Serveur d'exploration autour du libre accès en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microcarrier Culture for Efficient Expansion and Osteogenic Differentiation of Human Fetal Mesenchymal Stem Cells

Identifieur interne : 000170 ( Ncbi/Merge ); précédent : 000169; suivant : 000171

Microcarrier Culture for Efficient Expansion and Osteogenic Differentiation of Human Fetal Mesenchymal Stem Cells

Auteurs : Tony Kwang-Poh Goh ; Zhi-Yong Zhang ; Allen Kuan-Liang Chen ; Shaul Reuveny ; Mahesh Choolani ; Jerry Kok Yen Chan ; Steve Kah-Weng Oh

Source :

RBID : PMC:3620494

Abstract

Abstract

Stirred microcarrier (MC) culture has been suggested as the method of choice for supplying large volumes of mesenchymal stem cells (MSCs) for bone tissue engineering. In this study, we show that in addition to the improvement in cell expansion capacity, MSCs propagated and harvested from MC culture also demonstrate higher osteogenic potency when differentiated in vivo or in vitro in three-dimensional (3D) scaffold cultures as compared with traditional monolayer (MNL) cultures. Cytodex 3 microcarrier-expanded human fetal MSC (hfMSC) cultures (MC-hfMSCs) achieved 12- to 16-fold expansion efficiency (6×105–8×105 cells/mL) compared to 4- to 6-fold (1.2×105–1.8×105 cells/mL) achieved by traditional MNL-expanded hfMSC culture (MNL-hfMSCs; p<0.05). Both MC-hfMSCs and MNL-hfMSCs maintained similar colony-forming capacity, doubling times, and immunophenotype postexpansion. However, when differentiated under in vitro two-dimensional (2D) osteogenic conditions, MC-hfMSCs exhibited a 45-fold reduction in alkaline phosphatase level and a 37.5% decrease in calcium deposition compared with MNL-hfMSCs (p<0.05). Surprisingly, when MC-hfMSCs and MNL-hfMSCs were seeded on 3D macroporous scaffold culture or subcutaneously implanted into nonobese diabetic/severe combined immunodeficient mice, MC-hfMSCs deposited 63.5% (p<0.05) more calcium and formed 47.2% (p<0.05) more bone volume, respectively. These results suggest that the mode of hfMSC growth in the expansion phase affects the osteogenic potential of hfMSCs differently in various differentiation platforms. In conclusion, MC cultures are advantageous over MNL cultures in bone tissue engineering because MC-hfMSCs have improved cell expansion capacity and exhibit higher osteogenic potential than MNL-hfMSCs when seeded in vitro into 3D scaffolds or implanted in vivo.


Url:
DOI: 10.1089/biores.2013.0001
PubMed: 23593561
PubMed Central: 3620494

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3620494

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Microcarrier Culture for Efficient Expansion and Osteogenic Differentiation of Human Fetal Mesenchymal Stem Cells</title>
<author>
<name sortKey="Goh, Tony Kwang Poh" sort="Goh, Tony Kwang Poh" uniqKey="Goh T" first="Tony Kwang-Poh" last="Goh">Tony Kwang-Poh Goh</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhi Yong" sort="Zhang, Zhi Yong" uniqKey="Zhang Z" first="Zhi-Yong" last="Zhang">Zhi-Yong Zhang</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Allen Kuan Liang" sort="Chen, Allen Kuan Liang" uniqKey="Chen A" first="Allen Kuan-Liang" last="Chen">Allen Kuan-Liang Chen</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reuveny, Shaul" sort="Reuveny, Shaul" uniqKey="Reuveny S" first="Shaul" last="Reuveny">Shaul Reuveny</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Choolani, Mahesh" sort="Choolani, Mahesh" uniqKey="Choolani M" first="Mahesh" last="Choolani">Mahesh Choolani</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chan, Jerry Kok Yen" sort="Chan, Jerry Kok Yen" uniqKey="Chan J" first="Jerry Kok Yen" last="Chan">Jerry Kok Yen Chan</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Oh, Steve Kah Weng" sort="Oh, Steve Kah Weng" uniqKey="Oh S" first="Steve Kah-Weng" last="Oh">Steve Kah-Weng Oh</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23593561</idno>
<idno type="pmc">3620494</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620494</idno>
<idno type="RBID">PMC:3620494</idno>
<idno type="doi">10.1089/biores.2013.0001</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000333</idno>
<idno type="wicri:Area/Pmc/Curation">000333</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000261</idno>
<idno type="wicri:Area/Ncbi/Merge">000170</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Microcarrier Culture for Efficient Expansion and Osteogenic Differentiation of Human Fetal Mesenchymal Stem Cells</title>
<author>
<name sortKey="Goh, Tony Kwang Poh" sort="Goh, Tony Kwang Poh" uniqKey="Goh T" first="Tony Kwang-Poh" last="Goh">Tony Kwang-Poh Goh</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhi Yong" sort="Zhang, Zhi Yong" uniqKey="Zhang Z" first="Zhi-Yong" last="Zhang">Zhi-Yong Zhang</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Allen Kuan Liang" sort="Chen, Allen Kuan Liang" uniqKey="Chen A" first="Allen Kuan-Liang" last="Chen">Allen Kuan-Liang Chen</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reuveny, Shaul" sort="Reuveny, Shaul" uniqKey="Reuveny S" first="Shaul" last="Reuveny">Shaul Reuveny</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Choolani, Mahesh" sort="Choolani, Mahesh" uniqKey="Choolani M" first="Mahesh" last="Choolani">Mahesh Choolani</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chan, Jerry Kok Yen" sort="Chan, Jerry Kok Yen" uniqKey="Chan J" first="Jerry Kok Yen" last="Chan">Jerry Kok Yen Chan</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Oh, Steve Kah Weng" sort="Oh, Steve Kah Weng" uniqKey="Oh S" first="Steve Kah-Weng" last="Oh">Steve Kah-Weng Oh</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BioResearch Open Access</title>
<idno type="ISSN">2164-7844</idno>
<idno type="eISSN">2164-7860</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Stirred microcarrier (MC) culture has been suggested as the method of choice for supplying large volumes of mesenchymal stem cells (MSCs) for bone tissue engineering. In this study, we show that in addition to the improvement in cell expansion capacity, MSCs propagated and harvested from MC culture also demonstrate higher osteogenic potency when differentiated
<italic>in vivo</italic>
or
<italic>in vitro</italic>
in three-dