>
<author>
<name sortKey="Artis, D" uniqKey="Artis D">D Artis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirota, Sa" uniqKey="Hirota S">SA Hirota</name>
</author>
<author>
<name sortKey="Ng, J" uniqKey="Ng J">J Ng</name>
</author>
<author>
<name sortKey="Lueng, A" uniqKey="Lueng A">A Lueng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmdahl, R" uniqKey="Holmdahl R">R Holmdahl</name>
</author>
<author>
<name sortKey="Malissen, B" uniqKey="Malissen B">B Malissen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmes, E" uniqKey="Holmes E">E Holmes</name>
</author>
<author>
<name sortKey="Li, Jv" uniqKey="Li J">JV Li</name>
</author>
<author>
<name sortKey="Marchesi, Jr" uniqKey="Marchesi J">JR Marchesi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hooijmans, Cr" uniqKey="Hooijmans C">CR Hooijmans</name>
</author>
<author>
<name sortKey="Leenaars, M" uniqKey="Leenaars M">M Leenaars</name>
</author>
<author>
<name sortKey="Ritskes Hoitinga, M" uniqKey="Ritskes Hoitinga M">M Ritskes-Hoitinga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hooper, Lv" uniqKey="Hooper L">LV Hooper</name>
</author>
<author>
<name sortKey="Littman, Dr" uniqKey="Littman D">DR Littman</name>
</author>
<author>
<name sortKey="Macpherson, Aj" uniqKey="Macpherson A">AJ Macpherson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsiao, Ey" uniqKey="Hsiao E">EY Hsiao</name>
</author>
<author>
<name sortKey="Mcbride, Sw" uniqKey="Mcbride S">SW McBride</name>
</author>
<author>
<name sortKey="Hsien, S" uniqKey="Hsien S">S Hsien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, B" uniqKey="Hu B">B Hu</name>
</author>
<author>
<name sortKey="Elinav, E" uniqKey="Elinav E">E Elinav</name>
</author>
<author>
<name sortKey="Huber, S" uniqKey="Huber S">S Huber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hufeldt, Mr" uniqKey="Hufeldt M">MR Hufeldt</name>
</author>
<author>
<name sortKey="Nielsen, Ds" uniqKey="Nielsen D">DS Nielsen</name>
</author>
<author>
<name sortKey="Vogensen, Fk" uniqKey="Vogensen F">FK Vogensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hufeldt, Mr" uniqKey="Hufeldt M">MR Hufeldt</name>
</author>
<author>
<name sortKey="Nielsen, Ds" uniqKey="Nielsen D">DS Nielsen</name>
</author>
<author>
<name sortKey="Vogensen, Fk" uniqKey="Vogensen F">FK Vogensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inoue, R" uniqKey="Inoue R">R Inoue</name>
</author>
<author>
<name sortKey="Nishio, A" uniqKey="Nishio A">A Nishio</name>
</author>
<author>
<name sortKey="Fukushima, Y" uniqKey="Fukushima Y">Y Fukushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ivanov, Ii" uniqKey="Ivanov I">II Ivanov</name>
</author>
<author>
<name sortKey="Atarashi, K" uniqKey="Atarashi K">K Atarashi</name>
</author>
<author>
<name sortKey="Manel, N" uniqKey="Manel N">N Manel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jacoby, Ro" uniqKey="Jacoby R">RO Jacoby</name>
</author>
<author>
<name sortKey="Lindsey, Jr" uniqKey="Lindsey J">JR Lindsey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jimenez, E" uniqKey="Jimenez E">E Jiménez</name>
</author>
<author>
<name sortKey="Marin, Ml" uniqKey="Marin M">ML Marín</name>
</author>
<author>
<name sortKey="Martin, R" uniqKey="Martin R">R Martín</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamada, N" uniqKey="Kamada N">N Kamada</name>
</author>
<author>
<name sortKey="Chen, Gy" uniqKey="Chen G">GY Chen</name>
</author>
<author>
<name sortKey="Inohara, N" uniqKey="Inohara N">N Inohara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kayagaki, N" uniqKey="Kayagaki N">N Kayagaki</name>
</author>
<author>
<name sortKey="Warming, S" uniqKey="Warming S">S Warming</name>
</author>
<author>
<name sortKey="Lamkanfi, M" uniqKey="Lamkanfi M">M Lamkanfi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kellermayer, R" uniqKey="Kellermayer R">R Kellermayer</name>
</author>
<author>
<name sortKey="Dowd, Se" uniqKey="Dowd S">SE Dowd</name>
</author>
<author>
<name sortKey="Harris, Ra" uniqKey="Harris R">RA Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kilkenny, C" uniqKey="Kilkenny C">C Kilkenny</name>
</author>
<author>
<name sortKey="Browne, W" uniqKey="Browne W">W Browne</name>
</author>
<author>
<name sortKey="Cuthill, Ic" uniqKey="Cuthill I">IC Cuthill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kitajima, S" uniqKey="Kitajima S">S Kitajima</name>
</author>
<author>
<name sortKey="Morimoto, M" uniqKey="Morimoto M">M Morimoto</name>
</author>
<author>
<name sortKey="Sagara, E" uniqKey="Sagara E">E Sagara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Konturek, Pc" uniqKey="Konturek P">PC Konturek</name>
</author>
<author>
<name sortKey="Brzozowski, T" uniqKey="Brzozowski T">T Brzozowski</name>
</author>
<author>
<name sortKey="Konturek, Sj" uniqKey="Konturek S">SJ Konturek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kovacs, A" uniqKey="Kovacs A">A Kovacs</name>
</author>
<author>
<name sortKey="Ben Jacob, N" uniqKey="Ben Jacob N">N Ben-Jacob</name>
</author>
<author>
<name sortKey="Tayem, H" uniqKey="Tayem H">H Tayem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lathrop, Sk" uniqKey="Lathrop S">SK Lathrop</name>
</author>
<author>
<name sortKey="Bloom, Sm" uniqKey="Bloom S">SM Bloom</name>
</author>
<author>
<name sortKey="Rao, Sm" uniqKey="Rao S">SM Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawley, Td" uniqKey="Lawley T">TD Lawley</name>
</author>
<author>
<name sortKey="Clare, S" uniqKey="Clare S">S Clare</name>
</author>
<author>
<name sortKey="Walker, Aw" uniqKey="Walker A">AW Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawley, Td" uniqKey="Lawley T">TD Lawley</name>
</author>
<author>
<name sortKey="Walker, Aw" uniqKey="Walker A">AW Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lechatelier, E" uniqKey="Lechatelier E">E LeChatelier</name>
</author>
<author>
<name sortKey="Nielsen, T" uniqKey="Nielsen T">T Nielsen</name>
</author>
<author>
<name sortKey="Qin, J" uniqKey="Qin J">J Qin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Sm" uniqKey="Lee S">SM Lee</name>
</author>
<author>
<name sortKey="Donaldson, Gp" uniqKey="Donaldson G">GP Donaldson</name>
</author>
<author>
<name sortKey="Mikulski, Z" uniqKey="Mikulski Z">Z Mikulski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lepage, P" uniqKey="Lepage P">P Lepage</name>
</author>
<author>
<name sortKey="H Sler, R" uniqKey="H Sler R">R Häsler</name>
</author>
<author>
<name sortKey="Spehlmann, Me" uniqKey="Spehlmann M">ME Spehlmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ley, Re" uniqKey="Ley R">RE Ley</name>
</author>
<author>
<name sortKey="B Ckhed, F" uniqKey="B Ckhed F">F Bäckhed</name>
</author>
<author>
<name sortKey="Turnbaugh, P" uniqKey="Turnbaugh P">P Turnbaugh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ley, Re" uniqKey="Ley R">RE Ley</name>
</author>
<author>
<name sortKey="Peterson, Da" uniqKey="Peterson D">DA Peterson</name>
</author>
<author>
<name sortKey="Gordon, Ji" uniqKey="Gordon J">JI Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lochner, M" uniqKey="Lochner M">M Lochner</name>
</author>
<author>
<name sortKey="Ohnmacht, C" uniqKey="Ohnmacht C">C Ohnmacht</name>
</author>
<author>
<name sortKey="Presley, L" uniqKey="Presley L">L Presley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lozupone, Ca" uniqKey="Lozupone C">CA Lozupone</name>
</author>
<author>
<name sortKey="Stombaugh, J" uniqKey="Stombaugh J">J Stombaugh</name>
</author>
<author>
<name sortKey="Gonzalez, A" uniqKey="Gonzalez A">A Gonzalez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lusis, Aj" uniqKey="Lusis A">AJ Lusis</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
<author>
<name sortKey="Wang, Ss" uniqKey="Wang S">SS Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lynch, Sv" uniqKey="Lynch S">SV Lynch</name>
</author>
<author>
<name sortKey="Goldfarb, Kc" uniqKey="Goldfarb K">KC Goldfarb</name>
</author>
<author>
<name sortKey="Wild, Yk" uniqKey="Wild Y">YK Wild</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lyte, M" uniqKey="Lyte M">M Lyte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, Bw" uniqKey="Ma B">BW Ma</name>
</author>
<author>
<name sortKey="Bokulich, Na" uniqKey="Bokulich N">NA Bokulich</name>
</author>
<author>
<name sortKey="Castillo, Pa" uniqKey="Castillo P">PA Castillo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macia, L" uniqKey="Macia L">L Macia</name>
</author>
<author>
<name sortKey="Thorburn, An" uniqKey="Thorburn A">AN Thorburn</name>
</author>
<author>
<name sortKey="Binge, Lc" uniqKey="Binge L">LC Binge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="M Hler, M" uniqKey="M Hler M">M Mähler</name>
</author>
<author>
<name sortKey="Bristol, Ij" uniqKey="Bristol I">IJ Bristol</name>
</author>
<author>
<name sortKey="Leiter, Eh" uniqKey="Leiter E">EH Leiter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manichanh, C" uniqKey="Manichanh C">C Manichanh</name>
</author>
<author>
<name sortKey="Reeder, J" uniqKey="Reeder J">J Reeder</name>
</author>
<author>
<name sortKey="Gibert, P" uniqKey="Gibert P">P Gibert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marcobal, A" uniqKey="Marcobal A">A Marcobal</name>
</author>
<author>
<name sortKey="Kashyap, Pc" uniqKey="Kashyap P">PC Kashyap</name>
</author>
<author>
<name sortKey="Nelson, Ta" uniqKey="Nelson T">TA Nelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Markle, Jg" uniqKey="Markle J">JG Markle</name>
</author>
<author>
<name sortKey="Frank, Dn" uniqKey="Frank D">DN Frank</name>
</author>
<author>
<name sortKey="Mortin Toth, S" uniqKey="Mortin Toth S">S Mortin-Toth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Markowitz, Vm" uniqKey="Markowitz V">VM Markowitz</name>
</author>
<author>
<name sortKey="Chen, Im" uniqKey="Chen I">IM Chen</name>
</author>
<author>
<name sortKey="Palaniappan, K" uniqKey="Palaniappan K">K Palaniappan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez, I" uniqKey="Martinez I">I Martínez</name>
</author>
<author>
<name sortKey="Muller, Ce" uniqKey="Muller C">CE Muller</name>
</author>
<author>
<name sortKey="Walter, J" uniqKey="Walter J">J Walter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maslowski, Km" uniqKey="Maslowski K">KM Maslowski</name>
</author>
<author>
<name sortKey="Vieira, At" uniqKey="Vieira A">AT Vieira</name>
</author>
<author>
<name sortKey="Ng, A" uniqKey="Ng A">A Ng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menendez, A" uniqKey="Menendez A">A Menendez</name>
</author>
<author>
<name sortKey="Willing, Bp" uniqKey="Willing B">BP Willing</name>
</author>
<author>
<name sortKey="Montero, M" uniqKey="Montero M">M Montero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meslin, Jc" uniqKey="Meslin J">JC Meslin</name>
</author>
<author>
<name sortKey="Fontaine, N" uniqKey="Fontaine N">N Fontaine</name>
</author>
<author>
<name sortKey="Andrieux, C" uniqKey="Andrieux C">C Andrieux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Methe, Ba" uniqKey="Methe B">BA Methé</name>
</author>
<author>
<name sortKey="Nelson, Ke" uniqKey="Nelson K">KE Nelson</name>
</author>
<author>
<name sortKey="Pop, M" uniqKey="Pop M">M Pop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moeller, Ah" uniqKey="Moeller A">AH Moeller</name>
</author>
<author>
<name sortKey="Degnan, Ph" uniqKey="Degnan P">PH Degnan</name>
</author>
<author>
<name sortKey="Pusey, Ae" uniqKey="Pusey A">AE Pusey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morelli, L" uniqKey="Morelli L">L Morelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neufeld, Ka" uniqKey="Neufeld K">KA Neufeld</name>
</author>
<author>
<name sortKey="Kang, N" uniqKey="Kang N">N Kang</name>
</author>
<author>
<name sortKey="Bienenstock, J" uniqKey="Bienenstock J">J Bienenstock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Norin, E" uniqKey="Norin E">E Norin</name>
</author>
<author>
<name sortKey="Midtvedt, T" uniqKey="Midtvedt T">T Midtvedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ochoa Reparaz, J" uniqKey="Ochoa Reparaz J">J Ochoa-Repáraz</name>
</author>
<author>
<name sortKey="Mielcarz, Dw" uniqKey="Mielcarz D">DW Mielcarz</name>
</author>
<author>
<name sortKey="Ditrio, Le" uniqKey="Ditrio L">LE Ditrio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olfe, J" uniqKey="Olfe J">J Olfe</name>
</author>
<author>
<name sortKey="Domanska, G" uniqKey="Domanska G">G Domanska</name>
</author>
<author>
<name sortKey="Schuett, C" uniqKey="Schuett C">C Schuett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olszak, T" uniqKey="Olszak T">T Olszak</name>
</author>
<author>
<name sortKey="An, D" uniqKey="An D">D An</name>
</author>
<author>
<name sortKey="Zeissig, S" uniqKey="Zeissig S">S Zeissig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pang, W" uniqKey="Pang W">W Pang</name>
</author>
<author>
<name sortKey="Stradiotto, D" uniqKey="Stradiotto D">D Stradiotto</name>
</author>
<author>
<name sortKey="Krych, L" uniqKey="Krych L">L Krych</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pedrosa, E" uniqKey="Pedrosa E">E Pedrosa</name>
</author>
<author>
<name sortKey="Loren, V" uniqKey="Loren V">V Lorén</name>
</author>
<author>
<name sortKey="Cabre, E" uniqKey="Cabre E">E Cabré</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perez, Pf" uniqKey="Perez P">PF Perez</name>
</author>
<author>
<name sortKey="Dore, J" uniqKey="Dore J">J Doré</name>
</author>
<author>
<name sortKey="Leclerc, M" uniqKey="Leclerc M">M Leclerc</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pflughoeft, Kj" uniqKey="Pflughoeft K">KJ Pflughoeft</name>
</author>
<author>
<name sortKey="Versalovic, J" uniqKey="Versalovic J">J Versalovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poutahidis, T" uniqKey="Poutahidis T">T Poutahidis</name>
</author>
<author>
<name sortKey="Kleinewietfeld, M" uniqKey="Kleinewietfeld M">M Kleinewietfeld</name>
</author>
<author>
<name sortKey="Smillie, C" uniqKey="Smillie C">C Smillie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Powell, N" uniqKey="Powell N">N Powell</name>
</author>
<author>
<name sortKey="Walker, Aw" uniqKey="Walker A">AW Walker</name>
</author>
<author>
<name sortKey="Stolarczyk, E" uniqKey="Stolarczyk E">E Stolarczyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pozzilli, P" uniqKey="Pozzilli P">P Pozzilli</name>
</author>
<author>
<name sortKey="Signore, A" uniqKey="Signore A">A Signore</name>
</author>
<author>
<name sortKey="Williams, Aj" uniqKey="Williams A">AJ Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pritchett Corning, Kr" uniqKey="Pritchett Corning K">KR Pritchett-Corning</name>
</author>
<author>
<name sortKey="Cosentino, J" uniqKey="Cosentino J">J Cosentino</name>
</author>
<author>
<name sortKey="Clifford, Cb" uniqKey="Clifford C">CB Clifford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Puhl, Nj" uniqKey="Puhl N">NJ Puhl</name>
</author>
<author>
<name sortKey="Uwiera, Rr" uniqKey="Uwiera R">RR Uwiera</name>
</author>
<author>
<name sortKey="Yanke, Lj" uniqKey="Yanke L">LJ Yanke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qin, J" uniqKey="Qin J">J Qin</name>
</author>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Raes, J" uniqKey="Raes J">J Raes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raes, J" uniqKey="Raes J">J Raes</name>
</author>
<author>
<name sortKey="Bork, P" uniqKey="Bork P">P Bork</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raff, H" uniqKey="Raff H">H Raff</name>
</author>
<author>
<name sortKey="Bruder, Ed" uniqKey="Bruder E">ED Bruder</name>
</author>
<author>
<name sortKey="Cullinan, We" uniqKey="Cullinan W">WE Cullinan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rakoff Nahoum, S" uniqKey="Rakoff Nahoum S">S Rakoff-Nahoum</name>
</author>
<author>
<name sortKey="Paglino, J" uniqKey="Paglino J">J Paglino</name>
</author>
<author>
<name sortKey="Eslami Varzaneh, F" uniqKey="Eslami Varzaneh F">F Eslami-Varzaneh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ravussin, Y" uniqKey="Ravussin Y">Y Ravussin</name>
</author>
<author>
<name sortKey="Koren, O" uniqKey="Koren O">O Koren</name>
</author>
<author>
<name sortKey="Spor, A" uniqKey="Spor A">A Spor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reikvam, Dh" uniqKey="Reikvam D">DH Reikvam</name>
</author>
<author>
<name sortKey="Erofeev, A" uniqKey="Erofeev A">A Erofeev</name>
</author>
<author>
<name sortKey="Sandvik, A" uniqKey="Sandvik A">A Sandvik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reinhardt, C" uniqKey="Reinhardt C">C Reinhardt</name>
</author>
<author>
<name sortKey="Bergentall, M" uniqKey="Bergentall M">M Bergentall</name>
</author>
<author>
<name sortKey="Greiner, Tu" uniqKey="Greiner T">TU Greiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Relman, Da" uniqKey="Relman D">DA Relman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Renz, H" uniqKey="Renz H">H Renz</name>
</author>
<author>
<name sortKey="Brandtzaeg, P" uniqKey="Brandtzaeg P">P Brandtzaeg</name>
</author>
<author>
<name sortKey="Hornef, M" uniqKey="Hornef M">M Hornef</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ridaura, Vk" uniqKey="Ridaura V">VK Ridaura</name>
</author>
<author>
<name sortKey="Faith, Jj" uniqKey="Faith J">JJ Faith</name>
</author>
<author>
<name sortKey="Rey, Fe" uniqKey="Rey F">FE Rey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robertson, Sj" uniqKey="Robertson S">SJ Robertson</name>
</author>
<author>
<name sortKey="Zhou, Jy" uniqKey="Zhou J">JY Zhou</name>
</author>
<author>
<name sortKey="Geddes, K" uniqKey="Geddes K">K Geddes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Round, Jl" uniqKey="Round J">JL Round</name>
</author>
<author>
<name sortKey="Mazmanian, Sk" uniqKey="Mazmanian S">SK Mazmanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schaedler, Rw" uniqKey="Schaedler R">RW Schaedler</name>
</author>
<author>
<name sortKey="Dubos, Rj" uniqKey="Dubos R">RJ Dubos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schaible, Td" uniqKey="Schaible T">TD Schaible</name>
</author>
<author>
<name sortKey="Harris, Ra" uniqKey="Harris R">RA Harris</name>
</author>
<author>
<name sortKey="Dowd, Se" uniqKey="Dowd S">SE Dowd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scher, Ju" uniqKey="Scher J">JU Scher</name>
</author>
<author>
<name sortKey="Sczesnak, A" uniqKey="Sczesnak A">A Sczesnak</name>
</author>
<author>
<name sortKey="Longman, Rs" uniqKey="Longman R">RS Longman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schloissnig, S" uniqKey="Schloissnig S">S Schloissnig</name>
</author>
<author>
<name sortKey="Arumugam, M" uniqKey="Arumugam M">M Arumugam</name>
</author>
<author>
<name sortKey="Sunagawa, S" uniqKey="Sunagawa S">S Sunagawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schloss, Pd" uniqKey="Schloss P">PD Schloss</name>
</author>
<author>
<name sortKey="Schubert, Am" uniqKey="Schubert A">AM Schubert</name>
</author>
<author>
<name sortKey="Zackular, Jp" uniqKey="Zackular J">JP Zackular</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sellers, Rs" uniqKey="Sellers R">RS Sellers</name>
</author>
<author>
<name sortKey="Clifford, Cb" uniqKey="Clifford C">CB Clifford</name>
</author>
<author>
<name sortKey="Treuting, Pm" uniqKey="Treuting P">PM Treuting</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sham, Hp" uniqKey="Sham H">HP Sham</name>
</author>
<author>
<name sortKey="Yu, Ey" uniqKey="Yu E">EY Yu</name>
</author>
<author>
<name sortKey="Gulen, Mf" uniqKey="Gulen M">MF Gulen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimomura, Y" uniqKey="Shimomura Y">Y Shimomura</name>
</author>
<author>
<name sortKey="Mizoguchi, E" uniqKey="Mizoguchi E">E Mizoguchi</name>
</author>
<author>
<name sortKey="Sugimoto, K" uniqKey="Sugimoto K">K Sugimoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegmund, B" uniqKey="Siegmund B">B Siegmund</name>
</author>
<author>
<name sortKey="Lehr, Ha" uniqKey="Lehr H">HA Lehr</name>
</author>
<author>
<name sortKey="Fantuzzi, G" uniqKey="Fantuzzi G">G Fantuzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simpson, Em" uniqKey="Simpson E">EM Simpson</name>
</author>
<author>
<name sortKey="Linder, Cc" uniqKey="Linder C">CC Linder</name>
</author>
<author>
<name sortKey="Sargent, Ee" uniqKey="Sargent E">EE Sargent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sjogren, K" uniqKey="Sjogren K">K Sjögren</name>
</author>
<author>
<name sortKey="Engdahl, C" uniqKey="Engdahl C">C Engdahl</name>
</author>
<author>
<name sortKey="Henning, P" uniqKey="Henning P">P Henning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sommer, F" uniqKey="Sommer F">F Sommer</name>
</author>
<author>
<name sortKey="B Ckhed, F" uniqKey="B Ckhed F">F Bäckhed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonnenberg, Gf" uniqKey="Sonnenberg G">GF Sonnenberg</name>
</author>
<author>
<name sortKey="Artis, D" uniqKey="Artis D">D Artis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stappenbeck, Ts" uniqKey="Stappenbeck T">TS Stappenbeck</name>
</author>
<author>
<name sortKey="Hooper, Lv" uniqKey="Hooper L">LV Hooper</name>
</author>
<author>
<name sortKey="Gordon, Ji" uniqKey="Gordon J">JI Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sudo, N" uniqKey="Sudo N">N Sudo</name>
</author>
<author>
<name sortKey="Chida, Y" uniqKey="Chida Y">Y Chida</name>
</author>
<author>
<name sortKey="Aiba, Y" uniqKey="Aiba Y">Y Aiba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M Zhang</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Ns" uniqKey="Taylor N">NS Taylor</name>
</author>
<author>
<name sortKey="Xu, S" uniqKey="Xu S">S Xu</name>
</author>
<author>
<name sortKey="Nambiar, P" uniqKey="Nambiar P">P Nambiar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Troeschel, Sc" uniqKey="Troeschel S">SC Troeschel</name>
</author>
<author>
<name sortKey="Drepper, T" uniqKey="Drepper T">T Drepper</name>
</author>
<author>
<name sortKey="Leggewie, C" uniqKey="Leggewie C">C Leggewie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tumanov, Av" uniqKey="Tumanov A">AV Tumanov</name>
</author>
<author>
<name sortKey="Koroleva, Ep" uniqKey="Koroleva E">EP Koroleva</name>
</author>
<author>
<name sortKey="Guo, X" uniqKey="Guo X">X Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turnbaugh, Pj" uniqKey="Turnbaugh P">PJ Turnbaugh</name>
</author>
<author>
<name sortKey="B Ckhed, F" uniqKey="B Ckhed F">F Bäckhed</name>
</author>
<author>
<name sortKey="Fulton, L" uniqKey="Fulton L">L Fulton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ubeda, C" uniqKey="Ubeda C">C Ubeda</name>
</author>
<author>
<name sortKey="Lipuma, L" uniqKey="Lipuma L">L Lipuma</name>
</author>
<author>
<name sortKey="Gobourne, A" uniqKey="Gobourne A">A Gobourne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Upadhyay, V" uniqKey="Upadhyay V">V Upadhyay</name>
</author>
<author>
<name sortKey="Poroyko, V" uniqKey="Poroyko V">V Poroyko</name>
</author>
<author>
<name sortKey="Kim, Tj" uniqKey="Kim T">TJ Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vande Pavert, Sa" uniqKey="Vande Pavert S">SA vande Pavert</name>
</author>
<author>
<name sortKey="Mebius, Re" uniqKey="Mebius R">RE Mebius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Nood, E" uniqKey="Van Nood E">E van Nood</name>
</author>
<author>
<name sortKey="Vrieze, A" uniqKey="Vrieze A">A Vrieze</name>
</author>
<author>
<name sortKey="Nieuwdorp, M" uniqKey="Nieuwdorp M">M Nieuwdorp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanden Berghe, T" uniqKey="Vanden Berghe T">T Vanden Berghe</name>
</author>
<author>
<name sortKey="Goethals, A" uniqKey="Goethals A">A Goethals</name>
</author>
<author>
<name sortKey="Demon, D" uniqKey="Demon D">D Demon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanden Berghe, T" uniqKey="Vanden Berghe T">T Vanden Berghe</name>
</author>
<author>
<name sortKey="Hulpiau, P" uniqKey="Hulpiau P">P Hulpiau</name>
</author>
<author>
<name sortKey="Martens, L" uniqKey="Martens L">L Martens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vayssier Taussat, M" uniqKey="Vayssier Taussat M">M Vayssier-Taussat</name>
</author>
<author>
<name sortKey="Albina, E" uniqKey="Albina E">E Albina</name>
</author>
<author>
<name sortKey="Citti, C" uniqKey="Citti C">C Citti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vidal, Sm" uniqKey="Vidal S">SM Vidal</name>
</author>
<author>
<name sortKey="Malo, D" uniqKey="Malo D">D Malo</name>
</author>
<author>
<name sortKey="Marquis, Jf" uniqKey="Marquis J">JF Marquis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vijay Kumar, M" uniqKey="Vijay Kumar M">M Vijay-Kumar</name>
</author>
<author>
<name sortKey="Aitken, Jd" uniqKey="Aitken J">JD Aitken</name>
</author>
<author>
<name sortKey="Carvalho, Fa" uniqKey="Carvalho F">FA Carvalho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Linnenbrink, M" uniqKey="Linnenbrink M">M Linnenbrink</name>
</author>
<author>
<name sortKey="Kunzel, S" uniqKey="Kunzel S">S Künzel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ward, Tl" uniqKey="Ward T">TL Ward</name>
</author>
<author>
<name sortKey="Hosid, S" uniqKey="Hosid S">S Hosid</name>
</author>
<author>
<name sortKey="Ioshikhes, I" uniqKey="Ioshikhes I">I Ioshikhes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiner, Hl" uniqKey="Weiner H">HL Weiner</name>
</author>
<author>
<name sortKey="Da Cunha, Ap" uniqKey="Da Cunha A">AP da Cunha</name>
</author>
<author>
<name sortKey="Quintana, F" uniqKey="Quintana F">F Quintana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Gd" uniqKey="Wu G">GD Wu</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Hoffmann, C" uniqKey="Hoffmann C">C Hoffmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wurbel, H" uniqKey="Wurbel H">H Würbel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, Mh" uniqKey="Zaki M">MH Zaki</name>
</author>
<author>
<name sortKey="Boyd, Kl" uniqKey="Boyd K">KL Boyd</name>
</author>
<author>
<name sortKey="Vogel, P" uniqKey="Vogel P">P Vogel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, B" uniqKey="Zeng B">B Zeng</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J Yuan</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">FEMS Microbiol Rev</journal-id>
<journal-id journal-id-type="iso-abbrev">FEMS Microbiol. Rev</journal-id>
<journal-id journal-id-type="hwp">femsre</journal-id>
<journal-id journal-id-type="publisher-id">femsre</journal-id>
<journal-title-group>
<journal-title>FEMS Microbiology Reviews</journal-title>
</journal-title-group>
<issn pub-type="ppub">0168-6445</issn>
<issn pub-type="epub">1574-6976</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26323480</article-id>
<article-id pub-id-type="pmc">4703068</article-id>
<article-id pub-id-type="doi">10.1093/femsre/fuv036</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Laukens</surname>
<given-names>Debby</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor2">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brinkman</surname>
<given-names>Brigitta M.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="cor2">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Raes</surname>
<given-names>Jeroen</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>De Vos</surname>
<given-names>Martine</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vandenabeele</surname>
<given-names>Peter</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<aff id="aff1">
<label>1</label>
Department of Gastroenterology, Ghent University, B-9000 Ghent, Belgium</aff>
<aff id="aff2">
<label>2</label>
Inflammation Research Center, VIB, B-9052 Ghent, Belgium</aff>
<aff id="aff3">
<label>3</label>
Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium</aff>
<aff id="aff4">
<label>4</label>
Center for the Biology of Disease, VIB, B-3000 Leuven, Belgium</aff>
<aff id="aff5">
<label>5</label>
Department Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium</aff>
<aff id="aff6">
<label>6</label>
Methusalem Program, Ghent University, B-9000 Ghent, Belgium</aff>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Normark</surname>
<given-names>Birgitta Henriques</given-names>
</name>
</contrib>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
<bold>Corresponding author:</bold>
Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium. Tel: +32(0)93313710; E-mail:
<email>Peter.Vandenabeele@irc.vib-ugent.be</email>
</corresp>
<corresp id="cor2">
<label></label>
Equal contribution.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>30</day>
<month>8</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<month>1</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>30</day>
<month>8</month>
<year>2015</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>40</volume>
<issue>1</issue>
<fpage>117</fpage>
<lpage>132</lpage>
<history>
<date date-type="accepted">
<day>30</day>
<month>6</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>05</day>
<month>2</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© FEMS 2015.</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="creative-commons" xlink:href="http://creativecommons.org/licenses/by-nc-nd/4.0/">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-nd/4.0/">http://creativecommons.org/licenses/by-nc-nd/4.0/</ext-link>
), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact
<email>journals.permissions@oup.com</email>
</license-p>
</license>
</permissions>
<self-uri xlink:title="pdf" xlink:href="fuv036.pdf"></self-uri>
<abstract>
<p>Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host–microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments.</p>
</abstract>
<abstract abstract-type="precis">
<p>Given the unmet need for standardizing the experimental work flow related to gut microbial research in animals, guidelines are required to isolate true effects from confounding factors.</p>
</abstract>
<abstract abstract-type="graphical">
<p>
<fig id="fig1g" fig-type="featured" orientation="portrait" position="float">
<label>Graphical Abstract Figure.</label>
<caption>
<p>Given the unmet need for standardizing the experimental work flow related to gut microbial research in animals, guidelines are required to isolate true effects from confounding factors.</p>
</caption>
<graphic xlink:href="fuv036fig1g"></graphic>
</fig>
</p>
</abstract>
<kwd-group>
<kwd>microbiota</kwd>
<kwd>confounding factors</kwd>
<kwd>animal facility</kwd>
<kwd>animal models</kwd>
<kwd>microbiome</kwd>
</kwd-group>
<counts>
<page-count count="16"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>January 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1">
<title>INTRODUCTION</title>
<p>Mammalian epithelial surfaces are colonized by large numbers of microorganisms collectively known as the microbiota. Bacteria typically dominate this microbial ecosystem (>99%), and live as mutualists in close contact with mucosal surfaces (Bäckhed
<italic>et al.</italic>
<xref rid="bib5" ref-type="bibr">2005</xref>
; Ley, Peterson and Gordon
<xref rid="bib85" ref-type="bibr">2006</xref>
; Qin
<italic>et al.</italic>
<xref rid="bib120" ref-type="bibr">2010</xref>
). The largest density of bacteria is found in the gastrointestinal tract and therefore this interface is most widely studied in microbial research. Especially in the large intestine, bacteria have various functions, including the production of essential nutrients and cometabolization of food. In addition, they prevent bacterial overgrowth and infection through the formation of an ecological barrier for colonization and by inducing the host's production of IgA and anti-microbial proteins. Finally, intestinal bacteria influence central physiological functions such as the development of lymphatic tissue, the induction of mucosal tolerance, angiogenesis and fat storage (for overview, see Fig. 
<xref ref-type="fig" rid="fig1">1</xref>
).</p>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1.</label>
<caption>
<p>
<bold>Main functions of bacteria in the gut.</bold>
Bacteria benefit the host in many ways. Besides breaking down food compounds and synthesizing vitamins and other nutrients, they play an important role in the development and training of the immune system (Hill and Artis
<xref rid="bib57" ref-type="bibr">2010</xref>
; Renz, Brandtzaeg and Hornef
<xref rid="bib128" ref-type="bibr">2011</xref>
; Sonnenberg and Artis
<xref rid="bib145" ref-type="bibr">2012</xref>
). They provide colonization resistance (Kamada
<italic>et al.</italic>
<xref rid="bib71" ref-type="bibr">2013</xref>
; Lawley and Walker
<xref rid="bib80" ref-type="bibr">2013</xref>
), protect against epithelial injury (Rakoff-Nahoum
<italic>et al.</italic>
<xref rid="bib123" ref-type="bibr">2004</xref>
) and promote angiogenesis (Stappenbeck, Hooper and Gordon
<xref rid="bib146" ref-type="bibr">2002</xref>
; Reinhardt
<italic>et al.</italic>
<xref rid="bib126" ref-type="bibr">2012</xref>
) and fat storage (Bäckhed
<italic>et al.</italic>
<xref rid="bib4" ref-type="bibr">2004</xref>
). They are also able to modulate bone-mass density (Sjögren
<italic>et al.</italic>
<xref rid="bib143" ref-type="bibr">2012</xref>
), modify the nervous system (Hsiao
<italic>et al.</italic>
<xref rid="bib163" ref-type="bibr">2013</xref>
) and metabolize therapeutics into active compounds (Claus
<italic>et al.</italic>
<xref rid="bib27" ref-type="bibr">2011</xref>
).</p>
</caption>
<graphic xlink:href="fuv036fig1"></graphic>
</fig>
<p>Defects in host genes controlling bacterial homeostasis or alterations of the gut microbiota composition have been associated with complex diseases, including inflammatory bowel disease (IBD), diabetes mellitus (Pflughoeft and Versalovic
<xref rid="bib114" ref-type="bibr">2012</xref>
) and asthma (Maslowski
<italic>et al.</italic>
<xref rid="bib99" ref-type="bibr">2009</xref>
). Although in some particular cases complex diseases have been linked with the presence of specific bacteria (e.g. Prevotella in reactive arthritis; Scher
<italic>et al.</italic>
<xref rid="bib134" ref-type="bibr">2013</xref>
), it seems likely that bacterial communities and not specific bacteria determine susceptibility towards complex diseases, a concept that has been introduced as the ‘the pathobiome’ (Vayssier-Taussat
<italic>et al.</italic>
<xref rid="bib159" ref-type="bibr">2014</xref>
). The identification and manipulation of such disease-associated communities will undoubtedly be the topic of intensive research. Interestingly, the composition of gut bacterial communities is genetically determined (Garrett
<italic>et al.</italic>
<xref rid="bib50" ref-type="bibr">2007</xref>
; Brinkman
<italic>et al.</italic>
<xref rid="bib17" ref-type="bibr">2011</xref>
; Lepage
<italic>et al.</italic>
<xref rid="bib83" ref-type="bibr">2011</xref>
). Although a direct link between the microbiome and disease susceptibility is difficult to establish, proof of concept studies argue that manipulation of the microbiome represents an appealing treatment strategy. Gastrointestinal abnormalities can be improved by probiotic treatment in autism spectrum disorders (Hsiao
<italic>et al.</italic>
<xref rid="bib63" ref-type="bibr">2013</xref>
), and fecal microbiota transplantation is highly effective for the treatment of recurrent
<italic>Clostridium difficile</italic>
infection (Van Nood
<italic>et al.</italic>
<xref rid="bib156" ref-type="bibr">2013</xref>
). Likewise, disease phenotypes can be transferred by microbiota transplantation. For example, obesity can be transferred successfully using feces from obese humans to lean mice, which was associated with decreased fermentation of short-chain fatty acids, increased metabolism of branched amino acids and decreased transformation of bile acid species as compared to the lean phenotypes (Ridaura
<italic>et al.</italic>
<xref rid="bib129" ref-type="bibr">2013</xref>
). In addition, simply cohousing lean and obese animals prevented the obese phenotype and was associated with transfer of
<italic>Bacteroidales</italic>
, suggesting a phenotypic impact of horizontal microbial transfer (Ridaura
<italic>et al.</italic>
<xref rid="bib129" ref-type="bibr">2013</xref>
).</p>
<p>Revolutionary advances in sequencing techniques and computational biology tools to study the microbiome, referred to as the collective genomes of microbiota, have greatly improved our understanding of the microbiome composition (Raes and Bork
<xref rid="bib121" ref-type="bibr">2009</xref>
; Relman
<xref rid="bib127" ref-type="bibr">2011</xref>
). A recent meta-analysis of studies using 16S rRNA gene sequencing of human fecal samples demonstrated that samples clustered by large effect size characteristics such as age, geography and western vs. non-western societies, irrespective of the choice of PCR primers, sequencing platform or DNA extraction techniques (Lozupone
<italic>et al.</italic>
<xref rid="bib87" ref-type="bibr">2013</xref>
). Shotgun sequencing of full microbial DNA or metagenomes is currently a widely used approach that reveals more sequence-based information about microbial diversity than 16S rRNA sequencing, although it remains a challenge to annotate gene sequences with the genome of origin (Schloissnig
<italic>et al.</italic>
<xref rid="bib135" ref-type="bibr">2013</xref>
). Moreover, whereas precision at high-sequencing depth is required to differentiate strains and species, it is often a matter of finding the optimal balance between quantity and quality. Large-scale metagenomic sequencing efforts, including those led by the human microbiome project (National Institutes of Health initiative) and the metagenomics of the human intestinal tract (MetaHIT) consortia have led to a number of conceptual landmark publications (Markowitz
<italic>et al.</italic>
<xref rid="bib97" ref-type="bibr">2010</xref>
; Qin
<italic>et al.</italic>
<xref rid="bib120" ref-type="bibr">2010</xref>
; Arumugam
<italic>et al.</italic>
<xref rid="bib3" ref-type="bibr">2011</xref>
; Methé
<italic>et al.</italic>
<xref rid="bib102" ref-type="bibr">2012</xref>
; Ding and Schloss
<xref rid="bib37" ref-type="bibr">2014</xref>
). For example, based on sequencing of fecal samples collected across nations, the enterotype concept was raised, stating that the gut ecosystem can be classified into three main types that dominate parameters such as age, gender and nationality (Arumugam
<italic>et al.</italic>
<xref rid="bib3" ref-type="bibr">2011</xref>
). Meanwhile, such enterotypes have also been identified in other mammals such as chimpanzees and wild/laboratory mice (Moeller
<italic>et al.</italic>
<xref rid="bib103" ref-type="bibr">2012</xref>
; Hildebrand
<italic>et al.</italic>
<xref rid="bib55" ref-type="bibr">2013</xref>
; Wang
<italic>et al.</italic>
<xref rid="bib162" ref-type="bibr">2014</xref>
).</p>
<p>Next to providing insights into the microbial architecture and abundance, metagenomic shotgun sequencing also sheds light on bacterial functionality. Such techniques have led to the development of the first human intestinal gene catalog (Qin
<italic>et al.</italic>
<xref rid="bib120" ref-type="bibr">2010</xref>
) and enabled a better understanding of the link between obesity-associated comorbidities and reduced bacterial richness (Cotillard
<italic>et al.</italic>
<xref rid="bib28" ref-type="bibr">2013</xref>
; Le Chatelier
<italic>et al.</italic>
<xref rid="bib81" ref-type="bibr">2013</xref>
). Although predetermining functional effects to specific gene sets provides first information about the functionality of a given microbiome, these analyses do not always assess the true functionality of the encoded genes in a specific environment. Metagenomic libraries, typically cloned into
<italic>Escherichia coli</italic>
vectors, permit functional screening of microbiota
<italic>in vitro</italic>
(Troeschel
<italic>et al.</italic>
<xref rid="bib150" ref-type="bibr">2010</xref>
). In addition, the exact impact of the microbial presence on the host can be studied using other ‘-omic’ approaches, providing a multifaceted view by combining metagenomics with metatranscriptomics, metaproteomics or metabolomics (Raes and Bork
<xref rid="bib121" ref-type="bibr">2009</xref>
; Holmes
<italic>et al.</italic>
<xref rid="bib60" ref-type="bibr">2012</xref>
).</p>
<p>Despite the methodological progress, the reproducibility of microbiome research and therefore its relevance in some research areas remains an important issue. Slowly we begin to understand the pitfalls that are associated with such experimental design, and we acknowledge the need for standardizing. The next paragraph deals with the most common variables that determine the fate of microbiome analyses in a typical workflow (see also Fig. 
<xref ref-type="fig" rid="fig2">2</xref>
).</p>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2.</label>
<caption>
<p>
<bold>Experimental variables that influence microbiome analysis.</bold>
During a typical experimental workflow (donor selection, sampling, DNA extraction, sequencing and analysis of the data), variation is systematically introduced and complicates inter-experimental comparisons.</p>
</caption>
<graphic xlink:href="fuv036fig2"></graphic>
</fig>
</sec>
<sec id="sec2">
<title>VARIABLES IN EXPERIMENTAL DESIGN THAT COMPLICATE INTEREXPERIMENTAL COMPARISONS</title>
<p>The temporal stability of one's gut microbiome remains a critical question. Shotgun sequencing has revealed that over a five-year period, an individual conserves on average 60% of ∼200 phylotypes (highest taxonomic level) (Faith
<italic>et al.</italic>
<xref rid="bib44" ref-type="bibr">2013</xref>
). At lower taxonomic levels, e.g. at species level, each individual's microbiome may be as representative as a fingerprint (Schloissnig
<italic>et al.</italic>
<xref rid="bib135" ref-type="bibr">2013</xref>
). Yet, the stability of such a fingerprint remains unclear and its identification possesses methodological challenges (Martínez, Muller and Walter
<xref rid="bib98" ref-type="bibr">2013</xref>
), considering age, gender, genotype, diet and environmental factors related to the donor (Wu
<italic>et al.</italic>
<xref rid="bib165" ref-type="bibr">2011</xref>
).</p>
<p>Spatial organization of bacterial communities across and along the gastrointestinal tract complicates microbiome analysis. The sample type used to extract bacterial genetic information is of crucial importance. Along the gastrointestinal tract, a gradient of pH, bile acid concentrations, oxygen levels and antibacterial products exists. More importantly, the microbial composition of feces and intestinal tissue is intrinsically different, because they are dictated by the radial gradient of oxygen and substrates provided by the host. Adjacent to the mucosa, facultative anaerobes are able to grow because of diffusion of oxygen from the underlying vessel network, whereas viable luminal bacteria are strictly anaerobes (Albenberg
<italic>et al.</italic>
<xref rid="bib1" ref-type="bibr">2014</xref>
). In addition, specific nutrients such as secreted proteins or cell-death-derived peptides shape the mucosa-associated microbiome. For ethical and practical reasons, it may not always be feasible to collect tissue (biopsy) samples. In addition, fecal matter is usually collected to meet practical standards for the donors in terms of storage and shipment, and some investigators use samples that were collected ‘anaerobically’.</p>
<p>Next, the DNA extraction protocol largely creates bias, as well as the choice of PCR primers, number of PCR cycles and specific sequencing platform used (Brooks
<italic>et al.</italic>
<xref rid="bib18" ref-type="bibr">2015</xref>
). The Microbiome Quality Control project (
<ext-link ext-link-type="uri" xlink:href="http://www.mbqc.org">http://www.mbqc.org</ext-link>
) was established, aiming to identify the variation related to protocols and techniques in microbiome analysis. Finally, analysis of the data, starting with the extraction of usable sequences, and the use of specific analytical or graphical methods to understand patterns will drive the overall conclusions. It seems advisable to include a standard level of analysis methods, looking systematically for differences between a pre-defined set of taxonomic units, e.g. phylum, genus and species level.</p>
<p>Although increasing evidence supports the use of microbiota as a diagnostic or therapeutic tool, it is challenging to manage parameters such as the host's environment, age, physiology, genetics and the presence of multiple known and unknown confounders in human trials. Furthermore, the number of possible interventions in human subjects is limited and laborious. Given careful experimental design, the microbiome can be controlled and manipulated more easily in animal models compared to human studies. This review summarizes the tools, confounding factors and obstacles in the study of the murine microbiome and the principles of microbiome homeostasis to generate a number of guidelines improving the reproducibility of animal experiments.</p>
</sec>
<sec id="sec3">
<title>TOOLS TO DISSECT THE ROLE OF THE GUT MICROBIOME IN MICE</title>
<p>Most studies that address the causal relationship between the presence of bacteria and host physiology have been based on rather extreme changes in microbiota, such as the use of germ-free (GF) mice, which are born and reared without exposure to any live microbes, and treatment with broad-spectrum antibiotics. In contrast, the transfer of embryos, cross-fostering, gavage with feces or cohabitation of mice may represent more physiologically relevant changes.</p>
<sec id="sec3-1">
<title>GF mice</title>
<p>The effect of bacteria on the host immune system is investigated by breeding GF mice or by colonizing GF mice in gnotobiotic experiments through monoassociation, conventionalizing or transfer of microbial communities (Bleich and Hansen
<xref rid="bib14" ref-type="bibr">2012</xref>
). The key advantage of GF mice is that inoculation with specific bacterial species allows to directly link a function with these bacteria and is of major importance considering the therapeutic use of bacteria. A limiting factor is the lack of a homeostatic community context that is likely to modify the functional impact of gnotobiotic experiments. In addition, GF mice have extensive defects in the development of gut-associated lymphoid tissues and in antibody production (Round and Mazmanian
<xref rid="bib131" ref-type="bibr">2009</xref>
; Olszak
<italic>et al.</italic>
<xref rid="bib109" ref-type="bibr">2012</xref>
), which may significantly impact the studied phenotype. It must be recognized that although GF mice are devoid of live bacteria, food might contain autoclave-resistant microbial products, including pathogen-associated molecular patterns (PAMPs), which can induce host responses.</p>
<p>GF animals were applied in the study of the involvement of microbiota in diabetes, rheumatic arthritis and IBD (Bleich and Hansen
<xref rid="bib14" ref-type="bibr">2012</xref>
). For example, although the severity of colitis in the commonly used dextran sulfate sodium (DSS) model critically depends on the presence of bacteria (Kitajima
<italic>et al.</italic>
<xref rid="bib75" ref-type="bibr">2001</xref>
), GF mice develop more severe colitis as compared to conventionalized mice. This suggests that bacteria may play a protective role in the metabolism of DSS, or that GF mice respond less efficient because of their immature intestinal immune system. Important mechanistic insights in colonization resistance, the mechanism whereby a microbial community is protected from colonization of new and often harmful bacteria, were raised by the use of sequential introduction of
<italic>Bacteroides</italic>
species into GF mice (Lee
<italic>et al.</italic>
<xref rid="bib82" ref-type="bibr">2013</xref>
), showing that colonization of
<italic>Bacteroides</italic>
is species-specific and saturable. Finally, since immune structures in GF mice remain immature, much of our understanding of host–microbe interactions involved in the development of the immune system arose from the study of GF animals and is discussed in more detail later in this review.</p>
</sec>
<sec id="sec3-2">
<title>Humanized mice</title>
<p>An important limitation in murine microbial studies is the difference in bacterial composition between mice and humans. Whereas in humans three enterotypes can be identified, only two can be found in mice (Hildebrand
<italic>et al.</italic>
<xref rid="bib55" ref-type="bibr">2013</xref>
; Wang
<italic>et al.</italic>
<xref rid="bib162" ref-type="bibr">2014</xref>
). Although the microbiota similarity between mice and humans at the phylum level is remarkable, at the species level, many differences are found (Dethlefsen, McFall-Ngai and Relman
<xref rid="bib34" ref-type="bibr">2007</xref>
). As in humans, the two most abundant bacterial phyla in C57BL6/J mice are the
<italic>Firmicutes</italic>
(60–80% of sequences) and the
<italic>Bacteroidetes</italic>
(20–40%); however, 85% of the murine sequences represent species that have not been detected in humans (Ley
<italic>et al.</italic>
<xref rid="bib84" ref-type="bibr">2005</xref>
). ‘Humanization’ of the mouse microbiome is frequently used to overcome this limitation, and it was recently shown that mice humanized with different human donors generate a similar microbiome composition and metabolomic profile compared to the donor, with preservation of individual-specific features (Marcobal
<italic>et al.</italic>
<xref rid="bib95" ref-type="bibr">2013</xref>
). However, microbial species seem to be critically adapted to specific hosts. Gut bacterial numbers and phylum abundance were similar in mice containing mouse and human microbiota, but bacterial species differed markedly (Chung
<italic>et al.</italic>
<xref rid="bib26" ref-type="bibr">2012</xref>
). Mice harboring human microbiota had low levels of mucosal CD4
<sup>+</sup>
and CD8
<sup>+</sup>
T cells, few dendritic cells and reduced antimicrobial peptide expression. Even rat microbiota failed to fully expand intestinal T-cell numbers in mice. Importantly, mice with mouse microbiota conferred better protection against
<italic>Salmonella</italic>
infection than those with human microbiota. Together, these data suggest a highly specific coexistence and mutual interaction between species-associated microbiota and the host immune system, and that microbiota–host interactions in humans cannot be completely mirrored in ‘humanized’ mice.</p>
</sec>
<sec id="sec3-3">
<title>Antibiotic treatment</title>
<p>Antibiotics can be used to demonstrate that the mere presence of bacteria contributes to a specific phenotype (Ochoa-Repáraz
<italic>et al.</italic>
<xref rid="bib107" ref-type="bibr">2009</xref>
; Elinav
<italic>et al.</italic>
<xref rid="bib43" ref-type="bibr">2011</xref>
; Bauer
<italic>et al.</italic>
<xref rid="bib10" ref-type="bibr">2012</xref>
). The value of such observations is difficult to interpret because even combined antibiotic treatment does not completely sterilize the intestine. Instead, antibiotics alter intestinal microbial diversity and have a large impact on mucosa-associated bacterial communities throughout the small and large intestines (Puhl
<italic>et al.</italic>
<xref rid="bib119" ref-type="bibr">2012</xref>
). For example, broad-spectrum antibiotics change bacterial populations in the murine large intestine, reducing the total number of bacteria and diminishing local cytokine production (Hill and Artis
<xref rid="bib57" ref-type="bibr">2010</xref>
). The age at which the treatment is administrated is important since antibiotic treatment of mice at the age of weaning results in long-term alteration of their gut microbial communities, which does not occur in adult animals (Cho
<italic>et al.</italic>
<xref rid="bib25" ref-type="bibr">2012</xref>
; Cox
<italic>et al.</italic>
<xref rid="bib31" ref-type="bibr">2014</xref>
). Importantly, antibiotic gavage with a 12-h interval causes greater depletion of microbiota than administration of the antibiotics in drinking water provided
<italic>ad libitum</italic>
(Reikvam
<italic>et al.</italic>
<xref rid="bib125" ref-type="bibr">2011</xref>
).</p>
<p>The dosing of antibiotics is another critical determinant of microbiome composition. Subtherapeutic doses of antibiotics, referring to doses below the minimum inhibitory concentration, strongly increase the virulence of microbiota. The latter principle is standardly used to increase the growth rate of farm animals, and the earlier in life this treatment is provided, the bigger the effect. Similarly, in mice, the application of subtherapeutic doses of various classes of antibiotics resulted in increased adiposity, associated with metabolic shifts and increased
<italic>Firmicute</italic>
abundance (Cho
<italic>et al.</italic>
<xref rid="bib25" ref-type="bibr">2012</xref>
; Cox
<italic>et al.</italic>
<xref rid="bib31" ref-type="bibr">2014</xref>
), highly similar to what is observed in the ob/ob mice. In mice, weight evolution can either be repressed or enhanced by antibiotics, depending on the dosing, treatment duration and mouse strain used. In general, weight increase by antibiotics was most obvious when mice were fed with a semisynthetic diet, while this effect was lost when they had more balanced pellet diets (Dubos, Schaedler and Costello
<xref rid="bib39" ref-type="bibr">1963</xref>
). Thus, intestinal bacteria may depress growth by competing for nutrients, especially when the diet is somewhat deficient. In contrast, high doses of antibiotics early in life may severely impact microbiome composition and metabolic state (Cox and Blaser
<xref rid="bib30" ref-type="bibr">2015</xref>
).</p>
<p>Despite the limitations, the use of antibiotics to study the role of bacteria may lead to important insights. For example, long-term antibiotic treatment of mice lacking T-bet, a transcription factor which is essential for innate lymphoid cell (ILC) development, completely cured these mice from spontaneous colitis that normally arises in this genetic background (Garrett
<italic>et al.</italic>
<xref rid="bib50" ref-type="bibr">2007</xref>
).</p>
</sec>
<sec id="sec3-4">
<title>Transfer of microbiota</title>
<p>Transferring microbiota from one mouse to another can be performed in several ways. Before birth, embryos can be transferred to a foster mother. Right after birth, pups can be fostered by another mother and when mice are older, bacteria can be transferred by gavage, intrarectal administration or by simply cohousing the animals. During cohousing, animals may feed on feces (also known as coprophagy) or more likely ingest feces by self-grooming.</p>
<p>Artificial colonization of GF mice with specific pathogen-free (SPF) flora partly reversed the response to restraint stress (defined by an increase of plasma cortisol levels) when the flora was introduced at 6 weeks of age but not at 14 weeks of age (Sudo
<italic>et al.</italic>
<xref rid="bib147" ref-type="bibr">2004</xref>
). Others demonstrated that gavage of 1-week-old mice with a distinct microbiota did not result in colonization, whereas inoculation of 3-week-old mice was successful (Hansen
<italic>et al.</italic>
<xref rid="bib53" ref-type="bibr">2012</xref>
). At a very young age, the microbiota originating from the mother likely dominate the offspring microbiota. This idea is supported by the observation that microbial colonization of neonate GF mice resulted in normal numbers of iNKT cells in lungs and colon, while they are typically elevated in GF mice. In contrast, colonization of 8-week-old GF mice could not reverse the elevated numbers of iNKT cells (Olszak
<italic>et al.</italic>
<xref rid="bib109" ref-type="bibr">2012</xref>
). Accordingly, the administration of probiotics might lead to optimal results only when given at early ages. The probiotic
<italic>Lactobacillus johnsonii</italic>
strain La1, for example, was effective in inhibiting the development of atopic dermatitis in NC/Nga mice only when administered right after weaning (Inoue
<italic>et al.</italic>
<xref rid="bib67" ref-type="bibr">2007</xref>
).</p>
<p>Although considerable literature exists about microbiota transfer into GF animals, little is known about transferring microbiota into animals with non-GF intestines. Intuitively, one would treat such animals with antibiotics to allow the introduction of the donor microbiota. However, antibiotic treatment is not necessary to establish an exogenous microbiota (Manichanh
<italic>et al.</italic>
<xref rid="bib94" ref-type="bibr">2010</xref>
). In fact, antibiotic pretreatment even worsened the efficiency of engraftment. Transplantation has also been used in mouse models of enteric infections. For example, mice infected with
<italic>C. difficile</italic>
could be cured with feces from healthy mice (Lawley
<italic>et al.</italic>
<xref rid="bib79" ref-type="bibr">2012</xref>
), in accordance with the successful treatment of human relapsing
<italic>C. difficile</italic>
colitis. In addition, a so-called colitogenic flora, retrieved from transgenic mice that spontaneously develop colitis, can successfully transmit intestinal inflammation to wild-type mice (Garrett
<italic>et al.</italic>
<xref rid="bib50" ref-type="bibr">2007</xref>
; Elinav
<italic>et al.</italic>
<xref rid="bib43" ref-type="bibr">2011</xref>
). We demonstrated that cohousing of mice from the age of 4 weeks determines the sensitivity towards DSS-induced colitis, independent of the specific genotype (Brinkman
<italic>et al.</italic>
<xref rid="bib16" ref-type="bibr">2013</xref>
). Consequently, randomly distributing and cohousing mutant and wild-type mice in cages before the experiment could lead to loss of phenotype as a result of microbiota transfer (Brinkman
<italic>et al.</italic>
<xref rid="bib16" ref-type="bibr">2013</xref>
).</p>
<p>In conclusion, modification of microbial conditions within the first weeks of life can disrupt the development of gut-associated immunity. Between the age of weaning and young adulthood (4–8 weeks of age), there is another window of opportunity to influence microbiome composition. Later in life, immunity is far less susceptible to change by microbial influence, probably due to increased stability of microbiome homeostasis. The use of specific tools for maximal efficacy of microbiome manipulation in relation to mouse development is summarized in Fig. 
<xref ref-type="fig" rid="fig3">3</xref>
.</p>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3.</label>
<caption>
<p>
<bold>The development of the murine microbiota and the immune system over time.</bold>
<italic>In utero</italic>
, few, if any, bacteria are present in the mouse gut and the immune system is not yet matured. Upon birth, the neonate is inoculated with microorganisms by the mother and the environment, and rapidly develops an immune system that enables the pup to fight infections. Genetic background co-determines the composition of the microbiota, for example when the genotype increases intestinal inflammation. After weaning, diet changes induce a novel surge in microbiota development and maturation of the immune response. At this time point, the microbiota is fully established but still susceptible to changes in its composition by manipulation (
<italic>e.g.</italic>
diet) or natural influences. When the mouse reaches adulthood around eight weeks, the microbiota displays a stable homeostatic state. At each of these four stages, the microbiota can be studied in conventional animals using the different experimental approaches that are listed. ILCs: innate lymphoid cells; Treg: regulatory T cells.</p>
</caption>
<graphic xlink:href="fuv036fig3"></graphic>
</fig>
</sec>
</sec>
<sec id="sec4">
<title>DEVELOPMENT OF THE MURINE GUT MICROBIOME AND THE INTESTINAL IMMUNE SYSTEM</title>
<p>Mammals are GF
<italic>in utero</italic>
; however, some reports indicate that gut colonization may start before birth. Bacteria originating from the mother have been observed in the meconium of human and murine neonates (Jiménez
<italic>et al.</italic>
<xref rid="bib70" ref-type="bibr">2008</xref>
) and bacterial translocation from the gut lumen into the mammary glands during pregnancy and during the first week of lactation has been reported (Perez
<italic>et al.</italic>
<xref rid="bib113" ref-type="bibr">2007</xref>
). However, it is generally accepted that colonization occurs after exposure to bacteria in the birth canal and by contact with the skin, feces and other environmental sources. The mother's milk primarily provides the initial protection against invading pathogens (Hanson
<xref rid="bib54" ref-type="bibr">2007</xref>
; Fuhrer
<italic>et al.</italic>
<xref rid="bib46" ref-type="bibr">2010</xref>
); however, various studies have shown the presence of bacteria in milk, which may also define the shaping of the microbiome (Ward
<italic>et al.</italic>
<xref rid="bib163" ref-type="bibr">2013</xref>
).</p>
<p>In the human newborn's gut, the original bacterial species that populate are mainly facultative anaerobes, including
<italic>Staphylococci</italic>
(Morelli
<xref rid="bib104" ref-type="bibr">2008</xref>
). They consume oxygen leading to a drop in redox potential, as such creating an appropriate environment for anaerobic colonization such as
<italic>Clostridia</italic>
and
<italic>Bifidobacteria</italic>
. These early colonizers induce the expression of mucins, the constituents of the mucus layer that forms a physical barrier between epithelial cells and the luminal content (Bergström
<italic>et al.</italic>
<xref rid="bib13" ref-type="bibr">2012</xref>
). Accordingly, the thickness of the mucus layer is decreased in GF rats and its composition differs dramatically compared to conventionalized rats (Meslin, Fontaine and Andrieux
<xref rid="bib101" ref-type="bibr">1995</xref>
). Especially in the first week after weaning, coinciding with the introduction of solid food, the pups are challenged by a rapidly changing microbiota until intestinal homeostasis is established, which generally occurs 11–17 days after weaning (Schloss
<italic>et al.</italic>
<xref rid="bib136" ref-type="bibr">2012</xref>
). The microbiota on day 17 closely resembles the microbiota one year after weaning when mice are kept under similar conditions. When the adult microbiome has been established, the bacterial communities inhabiting the intestine are set and a clear distinction exists between the luminal and the mucus-adherent microbial populations. After conventionalization of GF mice, microbial colonization of the colon starts with the appearance of early colonizers on day 1, followed by the slower establishment of a stable community. Interestingly, homeostasis in the colon is reached within 8–16 days, whereas establishment of homeostasis in the small intestine takes about twice as long (El Aidy
<italic>et al.</italic>
<xref rid="bib42" ref-type="bibr">2012</xref>
). Why the establishment of this equilibrium in the ileum, which contains far less bacteria compared to the colon, takes more time is speculative, but indicates a higher complexity of the host–microbiome interface in the ileal environment.</p>
<p>Before birth, pups have naïve secondary lymphoid structures such as Peyer's patches and mesenteric lymph nodes. Maturation of the gut-associated immune compartment and microvascular structures crucially depends on the presence of bacteria and pattern recognition receptors after birth (Van de Pavert and Mebius
<xref rid="bib155" ref-type="bibr">2010</xref>
; Hooper, Littman and Macpherson
<xref rid="bib62" ref-type="bibr">2012</xref>
). For example, the presence of peptidoglycan, a constituent of Gram-negative bacteria, is necessary to drive the genesis of gut lymphoid follicles through NOD1 signaling in epithelial cells (Bouskra
<italic>et al.</italic>
<xref rid="bib15" ref-type="bibr">2008</xref>
). Another cell type that crucially regulates lymphoid genesis in response to bacteria are RORct
<sup>+</sup>
ILCs called lymphoid tissue-inducer cells (Eberl
<xref rid="bib41" ref-type="bibr">2012</xref>
). These lymphoid cells are present in the cryptopatches (the precursors of lymphoid follicles) after birth and secrete large amounts of IL-22, which is crucial for the containment of colonizing bacteria. Consequently, mice deficient for RORct are extremely susceptible to DSS due to a loss of containment of a homeostatic microbiota (Lochner
<italic>et al.</italic>
<xref rid="bib86" ref-type="bibr">2011</xref>
).</p>
</sec>
<sec id="sec5">
<title>INTESTINAL HOMEOSTASIS OF THE MURINE GUT MICROBIOME</title>
<p>Despite continuous exposure to bacteria and bacterial constituents such as lipopolysaccharides and flagellin, the intestinal mucosa maintains a homeostatic immunological environment. The host preserves a state of tolerance towards colonizing bacteria, inhibits bacterial overgrowth and at the same time acts appropriately towards pathogens (Kamada
<italic>et al.</italic>
<xref rid="bib71" ref-type="bibr">2013</xref>
; Lawley and Walker
<xref rid="bib80" ref-type="bibr">2013</xref>
; Sommer and Bäckhed
<xref rid="bib144" ref-type="bibr">2013</xref>
).Vice versa, the established adult microbiota provides protection against potential pathogens via direct inhibition or nutrient depletion. In addition, bacterial metabolites such as short-chain fatty acids are well-known regulators of the host immune response (Macia
<italic>et al.</italic>
<xref rid="bib92" ref-type="bibr">2012</xref>
), and the generation of antigen-specific populations of T
<sub>reg</sub>
cells in response to the commensal microbiota is thought to provide post-thymic education of the immune system and to generate tolerance (Lathrop
<italic>et al.</italic>
<xref rid="bib78" ref-type="bibr">2011</xref>
; Renz, Brandtzaeg and Hornef
<xref rid="bib128" ref-type="bibr">2011</xref>
). Immunosuppressive T
<sub>reg</sub>
cells are induced in gut-draining lymph nodes and home to the gut where they expand and produce a tolerant environment for a specific antigen (Hadis
<italic>et al.</italic>
<xref rid="bib52" ref-type="bibr">2011</xref>
).</p>
<p>Emerging evidence demonstrates an important role of innate signaling in preserving a healthy microbiome through the interaction of PAMPs with NOD-like receptors (NLRs), Toll-like receptors (TLRs) and ILCs (Hooper, Littman and Macpherson
<xref rid="bib62" ref-type="bibr">2012</xref>
). NOD2, one of the first and most replicated risk factors for ileal Crohn's disease, recognizes intracellular muramyldipeptide, a constituent of both Gram-positive and Gram-negative bacteria, and induces proinflammatory cytokines and stimulates defensin production in the ileum. Mice deficient in Nod2 are not able to control
<italic>Helicobacter hepaticus</italic>
infection. In addition, a significantly higher amount of
<italic>Bacteroides</italic>
and
<italic>Firmicutes</italic>
is found in the terminal ileum of Nod2-deficient mice compared with their wild-type littermates. Of note, this difference is less prominent in fecal samples (Robertson
<italic>et al.</italic>
<xref rid="bib130" ref-type="bibr">2013</xref>
), probably reflecting the highest expression of Nod2 in Paneth cells of the ileum. Genetic inactivation of the Nlrp6 inflammasome results in increase susceptibility to DSS and the generation of a colitogenic flora (Elinav
<italic>et al.</italic>
<xref rid="bib43" ref-type="bibr">2011</xref>
). In general, intestinal epithelial cells are hyporesponsive towards bacterial sensing which is mediated by, for example, the single Ig IL-1-related receptor, inhibiting IL-1 signaling. Genetic deletion of this receptor in mice renders them highly susceptible to pathogen colonization as a direct consequence of the loss of a homeostatic commensal flora (Sham
<italic>et al.</italic>
<xref rid="bib139" ref-type="bibr">2013</xref>
). In addition, TLR-MyD88 signaling in response to commensal bacteria critically regulates defensin production by Paneth cells (Menendez
<italic>et al.</italic>
<xref rid="bib100" ref-type="bibr">2013</xref>
). Of high importance in orchestrating intestinal barrier function and innate sensing are ILCs, which are the resident immune cell regulators at epithelial surfaces that share many of the CD4
<sup>+</sup>
and CD8
<sup>+</sup>
T-cell functions (Sonnenberg and Artis
<xref rid="bib145" ref-type="bibr">2012</xref>
). Like T cells, ILCs develop from common lymphoid precursors; however, they are not selected for antigen specificity and do not express antigen receptors. As innate sensors, they respond and divide rapidly upon stimulation. ILCs regulate barrier integrity and therefore the direct physical border between microbiome and underlying lamina propria cells through secretion of cytokines such as tumor necrosis factor and interferon.</p>
</sec>
<sec id="sec6">
<title>GENETICS AND THE COMPOSITION OF THE MURINE GUT MICROBIOME</title>
<p>Many inbred and outbred mouse strains with different genetic backgrounds are available for animal studies. Since microbial diversity is influenced by host genetic factors, studies of host genetic effects on intestinal microbiota are accumulating. The influence of these genetic factors is distinct from inheritance of the microorganisms themselves by the so-called legacy effect (transmission between generations through the mother). Several studies have determined the effect of host genetics on the microbiome by comparing inbred laboratory strains (Friswell
<italic>et al.</italic>
<xref rid="bib45" ref-type="bibr">2010</xref>
; Campbell
<italic>et al.</italic>
<xref rid="bib21" ref-type="bibr">2012</xref>
). Overall, the variation between strains was greater than individual differences within each strain. We investigated the natural variability of microbiota in five commonly used lab strains and confirmed the positive correlation between genetic distance and microbiota distance between mice (Hildebrand
<italic>et al.</italic>
<xref rid="bib55" ref-type="bibr">2013</xref>
). Remarkably, one of the two enterotype clusters showed reduced richness which correlated with increased fecal calprotectin levels, which is a marker for cellular damage that also indicates disease activity in IBD (De Vos
<italic>et al.</italic>
<xref rid="bib32" ref-type="bibr">2013</xref>
). A positive correlation between low richness mice and calprotectin levels could therefore indicate low-grade inflammation and it may be particularly relevant to test these mice for susceptibility toward enteritis. After stratification for enterotypes, the microbial variance between mice was driven by interindividual changes, cage effects and genetics, explaining 45, 32 and 20% of the variance, respectively.</p>
<p>Unexpectedly, individual mice from certain strains, for example C3HRI, DBAJR and WSB, appear to be more similar in their microbiota than other strains such as C57BL6/J (Friswell
<italic>et al.</italic>
<xref rid="bib45" ref-type="bibr">2010</xref>
; Campbell
<italic>et al.</italic>
<xref rid="bib21" ref-type="bibr">2012</xref>
). This indicates that host genetic factors contribute to different levels of conformity and explains why sufficient backcrossing of strains is crucial for the reproducibility of animal experiments. Moreover, a common practice is the use of embryonic stem cells from the 129 mouse strain to generate genetically engineered mice in which germ transmission can be scored by a chimeric fur. This methodology requires sufficient backcrossing in a particular mouse strain to reduce the mixed genetic background. Unfortunately, the genetic history of mutant mice is often ambiguous when mice are shared between institutions (Sellers
<italic>et al.</italic>
<xref rid="bib137" ref-type="bibr">2012</xref>
). Although a strain is considered stable when backcrossed for 10 generations, original 129 genes that are too close to the mutated gene to be segregated by recombination will persist in the backcrossed genome (Simpson
<italic>et al.</italic>
<xref rid="bib142" ref-type="bibr">1997</xref>
; Lusis, Yu and Wang
<xref rid="bib88" ref-type="bibr">2007</xref>
) and may cause microbial differences compared to wild-type mice. Comparative genomic analysis of 129 and C57BL/6J mouse strains revealed indels and single nucleotide polymorphisms resulting in alternative or aberrant amino acid sequences in 1084 genes in the 129-strain genome. Annotating these passenger mutations to the reported genetically modified congenic mice that were generated using 129-strain ES cells revealed that nearly all these mice possess multiple passenger mutations potentially influencing the phenotypic outcome. A Me-PaMuFind-It web tool has been developed to estimate the number and possible effect of passenger mutations in transgenic mice of interest (Vanden Berghe
<italic>et al.</italic>
<xref rid="bib158" ref-type="bibr">2015</xref>
). A dramatic illustration of the problem of passenger mutations recently reemerged when
<italic>Casp1</italic>
-null mice were found to carry an inactivating passenger mutation in the neighboring
<italic>Casp11</italic>
gene (Kayagaki
<italic>et al.</italic>
<xref rid="bib72" ref-type="bibr">2011</xref>
). Essentially, the strong protection observed in
<italic>Casp1</italic>
-null mice against a lethal lipopolysaccharide challenge was found to be mainly due to this inactivating passenger mutation in the
<italic>Casp11</italic>
gene.</p>
<p>The contribution of strain-specific differences in microbiota composition to the strain-specific disease phenotypes might be more important than previously thought (Kayagaki
<italic>et al.</italic>
<xref rid="bib72" ref-type="bibr">2011</xref>
; Vanden Berghe
<italic>et al.</italic>
<xref rid="bib157" ref-type="bibr">2013</xref>
). Strain-specific phenotypic differences have been known for a long time and have been observed in genetic models such as the IL-10 knockout mouse as well as in DSS-induced colitis (Mähler
<italic>et al.</italic>
<xref rid="bib93" ref-type="bibr">1998</xref>
; Vidal
<italic>et al.</italic>
<xref rid="bib160" ref-type="bibr">2008</xref>
; Büchler
<italic>et al.</italic>
<xref rid="bib19" ref-type="bibr">2012</xref>
). These observations have fueled forward genetics research to identify disease susceptibility genes. However, differences in microbiome composition could also explain why some strains display a more severe phenotypic abnormality (Büchler
<italic>et al.</italic>
<xref rid="bib19" ref-type="bibr">2012</xref>
).</p>
<p>Few papers describe murine gender differences in microbiota composition. A comparison of inbred lines revealed greater similarity between pools of the same mouse line than between pools of the same sex (Kovacs
<italic>et al.</italic>
<xref rid="bib77" ref-type="bibr">2011</xref>
). By contrast, others showed that gender differences in microbiota composition do exist but that this observation is genotype dependent (Fushuku and Fukuda
<xref rid="bib48" ref-type="bibr">2008a</xref>
; Gomez
<italic>et al.</italic>
<xref rid="bib51" ref-type="bibr">2012</xref>
). The microbiomes of weanling non-obese diabetic (NOD) male and female are indistinguishable, but sex-specific differences in microbiome composition become evident at puberty and are most evident in adult mice (Markle
<italic>et al.</italic>
<xref rid="bib96" ref-type="bibr">2013</xref>
). Apparently, each gender harbors a unique susceptibility to factors that shape the microbiota after birth. These authors demonstrated that the male microbiota provides testosterone-dependent protection from type 1 diabetes in the NOD mice.</p>
<p>Besides strain and gender differences, investigators have studied the effects of the allelic absence of specific genes on the intestinal microbiota by comparing knockout with wild-type mice. These studies have demonstrated that deletion of a single gene can cause substantial alterations in the microbiota (Vijay-Kumar
<italic>et al.</italic>
<xref rid="bib161" ref-type="bibr">2010</xref>
; Brinkman
<italic>et al.</italic>
<xref rid="bib17" ref-type="bibr">2011</xref>
; Kellermayer
<italic>et al.</italic>
<xref rid="bib73" ref-type="bibr">2011</xref>
; Lynch
<italic>et al.</italic>
<xref rid="bib89" ref-type="bibr">2012</xref>
). Still, even gene deletions that cause a remarkable phenotypic abnormality, such as the
<italic>Ob/Ob</italic>
mouse, have been shown to have a much weaker effect than a change in diet on the microbial composition (Hildebrandt
<italic>et al.</italic>
<xref rid="bib56" ref-type="bibr">2009</xref>
). In addition, the question remains whether the microbiota as a whole or a specific bacterial community is responsible for phenotypic differences in transgenic animals. For example, the spontaneous colitis phenotype in mice lacking T-bet depends on the presence of only 12 species (Powell
<italic>et al.</italic>
<xref rid="bib116" ref-type="bibr">2012</xref>
).</p>
<p>Genotype-specific phenotypes can be microbiota dependent and this dependence could lead to wrong conclusions when phenotypes of different mutant lines of the same strain are compared. For example, phenotypic differences between TLR-deficient C57BL/6J mouse colonies mainly reflected a divergence of the microbiota after extended isolated breeding of the colonies (Ubeda
<italic>et al.</italic>
<xref rid="bib153" ref-type="bibr">2012</xref>
). Thus, long-term breeding of separate mouse lines that had been derived from the same strain appears to result in marked changes in intestinal microbiota composition. This observation cautions for direct comparison of mutant lines even when they are bred in the same facility. Therefore, correct interpretation of study results requires reference littermate mice that are bred from in-house heterozygous breedings. Taken together, microbiota composition in genetically modified mice may superimpose on the genetic effect causing a change in host physiology.</p>
</sec>
<sec id="sec7">
<title>VARIABLES THAT AFFECT GUT MICROBIOTA COMPOSITION RELATED TO ANIMAL HOUSING</title>
<p>Variation in the microbiological environment between research institutions or commercial breeding facilities is a confounding factor; however. the exact contribution to experimental outcomes is poorly understood. The origin of the mice is extremely important because laboratory mice are available as both outbred stocks and inbred strains from various vendors. Viable counts of the total bacterial load have revealed large differences in the cecal microbiota among mice of the same strain from different vendors (Hufeldt
<italic>et al.</italic>
<xref rid="bib66" ref-type="bibr">2010b</xref>
). The presence of segmented filamentous bacteria in the gut of mice of Taconic caused a higher frequency of Th17 cells compared with mice from Jackson Laboratory who lacked these bacteria (Ivanov
<italic>et al.</italic>
<xref rid="bib68" ref-type="bibr">2009</xref>
). Other groups have also reported vendor-dependent differences in disease outcome, but these studies did not focus on the microbiome. For example, variations in airway responsiveness in C57BL6 mice obtained from five different vendors were reported (Chang, Mitzner and Watson
<xref rid="bib24" ref-type="bibr">2012</xref>
). This type of variation is not restricted to commercially available strains but also plays a role when comparing studies performed in different animal laboratory sources (Ubeda
<italic>et al.</italic>
<xref rid="bib153" ref-type="bibr">2012</xref>
). Recommendations for experimental design that take into account the key variables that affect gut microbiota composition with respect to housing conditions are provided in Table 
<xref ref-type="table" rid="tbl1">1</xref>
.</p>
<table-wrap id="tbl1" orientation="portrait" position="float">
<label>Table 1.</label>
<caption>
<p>Guidelines to control variations in microbiota composition in mice.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Guideline</th>
<th align="left" rowspan="1" colspan="1">Variable that influences microbiota composition</th>
<th align="left" rowspan="1" colspan="1">Possible complication</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">
<bold>General guidelines</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Selective breeding of siblings over several generations</td>
<td rowspan="1" colspan="1">Maternal transmission</td>
<td rowspan="1" colspan="1">Genetic drift</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Standardize diet and food autoclaving parameters</td>
<td rowspan="1" colspan="1">Diet</td>
<td rowspan="1" colspan="1">Standardization fallacy</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Keep mice together (same room, same rack) and do not relocate cages</td>
<td rowspan="1" colspan="1">Environment, stress</td>
<td rowspan="1" colspan="1">Logistic problems</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Minimize noise, handling time, stress to set hierarchy</td>
<td rowspan="1" colspan="1">Stress</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Maximize number of cages</td>
<td rowspan="1" colspan="1">Cage effect</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Collect tissue or fecal pellets for microbiome analysis</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<bold>Study the effect of treatment (excluding probiotics)</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">If possible, use isobiotic mice and keep in individually ventilated cages</td>
<td rowspan="1" colspan="1">Origin of mice</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Or homogenize the flora by cohousing mice 3–4 weeks before the start of the experiment</td>
<td rowspan="1" colspan="1">Cage effect</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mix treatment groups within each cage</td>
<td rowspan="1" colspan="1">Cage effect</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<bold>Study the effect of probiotics</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Homogenize the flora and minimize genetic influences by switching mice and distribute littermates over cages just before the start of the experiment</td>
<td rowspan="1" colspan="1">Cage effect</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Maximize the number of cages</td>
<td rowspan="1" colspan="1">Cage effect</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<bold>Study the effect of host genetics on a common microbial background</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Use heterozygous littermates as reference group</td>
<td rowspan="1" colspan="1">Maternal transmission</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Homogenize the flora by cohousing mice 3–4 weeks before the start of the experiment</td>
<td rowspan="1" colspan="1">Cage effect</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<bold>Study the effect of host genetics on microbiota composition</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Use heterozygous littermates as reference group</td>
<td rowspan="1" colspan="1">Maternal transmission</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Separate litters according to genotype after weaning, divide over several cages (in case of subtle differences)</td>
<td rowspan="1" colspan="1">Cage effect, age effect</td>
<td rowspan="1" colspan="1">Synchronization of microbiota</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cohouse wild type and mutant (in case of profound differences)</td>
<td rowspan="1" colspan="1">Cage effect</td>
<td rowspan="1" colspan="1">Synchronization of microbiota</td>
</tr>
</tbody>
</table>
</table-wrap>
<sec id="sec7-1">
<title>Conventional housing vs. SPF and cage effects</title>
<p>The SPF concept was introduced in response to the increased awareness of the effect of microorganisms on animal experiments (Schaedler and Dubos
<xref rid="bib132" ref-type="bibr">1962</xref>
). Today, the SPF condition is classically established by inoculating pups delivered by cesarian section with the so-called altered Schaedler flora, a mixture of eight bacterial strains (Dewhirst
<italic>et al.</italic>
<xref rid="bib36" ref-type="bibr">1999</xref>
). To maintain the SPF status, an increasing number of rodents are housed in individually ventilated cages with limited shared environmental exposure. A large survey showed that despite the use of SPF technology, many institutional colonies were burdened by infectious agents (Jacoby and Lindsey
<xref rid="bib69" ref-type="bibr">1998</xref>
). The discrepancy in testing frequency, methods and the number of animals tested hampers a uniform standard for ‘SPFness’ (Pritchett-Corning, Cosentino and Clifford
<xref rid="bib118" ref-type="bibr">2009</xref>
). Also of concern are the differences in functional biochemical activities of the microbiota of mice raised under SPF conditions or under conventional conditions (Norin and Midtvedt
<xref rid="bib106" ref-type="bibr">2010</xref>
). In fact, SPF refers only to those pathogens that are tested by each individual center and animal handling is likely to introduce new bacteria. The microbiota of these SPF mice is largely unknown and it is questionable if the SPF microbiota is representative of a functionally normal murine gut flora. Therefore, the logistic, technical and financial challenges faced with gnotobiotic conditions may not in all circumstances weigh up to the improvements they may bring in reducing experimental variability.</p>
<p>One might expect that the development of spontaneous diseases in transgenic or knockout mice will depend on whether they are housed in an SPF or in a conventional environment. Indeed, IL-10 knockout mice that were transferred from an SPF environment to conventional conditions showed a significantly greater incidence and severity of colitis than animals kept under SPF conditions (Pedrosa
<italic>et al.</italic>
<xref rid="bib112" ref-type="bibr">2011</xref>
). By contrast, TCR-α knockout mice kept in a conventional facility developed a considerably milder colitis than mice kept in an SPF facility coinciding with an increase in IgM production (Shimomura
<italic>et al.</italic>
<xref rid="bib140" ref-type="bibr">2008</xref>
).</p>
<p>Cage effects in conventionally housed mice are dramatic. Isogenic mice from different litters that were cohoused at weaning showed little variation in microbiota (Deloris
<italic>et al.</italic>
<xref rid="bib33" ref-type="bibr">2006</xref>
). Conversely, if the litters were split among different cages at weaning, a high divergence in microbiota profiles was observed after 3 weeks. The most convincing difference between cages is driven by
<italic>Helicobacter</italic>
spp., a fast spreading species found in animal facilities (Taylor
<italic>et al.</italic>
<xref rid="bib149" ref-type="bibr">2007</xref>
; Hildebrand
<italic>et al.</italic>
<xref rid="bib55" ref-type="bibr">2013</xref>
).</p>
<p>Taken together, these examples urge us to use standardized experimental conditions and to explicitly describe the animal housing conditions in publications.</p>
</sec>
<sec id="sec7-2">
<title>Diet</title>
<p>Diet is one of the most important environmental factors influencing microbiome composition. Several research groups have shown that maternal diet affects the colonization of the gut of pups (Fujiwara, Watanabe and Sonoyama
<xref rid="bib47" ref-type="bibr">2008</xref>
; Buddington
<italic>et al.</italic>
<xref rid="bib20" ref-type="bibr">2010</xref>
; Schaible
<italic>et al.</italic>
<xref rid="bib133" ref-type="bibr">2011</xref>
). Interestingly, postnatal changes in milk composition that are caused by a change in the mother's diet appear to be more important for the composition of the gut microbiota of the pups than the prenatal diet of the mother (Du
<italic>et al.</italic>
<xref rid="bib38" ref-type="bibr">2012</xref>
). When comparing different types of lactation, e.g. artificial vs. mother's milk, significant differences in the development of the gut microbiota were observed in the lactating pups (Carlisle
<italic>et al.</italic>
<xref rid="bib22" ref-type="bibr">2012</xref>
; Zeng
<italic>et al.</italic>
<xref rid="bib168" ref-type="bibr">2012</xref>
). These observations can be explained by the fact that milk, even when collected aseptically, is a source of bacteria that can colonize the gut of the pups (Ward
<italic>et al.</italic>
<xref rid="bib163" ref-type="bibr">2013</xref>
).</p>
<p>Little is known about the effect of the different brands of standard animal feed on microbiota composition. Changing standard feed brand did not appear to result in a change, but changing its fat content did (Ma
<italic>et al.</italic>
<xref rid="bib91" ref-type="bibr">2012</xref>
). High-fat diet causing diet-induced obesity (DIO) in mice induces important changes in the composition of the gut microbiota (Turnbaugh
<italic>et al.</italic>
<xref rid="bib152" ref-type="bibr">2008</xref>
; Ravussin
<italic>et al.</italic>
<xref rid="bib124" ref-type="bibr">2012</xref>
). These changes appeared to be caused by the diet itself, rather than resulting from obesity; however, diet alone may not be the sole cause of obesity (Bäckhed
<italic>et al.</italic>
<xref rid="bib6" ref-type="bibr">2007</xref>
). Interestingly, GF mice are completely protected against dietary obesity (Bäckhed
<italic>et al.</italic>
<xref rid="bib6" ref-type="bibr">2007</xref>
), but they produce increased adiposity upon gavage with fecal matter from mice with DIO. A change in the microbiota promotes weight gain in DIO by interacting with a lymphotoxin-dependent mucosal defense pathway (Upadhyay
<italic>et al.</italic>
<xref rid="bib154" ref-type="bibr">2012</xref>
). This pathway regulates the expression of IL-22 from RORct
<sup>+</sup>
ILCs and lymphotoxin β receptor knockout mice fail to express sufficient IL-22 to eliminate mucosal pathogens (Tumanov
<italic>et al.</italic>
<xref rid="bib151" ref-type="bibr">2011</xref>
). However, these mice are able to resist DIO due to a profound change of their microbiota, characterized by increased microbial diversity compared to wild-type DIO mice. Therefore, susceptibility to obesity requires an intact mucosal immunity that guides diet-induced changes to the microbiota. Similarly, feeding mice a westernized, high-fat diet changes gut microbial communities and accelerates age-associated obesity (Poutahidis
<italic>et al.</italic>
<xref rid="bib115" ref-type="bibr">2013</xref>
). Body weight gain was completely abolished upon dietary supplementation with a prebiotic yogurt. Surprisingly, oral treatment with purified
<italic>L. reuteri</italic>
, one of the bacteria found in this prebiotic yogurt, did not change the gut microbiome composition or caloric intake but triggered IL-10-producing T
<sub>reg</sub>
cells, which dampens obesity-associated Th17 proinflammatory responses. Induction of T
<sub>reg</sub>
cells upon feeding low doses of a particular antigen has been well known as the driving mechanism of oral tolerance (Weiner
<italic>et al.</italic>
<xref rid="bib164" ref-type="bibr">2011</xref>
).</p>
<p>Diet-induced changes in bile acid composition can also be an important cause of modifications to the gut bacterial community. For example, a diet high in saturated fats increased the abundance of the sulfite-reducing bacterium
<italic>deltaproteobacterium</italic>
(Devkota
<italic>et al.</italic>
<xref rid="bib35" ref-type="bibr">2012</xref>
). This effect was achieved by promoting taurine conjugation of bile acids, hence increasing the availability of organic sulfur and providing more favorable conditions for sulfite-reducing microorganisms. Vice versa, the conversion from primary to secondary bile acids by bacteria defines the composition of the gut microbiome (Cowles
<italic>et al.</italic>
<xref rid="bib29" ref-type="bibr">2002</xref>
); however, it is difficult to establish which is cause or consequence.</p>
<p>Differences in animal feed might contribute to the lack of reproducibility of animal model experiments between institutes, and the type of feed should be mentioned upon publication. Of note, because autoclaving may differentially alter the presence or structure of PAMPs, the duration and temperature of autoclaving or irradiation parameters should also be mentioned in publications.</p>
</sec>
<sec id="sec7-3">
<title>Stress factors</title>
<p>The effects of physical and psychological stress on the functions of the gastrointestinal tract are widely recognized (Konturek, Brzozowski and Konturek
<xref rid="bib76" ref-type="bibr">2011</xref>
). Bidirectional signaling between the gastrointestinal tract and the central nervous system, known as the brain-gut axis, appears to be vital for maintaining immune homeostasis (Lyte
<xref rid="bib90" ref-type="bibr">2013</xref>
). The most revealing insights into the importance of the microbiota in animal behavior were obtained from comparison of GF mice with SPF mice and by the use of antibiotics (Sudo
<italic>et al.</italic>
<xref rid="bib147" ref-type="bibr">2004</xref>
; Bercik
<italic>et al.</italic>
<xref rid="bib12" ref-type="bibr">2011</xref>
; Neufeld
<italic>et al.</italic>
<xref rid="bib105" ref-type="bibr">2011</xref>
). Stress-induced small bowel inflammation can be elicited in rodents by placing them on a small platform surrounded by water for 1 h daily. This results in stress-induced visceral hyperalgesia and increased cortisol levels. Interestingly, this hormone inhibits Nlrp6 expression, a component of the inflammasome that responds to commensal bacteria (Sun
<italic>et al.</italic>
<xref rid="bib148" ref-type="bibr">2013</xref>
). Water-avoidance stress altered the gut microbiota, and cohoused non-stressed mice developed enteritis.</p>
<p>In line with these findings, exposure to physical stress (e.g. grid floors) or psychological stress (e.g. isolation) can change the composition of the gut microbiome (Bangsgaard
<italic>et al.</italic>
<xref rid="bib9" ref-type="bibr">2012</xref>
; Bailey
<xref rid="bib7" ref-type="bibr">2014</xref>
). Environmental conditions and routine procedures in the animal facility might induce unwanted stress responses. Stressors can be light, sound, air quality/ventilation, temperature, relative humidity, the presence of humans and handling (Castelhano-Carlos and Baumans
<xref rid="bib23" ref-type="bibr">2009</xref>
; Raff
<italic>et al.</italic>
<xref rid="bib122" ref-type="bibr">2011</xref>
). Other stressors include the presence of other animals and population density. Transfer of mice from one room or facility to another also has significant impact on the composition of the microbiota (Fushuku and Fukuda
<xref rid="bib49" ref-type="bibr">2008b</xref>
; Olfe
<italic>et al.</italic>
<xref rid="bib108" ref-type="bibr">2010</xref>
; Ma
<italic>et al.</italic>
<xref rid="bib91" ref-type="bibr">2012</xref>
). These stress factors need to be taken into account during the construction and the Standard Operating Procedures of the animal facility.</p>
</sec>
</sec>
<sec id="sec8">
<title>DESIGNING ANIMAL EXPERIMENTS TO INVESTIGATE THE MICROBIOME</title>
<p>In 1959, Russell and Burch published
<italic>The Principles of Humane Experimental Technique</italic>
in which they classified humane techniques for animal experimentation under the headings of replacement, reduction and refinement—now commonly known as the three Rs, which became important principles of
<italic>in vivo</italic>
experimentation. Most laboratory animals used in biomedical research are mice, and about six million mice are used annually in the EU (Commisson to the Council and the European Parliament
<xref rid="bib111" ref-type="bibr">2010</xref>
). To diminish the number of mice, regulations of animal care and use require scientists to limit the use of experimental animals and to avoid unnecessary duplication of experiments. This implies the importance of controlling and standardizing conditions for reproducibility in experiments performed in different animal facilities. For this reason, the Animals in Research: Reporting
<italic>In Vivo</italic>
Experiments (ARRIVE) guidelines and the gold standard publication checklist (GSPC) for animal studies have been developed (Hooijmans, Leenaars and Ritskes-Hoitinga
<xref rid="bib61" ref-type="bibr">2010</xref>
; Kilkenny
<italic>et al.</italic>
<xref rid="bib74" ref-type="bibr">2010</xref>
). However, not all authors currently follow these guidelines and older studies often lack the necessary experimental information (Baker
<italic>et al.</italic>
<xref rid="bib8" ref-type="bibr">2014</xref>
). The scientific value of experimental results that cannot be reproduced is questionable. For example, the diversity of NOD mice in developing autoimmune disease under different conditions prompted a group of researchers to compile a questionnaire on this subject (Pozzilli
<italic>et al.</italic>
<xref rid="bib117" ref-type="bibr">1993</xref>
). Besides the different definitions of the disease, factors such as the source of the mice, colony size, breeding protocol (age together, brother/sister breeding), diet and SPF status/pathogenic control seemed to be the most important variables between the participating centers. As an example, we include a summary (Table 
<xref ref-type="table" rid="tbl2">2</xref>
) of the contradictory phenotypes of
<italic>Casp1</italic>
or
<italic>Nlrp3</italic>
deficiency in chemically induced colitis described by different groups and the lack of uniform information that is provided in the cited papers. Recently, as discussed above, it became clear that part of these results may be explained by the presence of 129-derived passenger mutations which remain associated with the transgene locus of interest due to low recombination frequency of associated genes at short distance (Kayagaki
<italic>et al.</italic>
<xref rid="bib72" ref-type="bibr">2011</xref>
; Vanden Berghe
<italic>et al.</italic>
<xref rid="bib158" ref-type="bibr">2015</xref>
).</p>
<table-wrap id="tbl2" orientation="portrait" position="float">
<label>Table 2.</label>
<caption>
<p>Acute DSS-colitis and the role of the inflammasome components NRLP3 and caspase-1 in disease development.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Genetic modification</th>
<th align="left" rowspan="1" colspan="1">Control</th>
<th align="left" rowspan="1" colspan="1">Littermates</th>
<th align="left" rowspan="1" colspan="1">Strain</th>
<th align="left" rowspan="1" colspan="1">Facility</th>
<th align="left" rowspan="1" colspan="1">%DSS</th>
<th align="left" rowspan="1" colspan="1">Effect</th>
<th align="left" rowspan="1" colspan="1">Microbiota studied</th>
<th align="left" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Nlrp3 knockout</td>
<td rowspan="1" colspan="1">Commercial wild type</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">Protected</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">Bauer
<italic>et al.</italic>
(
<xref rid="bib11" ref-type="bibr">2010</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Nlrp3 knockout</td>
<td rowspan="1" colspan="1">Commercial wild type</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">Protected</td>
<td rowspan="1" colspan="1">Co-housing (2 weeks together), antibiotics</td>
<td rowspan="1" colspan="1">Bauer
<italic>et al.</italic>
(
<xref rid="bib10" ref-type="bibr">2012</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Nlrp3 knockout</td>
<td rowspan="1" colspan="1">Wild type</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">C57BL/6</td>
<td rowspan="1" colspan="1">SPF</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">Sensitized</td>
<td rowspan="1" colspan="1">Antibiotics, bacterial count in stool</td>
<td rowspan="1" colspan="1">Zaki
<italic>et al.</italic>
(
<xref rid="bib167" ref-type="bibr">2010</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Nlrp3 knockout</td>
<td rowspan="1" colspan="1">Wild type</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">C57BL/6</td>
<td rowspan="1" colspan="1">SPF</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">Sensitized</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">Allen
<italic>et al.</italic>
(
<xref rid="bib2" ref-type="bibr">2010</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Nlrp3 knockout</td>
<td rowspan="1" colspan="1">Wild type</td>
<td rowspan="1" colspan="1">Yes</td>
<td rowspan="1" colspan="1">C57BL/6</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">2.5</td>
<td rowspan="1" colspan="1">Sensitized</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">Hirota
<italic>et al.</italic>
(
<xref rid="bib58" ref-type="bibr">2011</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Casp1 knockout</td>
<td rowspan="1" colspan="1">Wild type</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">C57BL/6</td>
<td rowspan="1" colspan="1">SPF</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">Sensitized</td>
<td rowspan="1" colspan="1">Co-housing (4 weeks together)</td>
<td rowspan="1" colspan="1">Elinav
<italic>et al.</italic>
(
<xref rid="bib43" ref-type="bibr">2011</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Casp1 knockout</td>
<td rowspan="1" colspan="1">Wild type</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">C57BL/6</td>
<td rowspan="1" colspan="1">SPF</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">Sensitized</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">Zaki
<italic>et al.</italic>
(
<xref rid="bib167" ref-type="bibr">2010</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Casp1 knockout</td>
<td rowspan="1" colspan="1">Wild type</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">C57BL/6</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">Sensitized</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">Dupaul-Chicoine
<italic>et al.</italic>
(
<xref rid="bib40" ref-type="bibr">2010</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Casp1 knockout</td>
<td rowspan="1" colspan="1">Wild type</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">C57BL/6</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">No effect</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">Hu
<italic>et al.</italic>
(
<xref rid="bib64" ref-type="bibr">2010</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Casp1 knockout</td>
<td rowspan="1" colspan="1">Wild type</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">C57BL/6</td>
<td rowspan="1" colspan="1">SPF</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">Sensitized</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">Hirota
<italic>et al.</italic>
(
<xref rid="bib58" ref-type="bibr">2011</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Casp1 knockout</td>
<td rowspan="1" colspan="1">Wild type</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">C57BL/6</td>
<td rowspan="1" colspan="1">NC</td>
<td rowspan="1" colspan="1">3.5</td>
<td rowspan="1" colspan="1">Protected</td>
<td rowspan="1" colspan="1">No</td>
<td rowspan="1" colspan="1">Siegmund
<italic>et al.</italic>
(
<xref rid="bib141" ref-type="bibr">2001</xref>
)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TFN001">
<p>NC: not communicated.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<sec id="sec8-1">
<title>Selective breeding</title>
<p>Several groups studied the maternal transmission of microbiota. Although not all studies showed a maternal lineage effect (Kovacs
<italic>et al.</italic>
<xref rid="bib77" ref-type="bibr">2011</xref>
; Campbell
<italic>et al.</italic>
<xref rid="bib21" ref-type="bibr">2012</xref>
), some studies demonstrated that litters from sisters are more similar in composition than litters from non-related mothers (Hufeldt
<italic>et al.</italic>
<xref rid="bib65" ref-type="bibr">2010a</xref>
) and that lineage influence could extend to more than one generation (Ley
<italic>et al.</italic>
<xref rid="bib84" ref-type="bibr">2005</xref>
). In addition, embryos from different strains that were transplanted in a surrogate mother shared the surrogate mother's gut bacteria (Friswell
<italic>et al.</italic>
<xref rid="bib45" ref-type="bibr">2010</xref>
). These observations suggest that the maternal environment has a dominant influence on microbiota composition. Breeding pairs of non-related mice that had a very similar microbiome composition did not increase gut microbiota similarity of the offspring, again suggesting that maternal relatedness is crucial for microbiota similarity (Pang
<italic>et al.</italic>
<xref rid="bib110" ref-type="bibr">2012</xref>
).</p>
<p>In brief, a simple way to increase microbial similarity is to generate a more stable microbiome by selective breeding of siblings over several generations. The downside of this approach could be increased deviation of results obtained with similar strains in other laboratories due to increased genetic drift, which may make it more difficult to reproduce experiments at another location.</p>
</sec>
<sec id="sec8-2">
<title>Housing conditions</title>
<p>To minimize microbiota differences between mice, they should be exposed to identical environmental conditions. Preferably, mice should be kept in ventilated cages or they should be mixed and housed in different cages before the start of the experiment. The number of mice per cage needs to be carefully considered, taking into account that hierarchy can be set and that animals are not stressed because of seclusion.</p>
<p>It is important to harmonize the exposure of the animals to stressors such as noise and handling and minimize cage effects. In line with the existence of a susceptibility window, relocation effects were largest when the mice were between 4 and 8 weeks of age, and negligible at older ages (Friswell
<italic>et al.</italic>
<xref rid="bib45" ref-type="bibr">2010</xref>
). Minimizing differences in microbiota variation would therefore require maintaining mice that are part of an experiment in the same type of cage, in the same rack and in the same room of a facility. As a critical note, many environmental conditions cannot be equalized between laboratories and different sites will inevitably standardize to different local environments and particularities. Instead of achieving the desired result of increased reproducibility between different institutes, the standardization measures would thus reduce reproducibility between different sites, which is also known as the so-called standardization fallacy (Würbel
<xref rid="bib166" ref-type="bibr">2000</xref>
). The only way to stop this vicious circle of extreme local standardization (environmental factors, genetic factors, experimental setup) and apparent variation of phenotypes between different animal housings is introducing systematic variation of parameters within one research institution (Würbel
<xref rid="bib166" ref-type="bibr">2000</xref>
).</p>
</sec>
<sec id="sec8-3">
<title>The optimal reference or control groups</title>
<p>Although it may seem obvious, the reference, usually the wild type or placebo-treated group should be bought from the same vendor, and controls for transgenic mice that are home bred should be the heterozygous and/or wild-type littermates. Here, littermates represent the true reference, particularly when genetically modified strains are analyzed for quantitative phenotypes (Holmdahl and Malissen
<xref rid="bib59" ref-type="bibr">2012</xref>
). This will ensure similarity of both the genetic background and the environment in which the mice are kept. However, cohousing of mice with different genotypes (e.g. wild type and knockout) has been shown to change the gut microbial composition, affecting their natural immunological responses to a treatment or a disease trigger (Garrett
<italic>et al.</italic>
<xref rid="bib50" ref-type="bibr">2007</xref>
; Elinav
<italic>et al.</italic>
<xref rid="bib43" ref-type="bibr">2011</xref>
; Brinkman
<italic>et al.</italic>
<xref rid="bib16" ref-type="bibr">2013</xref>
). Pending on the biological question one should take into consideration different strategies to control for cohousing effects.</p>
<p>If the aim of the experiment is to rule out an effect of the microbiota, mice should be switched between cages before the actual experiment, in order to homogenize the flora. Mice that are treated and placebo-treated mice should be cohoused during the experiment. However, if the study aim is to determine the effect of diet or probiotics, it is not possible to cohouse treated and untreated animals during the experiment. Here, the number of cages should be maximized, and littermates should be distributed over multiple cages to dilute possible genetic or cage effects.</p>
<p>In case the aim of the study is to compare the role of the genotype-specific microbiota in mice with different genotypes, only profound effects will lead to statistical differences when cohousing wild type and littermate mutant mice, since their microbiota will synchronize. In case the effect is more subtle, it is recommended to separate littermate controls according to their genotype right after weaning for at least 30 days before the experiment so that the mice can develop their inherent microbiota; however, they should be divided over several cages. One month after weaning, mice reach adulthood and develop a stable microbiota that is less susceptible to change (Sudo
<italic>et al.</italic>
<xref rid="bib147" ref-type="bibr">2004</xref>
; Hansen
<italic>et al.</italic>
<xref rid="bib53" ref-type="bibr">2012</xref>
). Taken together, experimental design should be carefully considered depending on the question that is raised. Ideally, in all experimental designs, the number of cages should be maximized to dilute cage effects and samples should be collected for retrospective microbiota analysis, to ensure a homogenous microbiome composition in the test and reference groups.</p>
</sec>
<sec id="sec8-4">
<title>Collections of standardized microbiota</title>
<p>Establishing a collection of different standardized microbiotas in isobiotic mice to be shared between institutions for reproducible experimentation has been proposed (Hooper, Littman and Macpherson
<xref rid="bib62" ref-type="bibr">2012</xref>
). This would require considerable effort, but it may be interesting to generate isobiotic mice lines in highly specialized animal facilities at the providing institutions. This has only a minor logistical, technical and financial impact on the receiving institution and should be seriously considered. Commercial vendors are already studying methods for archiving microbiota for reproduction of studies in different labs or at different times (P156, AALAS 63rd National Meeting 2012). Protocols for the sequential colonization of rodents using donors or pure cultures have been suggested by Taconic (
<ext-link ext-link-type="uri" xlink:href="http://taconic.com/wmspage.cfm?parm1=289">http://taconic.com/wmspage.cfm?parm1=289</ext-link>
). Along the same line, the European framework program 7 has setup common projects to share mouse breeding facilities between different institutes (‘mouse hotels’), while the experiments are done locally. Such a policy would already seriously prevent the problem of extreme local standardization and local genetic drift.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec9">
<title>CONCLUSIONS</title>
<p>Optimizing reproducibility of animal experiments to study host–microbiome interactions between different research institutions is crucial to draw sound conclusions. Increasing evidence suggests that the microbial environment influences the innate and adaptive immune system and largely determines the outcome of such investigations, even in disease models where the microbiome is not under investigation. Therefore, parameters that influence the microbiota composition should be considered at all times and requires extensive description upon publication. Moreover, 129 derived genetically modified congenic mice are affected by passenger mutations, interfering with the link between modified target gene and the microbiota composition phenotype. It is particularly important that journals demand adherence to the ARRIVE guidelines in combination with the GSPC checklist. The lack of defining confounding factors can jeopardize the relevance of data, especially in research related to dysbiosis-induced disease and pre-clinical intervention studies.</p>
</sec>
</body>
<back>
<fn-group>
<fn id="fn1">
<p>This version was prepared to indicate that this paper has been published under an Open Access licence.</p>
</fn>
</fn-group>
<ack>
<p>We thank Dr Amin Bredan (IRC-VIB, DBMB UGent) for editing the manuscript.</p>
</ack>
<sec id="sec10">
<title>FUNDING</title>
<p>This work was supported by European grants (FP6 [MRTN-CT-035624]; FP7 [FP7–200767]), Belgian grants (Interuniversity Attraction Poles - IAP [6/18; IAP 7/32]), Flemish grants (Research Foundation Flanders (FWO) [G0226.09; G.0875.11; G.0973.11; G.0531.16; G.0A45.12, G.0172.; G.0787.13; G0C3114], a Methusalem grant [BOF09/01M00709]), Ghent University grants (MRP, GROUP-ID consortium), a grant from the ‘Foundation against Cancer’ [2012–188]) and grants from the Flanders Institute for Biotechnology (VIB). PV is senior full professor at Ghent University and holder of a Methusalem grant [BOF09/01M00709], from which BB is paid. JR is supported by the FWO, IWT and Brussels Region (Innoviris), KU Leven and the Rega institute, as well as FP7 [HEALTH-F4–2012–305312]. DL is paid by an FWO grant [1298213N].</p>
<p>
<bold>
<italic>Conflict of interest.</italic>
</bold>
None declared.</p>
</sec>
<ref-list>
<title>REFERENCES</title>
<ref id="bib1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albenberg</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Esipova</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Judge</surname>
<given-names>CP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota</article-title>
<source>Gastroenterology</source>
<year>2014</year>
<volume>147</volume>
<fpage>1055</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">25046162</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allen</surname>
<given-names>IC</given-names>
</name>
<name>
<surname>TeKippe</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Woodford</surname>
<given-names>RM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer</article-title>
<source>J Exp Med</source>
<year>2010</year>
<volume>207</volume>
<fpage>1045</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="pmid">20385749</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arumugam</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Raes</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pelletier</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Enterotypes of the human gut microbiome</article-title>
<source>Nature</source>
<year>2011</year>
<volume>473</volume>
<fpage>174</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="pmid">21508958</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bäckhed</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The gut microbiota as an environmental factor that regulates fat storage</article-title>
<source>P Natl Acad Sci USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>15718</fpage>
<lpage>23</lpage>
</element-citation>
</ref>
<ref id="bib5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bäckhed</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ley</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Sonnenburg</surname>
<given-names>JL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Host-bacterial mutualism in the human intestine</article-title>
<source>Science</source>
<year>2005</year>
<volume>307</volume>
<fpage>1915</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="pmid">15790844</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bäckhed</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Manchester</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Semenkovich</surname>
<given-names>CF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanisms underlying the resistance to diet-induced obesity in germ-free mice</article-title>
<source>P Natl Acad Sci USA</source>
<year>2007</year>
<volume>104</volume>
<fpage>979</fpage>
<lpage>84</lpage>
</element-citation>
</ref>
<ref id="bib7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bailey</surname>
<given-names>MT</given-names>
</name>
</person-group>
<article-title>Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation</article-title>
<source>Adv Exp Med Biol</source>
<year>2014</year>
<volume>817</volume>
<fpage>255</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="pmid">24997038</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baker</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lidster</surname>
<given-names>K, Sottomayor</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Two years later: journals are not yet enforcing the ARRIVE guidelines on reporting standards for pre-clinical animal studies</article-title>
<source>PLoS Biol</source>
<year>2014</year>
<volume>12</volume>
<fpage>e1001756</fpage>
<pub-id pub-id-type="pmid">24409096</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bangsgaard Bendtsen</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Krych</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sørensen</surname>
<given-names>DB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e46231</fpage>
<pub-id pub-id-type="pmid">23056268</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bauer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Duewell</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lehr</surname>
<given-names>HA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protective and Aggravating effects of Nlrp3 inflammasome activation in IBD Models: influence of genetic and environmental factors</article-title>
<source>Dig Dis</source>
<year>2012</year>
<volume>30</volume>
<issue>Suppl 1</issue>
<fpage>82</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="pmid">23075874</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bauer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Duewell</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mayer</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome</article-title>
<source>Gut</source>
<year>2010</year>
<volume>59</volume>
<fpage>1192</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">20442201</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bercik</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Denou</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice</article-title>
<source>Gastroenterology</source>
<year>2011</year>
<volume>141</volume>
<fpage>599</fpage>
<lpage>609</lpage>
<pub-id pub-id-type="pmid">21683077</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bergström</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kristensen</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Bahl</surname>
<given-names>MI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life</article-title>
<source>BMC Res Notes</source>
<year>2012</year>
<volume>5</volume>
<fpage>402</fpage>
<pub-id pub-id-type="pmid">22857743</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bleich</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>Time to include the gut microbiota in the hygienic standardisation of laboratory rodents</article-title>
<source>Comp Immunol Microb</source>
<year>2012</year>
<volume>35</volume>
<fpage>81</fpage>
<lpage>92</lpage>
</element-citation>
</ref>
<ref id="bib15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bouskra</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Brézillon</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bérard</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis</article-title>
<source>Nature</source>
<year>2008</year>
<volume>456</volume>
<fpage>507</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">18987631</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brinkman</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ayiseh</surname>
<given-names>RB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gut microbiota affects sensitivity to acute DSS-induced colitis independently of host genotype</article-title>
<source>Inflamm Bowel Dis</source>
<year>2013</year>
<volume>19</volume>
<fpage>2560</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">24105395</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brinkman</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Hildebrand</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kubica</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Caspase deficiency alters the murine gut microbiome</article-title>
<source>Cell Death Dis</source>
<year>2011</year>
<volume>2</volume>
<fpage>e220</fpage>
<pub-id pub-id-type="pmid">22012254</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brooks</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Harwich</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies</article-title>
<source>BMC Microbiol</source>
<year>2015</year>
<volume>15</volume>
<fpage>66</fpage>
<pub-id pub-id-type="pmid">25880246</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Büchler</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wos-Oxley</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Smoczek</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Strain-specific colitis susceptibility in IL10-deficient mice depends on complex gut microbiota-host interactions</article-title>
<source>Inflamm Bowel Dis</source>
<year>2012</year>
<volume>18</volume>
<fpage>943</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">22238116</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buddington</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Kostek</surname>
<given-names>BM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Maternal-to-infant transmission of probiotics: concept validation in mice, rats, and pigs</article-title>
<source>Neonatology</source>
<year>2010</year>
<volume>97</volume>
<fpage>250</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">19887854</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campbell</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Foster</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Vishnivetskaya</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Host genetic and environmental effects on mouse intestinal microbiota</article-title>
<source>ISME J</source>
<year>2012</year>
<volume>6</volume>
<fpage>2033</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="pmid">22695862</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carlisle</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Poroyko</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Caplan</surname>
<given-names>MS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Murine gut microbiota and transcriptome are diet dependent</article-title>
<source>Ann Surg</source>
<year>2012</year>
<volume>257</volume>
<fpage>287</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="pmid">23001074</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castelhano-Carlos</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Baumans</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats</article-title>
<source>Lab Anim</source>
<year>2009</year>
<volume>43</volume>
<fpage>311</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">19505937</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Mitzner</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Variation in airway responsiveness of male C57BL/6 mice from 5 vendors</article-title>
<source>J Am Assoc Lab Anim</source>
<year>2012</year>
<volume>51</volume>
<fpage>401</fpage>
<lpage>6</lpage>
</element-citation>
</ref>
<ref id="bib25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cho</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Yamanishi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antibiotics in early life alter the murine colonic microbiome and adiposity</article-title>
<source>Nature</source>
<year>2012</year>
<volume>488</volume>
<fpage>621</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">22914093</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chung</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pamp</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gut immune maturation depends on colonization with a host-specific microbiota</article-title>
<source>Cell</source>
<year>2012</year>
<volume>149</volume>
<fpage>1578</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">22726443</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Claus</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Ellero</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Colonization-induced host-gut microbial metabolic interaction</article-title>
<source>MBio</source>
<year>2011</year>
<volume>2</volume>
<fpage>e00271</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">21363910</pub-id>
</element-citation>
</ref>
<ref id="bib111">
<element-citation publication-type="journal">
<comment>Commisson to the Council and the European Parliament</comment>
<source>Sixth report on the statistics on the number of animals used for experimental and other scientific purposes in the Member States of the European Union. COM 511 final, Brussels</source>
<year>2010</year>
<comment>Archive of European Integration (AEI,
<ext-link ext-link-type="uri" xlink:href="http://aei.pitt.edu/33392">http://aei.pitt.edu/33392</ext-link>
)</comment>
</element-citation>
</ref>
<ref id="bib28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cotillard</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>LC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dietary intervention impact on gut microbial gene richness</article-title>
<source>Nature</source>
<year>2013</year>
<volume>500</volume>
<fpage>585</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">23985875</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowles</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Gallaher</surname>
<given-names>DD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dietary stearic acid alters gallbladder bile acid composition in hamsters fed cereal-based diets</article-title>
<source>J Nutr</source>
<year>2002</year>
<volume>132</volume>
<fpage>3119</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">12368404</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cox</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Blaser</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Antibiotics in early life and obesity</article-title>
<source>Nat Rev Endocrinol</source>
<year>2015</year>
<volume>11</volume>
<fpage>182</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="pmid">25488483</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cox</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Yamanishi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sohn</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences</article-title>
<source>Cell</source>
<year>2014</year>
<volume>158</volume>
<fpage>705</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">25126780</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Vos</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Louis</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Jahnsen</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Consecutive fecal calprotectin measurements to predict relapse in patients with ulcerative colitis receiving infliximab maintenance therapy</article-title>
<source>Inflamm Bowel Dis</source>
<year>2013</year>
<volume>19</volume>
<fpage>2111</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">23883959</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deloris Alexander</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Orcutt</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Henry</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Quantitative PCR assays for mouse enteric flora reveal strain-dependent differences in composition that are influenced by the microenvironment</article-title>
<source>Mamm Genome</source>
<year>2006</year>
<volume>17</volume>
<fpage>1093</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="pmid">17091319</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dethlefsen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>McFall-Ngai</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Relman</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>An ecological and evolutionary perspective on human-microbe mutualism and disease</article-title>
<source>Nature</source>
<year>2007</year>
<volume>449</volume>
<fpage>811</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">17943117</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Devkota</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Musch</surname>
<given-names>MW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice</article-title>
<source>Nature</source>
<year>2012</year>
<volume>487</volume>
<fpage>104</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">22722865</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dewhirst</surname>
<given-names>FE</given-names>
</name>
<name>
<surname>Chien</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Paster</surname>
<given-names>BJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phylogeny of the defined murine microbiota: altered Schaedler flora</article-title>
<source>Appl Environ Microb</source>
<year>1999</year>
<volume>65</volume>
<fpage>3287</fpage>
<lpage>92</lpage>
</element-citation>
</ref>
<ref id="bib37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schloss</surname>
<given-names>PD</given-names>
</name>
</person-group>
<article-title>Dynamics and associations of microbial community types across the human body</article-title>
<source>Nature</source>
<year>2014</year>
<volume>509</volume>
<fpage>357</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">24739969</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Maternal western diet causes inflammatory milk and TLR2/4-dependent neonatal toxicity</article-title>
<source>Gene Dev</source>
<year>2012</year>
<volume>26</volume>
<fpage>1306</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="pmid">22713870</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dubos</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Schaedler</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Costello</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>The effect of antibacterial drugs on the weight of mice</article-title>
<source>J Exp Med</source>
<year>1963</year>
<volume>117</volume>
<fpage>245</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">19867224</pub-id>
</element-citation>
</ref>
<ref id="bib40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dupaul-Chicoine</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yeretssian</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Doiron</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases</article-title>
<source>Immunity</source>
<year>2010</year>
<volume>32</volume>
<fpage>367</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">20226691</pub-id>
</element-citation>
</ref>
<ref id="bib41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eberl</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Development and evolution of RORγt+ cells in a microbe's world</article-title>
<source>Immunol Rev</source>
<year>2012</year>
<volume>245</volume>
<fpage>177</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="pmid">22168420</pub-id>
</element-citation>
</ref>
<ref id="bib42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El Aidy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>van Baarlen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Derrien</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice</article-title>
<source>Mucosal Immunol</source>
<year>2012</year>
<volume>5</volume>
<fpage>567</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="pmid">22617837</pub-id>
</element-citation>
</ref>
<ref id="bib43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elinav</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Strowig</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kau</surname>
<given-names>AL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis</article-title>
<source>Cell</source>
<year>2011</year>
<volume>145</volume>
<fpage>745</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">21565393</pub-id>
</element-citation>
</ref>
<ref id="bib44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Faith</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Guruge</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Charbonneau</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The long-term stability of the human gut microbiota</article-title>
<source>Science</source>
<year>2013</year>
<volume>341</volume>
<fpage>1237439</fpage>
<pub-id pub-id-type="pmid">23828941</pub-id>
</element-citation>
</ref>
<ref id="bib45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friswell</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Gika</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Stratford</surname>
<given-names>IJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice</article-title>
<source>PLoS One</source>
<year>2010</year>
<volume>5</volume>
<fpage>e8584</fpage>
<pub-id pub-id-type="pmid">20052418</pub-id>
</element-citation>
</ref>
<ref id="bib46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fuhrer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sprenger</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kurakevich</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Milk sialyllactose influences colitis in mice through selective intestinal bacterial colonization</article-title>
<source>J Exp Med</source>
<year>2008</year>
<volume>207</volume>
<fpage>2843</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">21098096</pub-id>
</element-citation>
</ref>
<ref id="bib47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fujiwara</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sonoyama</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Assessing changes in composition of intestinal microbiota in neonatal BALB/c mice through cluster analysis of molecular markers</article-title>
<source>BrIT J Nutr</source>
<year>2008</year>
<volume>99</volume>
<fpage>1174</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">18096093</pub-id>
</element-citation>
</ref>
<ref id="bib48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fushuku</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fukuda</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Gender difference in the composition of fecal flora in laboratory mice, as detected by denaturing gradient gel electrophoresis (DGGE)</article-title>
<source>Exp Anim</source>
<year>2008a</year>
<volume>57</volume>
<fpage>489</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">18946187</pub-id>
</element-citation>
</ref>
<ref id="bib49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fushuku</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fukuda</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Inhomogeneity of a in separately reared laboratory mice, as detected by denaturing gradient gel electrophoresis (DGGE)</article-title>
<source>Exp Anim</source>
<year>2008b</year>
<volume>57</volume>
<fpage>95</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">18421171</pub-id>
</element-citation>
</ref>
<ref id="bib50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garrett</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Lord</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Punit</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system</article-title>
<source>Cell</source>
<year>2007</year>
<volume>131</volume>
<fpage>33</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">17923086</pub-id>
</element-citation>
</ref>
<ref id="bib51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gomez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Luckey</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yeoman</surname>
<given-names>CJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible 0401 mice but not arthritis-resistant 0402 mice</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e36095</fpage>
<pub-id pub-id-type="pmid">22553482</pub-id>
</element-citation>
</ref>
<ref id="bib52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hadis</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Wahl</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Schulz</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intestinal tolerance requires gut homing and expansion of FoxP3 +regulatory T cells in the lamina propria</article-title>
<source>Immunity</source>
<year>2011</year>
<volume>34</volume>
<fpage>237</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">21333554</pub-id>
</element-citation>
</ref>
<ref id="bib53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hansen</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Kverka</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Patterns of early gut colonization shape future immune responses of the host</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e34043</fpage>
<pub-id pub-id-type="pmid">22479515</pub-id>
</element-citation>
</ref>
<ref id="bib54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanson</surname>
<given-names>LA</given-names>
</name>
</person-group>
<article-title>Session 1: feeding and infant development breast-feeding and immune function</article-title>
<source>Proc Nutr Soc</source>
<year>2007</year>
<volume>66</volume>
<fpage>384</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="pmid">17637091</pub-id>
</element-citation>
</ref>
<ref id="bib55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hildebrand</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Brinkman</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice</article-title>
<source>Genome Biol</source>
<year>2013</year>
<volume>14</volume>
<fpage>R4</fpage>
<pub-id pub-id-type="pmid">23347395</pub-id>
</element-citation>
</ref>
<ref id="bib56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hildebrandt</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sherrill-Mix</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High-fat diet determines the composition of the murine gut microbiome independently of obesity</article-title>
<source>Gastroenterology</source>
<year>2009</year>
<volume>137</volume>
<fpage>1716–24 e1</fpage>
<lpage>2</lpage>
<pub-id pub-id-type="pmid">19706296</pub-id>
</element-citation>
</ref>
<ref id="bib57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hill</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Artis</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Intestinal bacteria and the regulation of immune cell homeostasis</article-title>
<source>Annu Rev Immunol</source>
<year>2010</year>
<volume>28</volume>
<fpage>623</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="pmid">20192812</pub-id>
</element-citation>
</ref>
<ref id="bib58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirota</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lueng</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis</article-title>
<source>Inflamm Bowel Dis</source>
<year>2011</year>
<volume>17</volume>
<fpage>1359</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">20872834</pub-id>
</element-citation>
</ref>
<ref id="bib59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmdahl</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Malissen</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The need for littermate controls</article-title>
<source>Eur J Immunol</source>
<year>2012</year>
<volume>42</volume>
<fpage>45</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">22213045</pub-id>
</element-citation>
</ref>
<ref id="bib60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmes</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Marchesi</surname>
<given-names>JR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk</article-title>
<source>Cell Metab</source>
<year>2012</year>
<volume>16</volume>
<fpage>559</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="pmid">23140640</pub-id>
</element-citation>
</ref>
<ref id="bib61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hooijmans</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Leenaars</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ritskes-Hoitinga</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>A gold standard publication checklist to improve the quality of animal studies, to fully integrate the Three Rs, and to make systematic reviews more feasible</article-title>
<source>Altern Lab Anim</source>
<year>2010</year>
<volume>38</volume>
<fpage>167</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="pmid">20507187</pub-id>
</element-citation>
</ref>
<ref id="bib62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hooper</surname>
<given-names>LV</given-names>
</name>
<name>
<surname>Littman</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Macpherson</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Interactions between the microbiota and the immune system</article-title>
<source>Science</source>
<year>2012</year>
<volume>336</volume>
<fpage>1268</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="pmid">22674334</pub-id>
</element-citation>
</ref>
<ref id="bib63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsiao</surname>
<given-names>EY</given-names>
</name>
<name>
<surname>McBride</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Hsien</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders</article-title>
<source>Cell</source>
<year>2013</year>
<volume>155</volume>
<fpage>1451</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">24315484</pub-id>
</element-citation>
</ref>
<ref id="bib64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Elinav</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4</article-title>
<source>P Natl Acad Sci USA</source>
<year>2010</year>
<volume>107</volume>
<fpage>21635</fpage>
<lpage>40</lpage>
</element-citation>
</ref>
<ref id="bib65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hufeldt</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Vogensen</surname>
<given-names>FK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice</article-title>
<source>Lab Anim</source>
<year>2010a</year>
<volume>44</volume>
<fpage>283</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">20713427</pub-id>
</element-citation>
</ref>
<ref id="bib66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hufeldt</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Vogensen</surname>
<given-names>FK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors</article-title>
<source>Comp Med</source>
<year>2010b</year>
<volume>60</volume>
<fpage>336</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="pmid">21262117</pub-id>
</element-citation>
</ref>
<ref id="bib67">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inoue</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nishio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fukushima</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oral treatment with probiotic Lactobacillus johnsonii NCC533 (La1) for a specific part of the weaning period prevents the development of atopic dermatitis induced after maturation in model mice, NC/Nga</article-title>
<source>Brit J Dermatol</source>
<year>2007</year>
<volume>156</volume>
<fpage>499</fpage>
<lpage>509</lpage>
<pub-id pub-id-type="pmid">17300240</pub-id>
</element-citation>
</ref>
<ref id="bib68">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ivanov</surname>
<given-names>II</given-names>
</name>
<name>
<surname>Atarashi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Manel</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of intestinal Th17 cells by segmented filamentous bacteria</article-title>
<source>Cell</source>
<year>2009</year>
<volume>139</volume>
<fpage>485</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">19836068</pub-id>
</element-citation>
</ref>
<ref id="bib69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jacoby</surname>
<given-names>RO</given-names>
</name>
<name>
<surname>Lindsey</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>Risks of Infection among Laboratory Rats and Mice at Major Biomedical Research Institutions</article-title>
<source>ILAR J</source>
<year>1998</year>
<volume>39</volume>
<fpage>266</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="pmid">11528087</pub-id>
</element-citation>
</ref>
<ref id="bib70">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiménez</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Marín</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Martín</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Is meconium from healthy newborns actually sterile?</article-title>
<source>Res Microbiol</source>
<year>2008</year>
<volume>159</volume>
<fpage>187</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">18281199</pub-id>
</element-citation>
</ref>
<ref id="bib71">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamada</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>GY</given-names>
</name>
<name>
<surname>Inohara</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Control of pathogens and pathobionts by the gut microbiota</article-title>
<source>Nat Immunol</source>
<year>2013</year>
<volume>14</volume>
<fpage>685</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="pmid">23778796</pub-id>
</element-citation>
</ref>
<ref id="bib72">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kayagaki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Warming</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lamkanfi</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Non-canonical inflammasome activation targets caspase-11</article-title>
<source>Nature</source>
<year>2011</year>
<volume>479</volume>
<fpage>117</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">22002608</pub-id>
</element-citation>
</ref>
<ref id="bib73">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kellermayer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dowd</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>RA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice</article-title>
<source>FASEB J</source>
<year>2011</year>
<volume>25</volume>
<fpage>1449</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">21228220</pub-id>
</element-citation>
</ref>
<ref id="bib74">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kilkenny</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Browne</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cuthill</surname>
<given-names>IC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Animal research: reporting
<italic>in vivo</italic>
experiments: the ARRIVE guidelines</article-title>
<source>Brit J Pharmacol</source>
<year>2010</year>
<volume>160</volume>
<fpage>1577</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">20649561</pub-id>
</element-citation>
</ref>
<ref id="bib75">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kitajima</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Morimoto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sagara</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice</article-title>
<source>Exp Anim</source>
<year>2001</year>
<volume>50</volume>
<fpage>387</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="pmid">11769541</pub-id>
</element-citation>
</ref>
<ref id="bib76">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Konturek</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Brzozowski</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Konturek</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options</article-title>
<source>J Physiol Pharmacol</source>
<year>2011</year>
<volume>62</volume>
<fpage>591</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">22314561</pub-id>
</element-citation>
</ref>
<ref id="bib77">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kovacs</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ben-Jacob</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tayem</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genotype is a stronger determinant than sex of the mouse gut microbiota</article-title>
<source>Microb Ecol</source>
<year>2011</year>
<volume>61</volume>
<fpage>423</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">21181142</pub-id>
</element-citation>
</ref>
<ref id="bib78">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lathrop</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Bloom</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>SM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Peripheral education of the immune system by colonic commensal microbiota</article-title>
<source>Nature</source>
<year>2011</year>
<volume>478</volume>
<fpage>250</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="pmid">21937990</pub-id>
</element-citation>
</ref>
<ref id="bib79">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lawley</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Clare</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>AW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing
<italic>Clostridium difficile</italic>
disease in mice</article-title>
<source>PLoS Pathog</source>
<year>2012</year>
<volume>8</volume>
<fpage>e1002995</fpage>
<pub-id pub-id-type="pmid">23133377</pub-id>
</element-citation>
</ref>
<ref id="bib80">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lawley</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>AW</given-names>
</name>
</person-group>
<article-title>Intestinal colonization resistance</article-title>
<source>Immunology</source>
<year>2013</year>
<volume>138</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="pmid">23240815</pub-id>
</element-citation>
</ref>
<ref id="bib81">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>LeChatelier</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Richness of human gut microbiome correlates with metabolic markers</article-title>
<source>Nature</source>
<year>2013</year>
<volume>500</volume>
<fpage>541</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">23985870</pub-id>
</element-citation>
</ref>
<ref id="bib82">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Donaldson</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Mikulski</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bacterial colonization factors control specificity and stability of the gut microbiota</article-title>
<source>Nature</source>
<year>2013</year>
<volume>501</volume>
<fpage>426</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">23955152</pub-id>
</element-citation>
</ref>
<ref id="bib83">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lepage</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Häsler</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Spehlmann</surname>
<given-names>ME</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis</article-title>
<source>Gastroenterology</source>
<year>2011</year>
<volume>141</volume>
<fpage>227</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="pmid">21621540</pub-id>
</element-citation>
</ref>
<ref id="bib84">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ley</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Bäckhed</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Turnbaugh</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Obesity alters gut microbial ecology</article-title>
<source>P Natl Acad Sci USA</source>
<year>2005</year>
<volume>102</volume>
<fpage>11070</fpage>
<lpage>5</lpage>
</element-citation>
</ref>
<ref id="bib85">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ley</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>JI</given-names>
</name>
</person-group>
<article-title>Ecological and evolutionary forces shaping microbial diversity in the human intestine</article-title>
<source>Cell</source>
<year>2006</year>
<volume>124</volume>
<fpage>837</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="pmid">16497592</pub-id>
</element-citation>
</ref>
<ref id="bib86">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lochner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ohnmacht</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Presley</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells</article-title>
<source>J Exp Med</source>
<year>2011</year>
<volume>208</volume>
<fpage>125</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">21173107</pub-id>
</element-citation>
</ref>
<ref id="bib87">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lozupone</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Stombaugh</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Meta-analyses of studies of the human microbiota</article-title>
<source>Genome Res</source>
<year>2013</year>
<volume>2</volume>
<fpage>1704</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">23861384</pub-id>
</element-citation>
</ref>
<ref id="bib88">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lusis</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>SS</given-names>
</name>
</person-group>
<article-title>The problem of passenger genes in transgenic mice</article-title>
<source>Arterioscl Throm Vas</source>
<year>2007</year>
<volume>27</volume>
<fpage>2100</fpage>
<lpage>3</lpage>
</element-citation>
</ref>
<ref id="bib89">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lynch</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Goldfarb</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Wild</surname>
<given-names>YK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota</article-title>
<source>Gut Microbes</source>
<year>2012</year>
<volume>4</volume>
<fpage>41</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">23060053</pub-id>
</element-citation>
</ref>
<ref id="bib90">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lyte</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior</article-title>
<source>PLoS Pathog</source>
<year>2013</year>
<volume>9</volume>
<fpage>e1003726</fpage>
<pub-id pub-id-type="pmid">24244158</pub-id>
</element-citation>
</ref>
<ref id="bib91">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Bokulich</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Castillo</surname>
<given-names>PA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e47416</fpage>
<pub-id pub-id-type="pmid">23082164</pub-id>
</element-citation>
</ref>
<ref id="bib92">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Thorburn</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Binge</surname>
<given-names>LC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases</article-title>
<source>Immunol Rev</source>
<year>2012</year>
<volume>245</volume>
<fpage>164</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="pmid">22168419</pub-id>
</element-citation>
</ref>
<ref id="bib93">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mähler</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bristol</surname>
<given-names>IJ</given-names>
</name>
<name>
<surname>Leiter</surname>
<given-names>EH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis</article-title>
<source>Am J Physiol</source>
<year>1998</year>
<volume>274</volume>
<fpage>G544</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="pmid">9530156</pub-id>
</element-citation>
</ref>
<ref id="bib94">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manichanh</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Reeder</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gibert</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reshaping the gut microbiome with bacterial transplantation and antibiotic intake</article-title>
<source>Genome Res</source>
<year>2010</year>
<volume>20</volume>
<fpage>1411</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">20736229</pub-id>
</element-citation>
</ref>
<ref id="bib95">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marcobal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kashyap</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>TA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice</article-title>
<source>ISME J</source>
<year>2013</year>
<volume>7</volume>
<fpage>1933</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">23739052</pub-id>
</element-citation>
</ref>
<ref id="bib96">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Markle</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Mortin-Toth</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sex Differences in the gut microbiome drive hormone-dependent regulation of autoimmunity</article-title>
<source>Science</source>
<year>2013</year>
<volume>339</volume>
<fpage>1084</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">23328391</pub-id>
</element-citation>
</ref>
<ref id="bib97">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Markowitz</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Palaniappan</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The integrated microbial genomes system: an expanding comparative analysis resource</article-title>
<source>Nucleic Acids Res</source>
<year>2010</year>
<volume>38</volume>
<fpage>D382</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="pmid">19864254</pub-id>
</element-citation>
</ref>
<ref id="bib98">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martínez</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Walter</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Long-term temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e69621</fpage>
<pub-id pub-id-type="pmid">23874976</pub-id>
</element-citation>
</ref>
<ref id="bib99">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maslowski</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43</article-title>
<source>Nature</source>
<year>2009</year>
<volume>461</volume>
<fpage>1282</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">19865172</pub-id>
</element-citation>
</ref>
<ref id="bib100">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menendez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Willing</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Montero</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bacterial stimulation of the TLR-MyD88 pathway modulates the homeostatic expression of ileal Paneth cell α-defensins</article-title>
<source>J Innate Immun</source>
<year>2013</year>
<volume>5</volume>
<fpage>39</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="pmid">22986642</pub-id>
</element-citation>
</ref>
<ref id="bib101">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meslin</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Fontaine</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Andrieux</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Variation of mucin distribution in the rat intestine, caecum and colon: effect of the bacterial flora</article-title>
<source>Comp Biochem Phys A</source>
<year>1995</year>
<volume>123</volume>
<fpage>235</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="bib102">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Methé</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Pop</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A framework for human microbiome research</article-title>
<source>Nature</source>
<year>2012</year>
<volume>486</volume>
<fpage>215</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">22699610</pub-id>
</element-citation>
</ref>
<ref id="bib103">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moeller</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Degnan</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Pusey</surname>
<given-names>AE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chimpanzees and humans harbour compositionally similar gut enterotypes</article-title>
<source>Nat Commun</source>
<year>2012</year>
<volume>3</volume>
<fpage>1179</fpage>
<pub-id pub-id-type="pmid">23149725</pub-id>
</element-citation>
</ref>
<ref id="bib104">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morelli</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Postnatal development of intestinal microflora as influenced by infant nutrition</article-title>
<source>J Nutr</source>
<year>2008</year>
<volume>138</volume>
<fpage>1791S</fpage>
<lpage>5S</lpage>
<pub-id pub-id-type="pmid">18716188</pub-id>
</element-citation>
</ref>
<ref id="bib105">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neufeld</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bienenstock</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of intestinal microbiota on anxiety-like behavior</article-title>
<source>Commun Integr Biol</source>
<year>2011</year>
<volume>4</volume>
<fpage>492</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="pmid">21966581</pub-id>
</element-citation>
</ref>
<ref id="bib106">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Norin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Midtvedt</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Intestinal microflora functions in laboratory mice claimed to harbor a ‘normal’ intestinal microflora. Is the SPF concept running out of date?</article-title>
<source>Anaerobe</source>
<year>2010</year>
<volume>16</volume>
<fpage>311</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="pmid">19854284</pub-id>
</element-citation>
</ref>
<ref id="bib107">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ochoa-Repáraz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mielcarz</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Ditrio</surname>
<given-names>LE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis</article-title>
<source>J Immunol</source>
<year>2009</year>
<volume>183</volume>
<fpage>6041</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">19841183</pub-id>
</element-citation>
</ref>
<ref id="bib108">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olfe</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Domanska</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schuett</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Different stress-related phenotypes of BALB/c mice from in-house or vendor: alterations of the sympathetic and HPA axis responsiveness</article-title>
<source>BMC Physiol</source>
<year>2010</year>
<volume>10</volume>
<fpage>2</fpage>
<pub-id pub-id-type="pmid">20214799</pub-id>
</element-citation>
</ref>
<ref id="bib109">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olszak</surname>
<given-names>T</given-names>
</name>
<name>
<surname>An</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zeissig</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microbial exposure during early life has persistent effects on natural killer T cell function</article-title>
<source>Science</source>
<year>2012</year>
<volume>336</volume>
<fpage>489</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">22442383</pub-id>
</element-citation>
</ref>
<ref id="bib110">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Stradiotto</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Krych</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Selective inbreeding does not increase gut microbiota similarity in BALB/c mice</article-title>
<source>Lab Anim</source>
<year>2012</year>
<volume>46</volume>
<fpage>335</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">23097567</pub-id>
</element-citation>
</ref>
<ref id="bib112">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pedrosa</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lorén</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Cabré</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bacteria and spontaneous experimental colitis: immunological changes</article-title>
<source>Eur J Clin Invest</source>
<year>2011</year>
<volume>41</volume>
<fpage>1047</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">21902690</pub-id>
</element-citation>
</ref>
<ref id="bib113">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perez</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Doré</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Leclerc</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bacterial imprinting of the neonatal immune system: lessons from maternal cells?</article-title>
<source>Pediatrics</source>
<year>2007</year>
<volume>119</volume>
<fpage>e724</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">17332189</pub-id>
</element-citation>
</ref>
<ref id="bib114">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pflughoeft</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Versalovic</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Human microbiome in health and disease</article-title>
<source>Ann Rev Pahtol</source>
<year>2012</year>
<volume>7</volume>
<fpage>99</fpage>
<lpage>122</lpage>
</element-citation>
</ref>
<ref id="bib115">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poutahidis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kleinewietfeld</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Smillie</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microbial reprogramming inhibits Western diet-associated obesity</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e68596</fpage>
<pub-id pub-id-type="pmid">23874682</pub-id>
</element-citation>
</ref>
<ref id="bib116">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Powell</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>AW</given-names>
</name>
<name>
<surname>Stolarczyk</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells</article-title>
<source>Immunity</source>
<year>2012</year>
<volume>37</volume>
<fpage>674</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">23063332</pub-id>
</element-citation>
</ref>
<ref id="bib117">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pozzilli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Signore</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>AJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NOD mouse colonies around the world–recent facts and figures</article-title>
<source>Immunol Today</source>
<year>1993</year>
<volume>14</volume>
<fpage>193</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">8517916</pub-id>
</element-citation>
</ref>
<ref id="bib118">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pritchett-Corning</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Cosentino</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Clifford</surname>
<given-names>CB</given-names>
</name>
</person-group>
<article-title>Contemporary prevalence of infectious agents in laboratory mice and rats</article-title>
<source>Lab Anim</source>
<year>2009</year>
<volume>43</volume>
<fpage>165</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="pmid">19015179</pub-id>
</element-citation>
</ref>
<ref id="bib119">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Puhl</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Uwiera</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Yanke</surname>
<given-names>LJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antibiotics conspicuously affect community profiles and richness, but not the density of bacterial cells associated with mucosa in the large and small intestines of mice</article-title>
<source>Anaerobe</source>
<year>2012</year>
<volume>18</volume>
<fpage>67</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="pmid">22185696</pub-id>
</element-citation>
</ref>
<ref id="bib120">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Raes</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A human gut microbial gene catalogue established by metagenomic sequencing</article-title>
<source>Nature</source>
<year>2010</year>
<volume>464</volume>
<fpage>59</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">20203603</pub-id>
</element-citation>
</ref>
<ref id="bib121">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raes</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bork</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Molecular eco-systems biology: towards an understanding of community function</article-title>
<source>Nat Rev Microbiol</source>
<year>2008</year>
<volume>6</volume>
<fpage>693</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">18587409</pub-id>
</element-citation>
</ref>
<ref id="bib122">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raff</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bruder</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Cullinan</surname>
<given-names>WE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effect of animal facility construction on basal hypothalamic-pituitary-adrenal and renin-aldosterone activity in the rat</article-title>
<source>Endocrinology</source>
<year>2011</year>
<volume>152</volume>
<fpage>1218</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">21248141</pub-id>
</element-citation>
</ref>
<ref id="bib123">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rakoff-Nahoum</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Paglino</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Eslami-Varzaneh</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis</article-title>
<source>Cell</source>
<year>2004</year>
<volume>118</volume>
<fpage>229</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">15260992</pub-id>
</element-citation>
</ref>
<ref id="bib124">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ravussin</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Koren</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Spor</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Responses of gut microbiota to diet composition and weight loss in lean and obese mice</article-title>
<source>Obesity</source>
<year>2012</year>
<volume>20</volume>
<fpage>738</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="pmid">21593810</pub-id>
</element-citation>
</ref>
<ref id="bib125">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reikvam</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Erofeev</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sandvik</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression</article-title>
<source>PLoS One</source>
<year>2011</year>
<volume>6</volume>
<fpage>e17996</fpage>
<pub-id pub-id-type="pmid">21445311</pub-id>
</element-citation>
</ref>
<ref id="bib126">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reinhardt</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bergentall</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Greiner</surname>
<given-names>TU</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling</article-title>
<source>Nature</source>
<year>2012</year>
<volume>483</volume>
<fpage>627</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">22407318</pub-id>
</element-citation>
</ref>
<ref id="bib127">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Relman</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Microbial genomics and infectious diseases</article-title>
<source>New Engl J Med</source>
<year>2011</year>
<volume>365</volume>
<fpage>347</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">21793746</pub-id>
</element-citation>
</ref>
<ref id="bib128">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Renz</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Brandtzaeg</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hornef</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The impact of perinatal immune development on mucosal homeostasis and chronic inflammation</article-title>
<source>Nat Rev Immunol</source>
<year>2011</year>
<volume>12</volume>
<fpage>9</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">22158411</pub-id>
</element-citation>
</ref>
<ref id="bib129">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ridaura</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Faith</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Rey</surname>
<given-names>FE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gut microbiota from twins discordant for obesity modulate metabolism in mice</article-title>
<source>Science</source>
<year>2013</year>
<volume>341</volume>
<fpage>1241214</fpage>
<pub-id pub-id-type="pmid">24009397</pub-id>
</element-citation>
</ref>
<ref id="bib130">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robertson</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Geddes</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis</article-title>
<source>Gut Microbes</source>
<year>2013</year>
<volume>4</volume>
<fpage>222</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">23549220</pub-id>
</element-citation>
</ref>
<ref id="bib131">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Round</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Mazmanian</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>The gut microbiota shapes intestinal immune responses during health and disease</article-title>
<source>Nat Rev Immunol</source>
<year>2009</year>
<volume>9</volume>
<fpage>313</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">19343057</pub-id>
</element-citation>
</ref>
<ref id="bib132">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaedler</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Dubos</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>The fecal flora of various strains of mice. Its bearing on their susceptibility to endotoxin</article-title>
<source>J Exp Med</source>
<year>1962</year>
<volume>115</volume>
<fpage>1149</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">14497916</pub-id>
</element-citation>
</ref>
<ref id="bib133">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaible</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Dowd</surname>
<given-names>SE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes</article-title>
<source>Hum Mol Genet</source>
<year>2011</year>
<volume>20</volume>
<fpage>1687</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="pmid">21296867</pub-id>
</element-citation>
</ref>
<ref id="bib134">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scher</surname>
<given-names>JU</given-names>
</name>
<name>
<surname>Sczesnak</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Longman</surname>
<given-names>RS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis</article-title>
<source>Elife</source>
<year>2013</year>
<volume>2</volume>
<fpage>e01202</fpage>
<pub-id pub-id-type="pmid">24192039</pub-id>
</element-citation>
</ref>
<ref id="bib135">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schloissnig</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Arumugam</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sunagawa</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genomic variation landscape of the human gut microbiome</article-title>
<source>Nature</source>
<year>2013</year>
<volume>493</volume>
<fpage>45</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">23222524</pub-id>
</element-citation>
</ref>
<ref id="bib136">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schloss</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Schubert</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Zackular</surname>
<given-names>JP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stabilization of the murine gut microbiome following weaning</article-title>
<source>Gut Microbes</source>
<year>2012</year>
<volume>3</volume>
<fpage>383</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">22688727</pub-id>
</element-citation>
</ref>
<ref id="bib137">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sellers</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Clifford</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Treuting</surname>
<given-names>PM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice</article-title>
<source>Vet Pathol</source>
<year>2012</year>
<volume>49</volume>
<fpage>32</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">22135019</pub-id>
</element-citation>
</ref>
<ref id="bib139">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sham</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>EY</given-names>
</name>
<name>
<surname>Gulen</surname>
<given-names>MF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SIGIRR, a negative regulator of TLR/IL-1R signalling promotes Microbiota dependent resistance to colonization by enteric bacterial pathogens</article-title>
<source>PLoS Pathog</source>
<year>2013</year>
<volume>9</volume>
<fpage>e1003539</fpage>
<pub-id pub-id-type="pmid">23950714</pub-id>
</element-citation>
</ref>
<ref id="bib140">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shimomura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mizoguchi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sugimoto</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulatory role of B-1 B cells in chronic colitis</article-title>
<source>Int Immunol</source>
<year>2008</year>
<volume>20</volume>
<fpage>729</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="pmid">18375938</pub-id>
</element-citation>
</ref>
<ref id="bib141">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegmund</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lehr</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Fantuzzi</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation</article-title>
<source>P Natl Acad Sci USA</source>
<year>2001</year>
<volume>98</volume>
<fpage>13249</fpage>
<lpage>54</lpage>
</element-citation>
</ref>
<ref id="bib142">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simpson</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Linder</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Sargent</surname>
<given-names>EE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice</article-title>
<source>Nat Genet</source>
<year>1997</year>
<volume>16</volume>
<fpage>19</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">9140391</pub-id>
</element-citation>
</ref>
<ref id="bib143">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sjögren</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Engdahl</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Henning</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The gut microbiota regulates bone mass in mice</article-title>
<source>J Bone Miner Res</source>
<year>2012</year>
<volume>27</volume>
<fpage>1357</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="pmid">22407806</pub-id>
</element-citation>
</ref>
<ref id="bib144">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sommer</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bäckhed</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>The gut microbiota–masters of host development and physiology</article-title>
<source>Nat Rev Microbiol</source>
<year>2013</year>
<volume>11</volume>
<fpage>227</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="pmid">23435359</pub-id>
</element-citation>
</ref>
<ref id="bib145">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sonnenberg</surname>
<given-names>GF</given-names>
</name>
<name>
<surname>Artis</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease</article-title>
<source>Immunity</source>
<year>2012</year>
<volume>37</volume>
<fpage>601</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">23084357</pub-id>
</element-citation>
</ref>
<ref id="bib146">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stappenbeck</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Hooper</surname>
<given-names>LV</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>JI</given-names>
</name>
</person-group>
<article-title>Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells</article-title>
<source>P Natl Acad Sci USA</source>
<year>2002</year>
<volume>99</volume>
<fpage>15451</fpage>
<lpage>5</lpage>
</element-citation>
</ref>
<ref id="bib147">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sudo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chida</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Aiba</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice</article-title>
<source>J Physiol</source>
<year>2004</year>
<volume>558</volume>
<fpage>263</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="pmid">15133062</pub-id>
</element-citation>
</ref>
<ref id="bib148">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice</article-title>
<source>Gastroenterology</source>
<year>2013</year>
<volume>144</volume>
<fpage>1478</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="pmid">23470617</pub-id>
</element-citation>
</ref>
<ref id="bib149">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nambiar</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Enterohepatic Helicobacter species are prevalent in mice from commercial and academic institutions in Asia, Europe, and North America</article-title>
<source>J Clin Microbiol</source>
<year>2007</year>
<volume>45</volume>
<fpage>2166</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">17507523</pub-id>
</element-citation>
</ref>
<ref id="bib150">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Troeschel</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Drepper</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Leggewie</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel tools for the functional expression of metagenomic DNA</article-title>
<source>Methods Mol Biol</source>
<year>2010</year>
<volume>668</volume>
<fpage>117</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="pmid">20830560</pub-id>
</element-citation>
</ref>
<ref id="bib151">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tumanov</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Koroleva</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge</article-title>
<source>Cell Host Microbe</source>
<year>2011</year>
<volume>10</volume>
<fpage>44</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">21767811</pub-id>
</element-citation>
</ref>
<ref id="bib152">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turnbaugh</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Bäckhed</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fulton</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome</article-title>
<source>Cell Host Microbe</source>
<year>2008</year>
<volume>3</volume>
<fpage>213</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">18407065</pub-id>
</element-citation>
</ref>
<ref id="bib153">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ubeda</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lipuma</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gobourne</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice</article-title>
<source>J Exp Med</source>
<year>2012</year>
<volume>209</volume>
<fpage>1445</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="pmid">22826298</pub-id>
</element-citation>
</ref>
<ref id="bib154">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Upadhyay</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Poroyko</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>TJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphotoxin regulates commensal responses to enable diet-induced obesity</article-title>
<source>Nat Immunol</source>
<year>2012</year>
<volume>13</volume>
<fpage>947</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">22922363</pub-id>
</element-citation>
</ref>
<ref id="bib155">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>vande Pavert</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Mebius</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>New insights into the development of lymphoid tissues</article-title>
<source>Nat Rev Immunol</source>
<year>2010</year>
<volume>10</volume>
<fpage>664</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">20706277</pub-id>
</element-citation>
</ref>
<ref id="bib156">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Nood</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Vrieze</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nieuwdorp</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Duodenal infusion of donor feces for recurrent Clostridium difficile</article-title>
<source>New Engl J Med</source>
<year>2013</year>
<volume>368</volume>
<fpage>407</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">23323867</pub-id>
</element-citation>
</ref>
<ref id="bib157">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanden Berghe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Goethals</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Demon</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An inactivating caspase-11 passenger mutation muddles sepsis research</article-title>
<source>Am J Resp Crit Care</source>
<year>2013</year>
<volume>188</volume>
<fpage>120</fpage>
<lpage>1</lpage>
</element-citation>
</ref>
<ref id="bib158">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanden Berghe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hulpiau</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Martens</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Passenger mutations confound interpretation of all genetically modified congenic mice</article-title>
<source>Immunity</source>
<year>2015</year>
<volume>43</volume>
<fpage>200</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">26163370</pub-id>
</element-citation>
</ref>
<ref id="bib159">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vayssier-Taussat</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Albina</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Citti</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics</article-title>
<source>Front Cell Infect Microbiol</source>
<year>2014</year>
<volume>4</volume>
<fpage>29</fpage>
<pub-id pub-id-type="pmid">24634890</pub-id>
</element-citation>
</ref>
<ref id="bib160">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vidal</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Malo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Marquis</surname>
<given-names>JF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Forward genetic dissection of immunity to infection in the mouse</article-title>
<source>Annu Rev Immunol</source>
<year>2008</year>
<volume>26</volume>
<fpage>81</fpage>
<lpage>132</lpage>
<pub-id pub-id-type="pmid">17953509</pub-id>
</element-citation>
</ref>
<ref id="bib161">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vijay-Kumar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Aitken</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Carvalho</surname>
<given-names>FA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5</article-title>
<source>Science</source>
<year>2010</year>
<volume>328</volume>
<fpage>228</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">20203013</pub-id>
</element-citation>
</ref>
<ref id="bib162">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Linnenbrink</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Künzel</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice</article-title>
<source>P Natl Acad Sci USA</source>
<year>2014</year>
<volume>111</volume>
<fpage>E2703</fpage>
<lpage>10</lpage>
</element-citation>
</ref>
<ref id="bib163">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ward</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Hosid</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ioshikhes</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human milk metagenome: a functional capacity analysis</article-title>
<source>BMC Microbiol</source>
<year>2013</year>
<volume>13</volume>
<fpage>116</fpage>
<pub-id pub-id-type="pmid">23705844</pub-id>
</element-citation>
</ref>
<ref id="bib164">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weiner</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>da Cunha</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Quintana</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oral tolerance</article-title>
<source>Immunol Rev</source>
<year>2011</year>
<volume>241</volume>
<fpage>241</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="pmid">21488901</pub-id>
</element-citation>
</ref>
<ref id="bib165">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Linking long-term dietary patterns with gut microbial enterotypes</article-title>
<source>Science</source>
<year>2011</year>
<volume>334</volume>
<fpage>105</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">21885731</pub-id>
</element-citation>
</ref>
<ref id="bib166">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Würbel</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Behaviour and the standardization fallacy</article-title>
<source>Nat Genet</source>
<year>2000</year>
<volume>26</volume>
<fpage>263</fpage>
<pub-id pub-id-type="pmid">11062457</pub-id>
</element-citation>
</ref>
<ref id="bib167">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaki</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Boyd</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis</article-title>
<source>Immunity</source>
<year>2010</year>
<volume>32</volume>
<fpage>379</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="pmid">20303296</pub-id>
</element-citation>
</ref>
<ref id="bib168">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The effect of artificial rearing on gut microbiota in a mouse pup-in-a-cup model</article-title>
<source>Exp Anim</source>
<year>2012</year>
<volume>61</volume>
<fpage>453</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">22850645</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Belgique/explor/OpenAccessBelV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000067 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000067 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Belgique
   |area=    OpenAccessBelV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4703068
   |texte=   Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26323480" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OpenAccessBelV2 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Dec 1 00:43:49 2016. Site generation: Wed Mar 6 14:51:30 2024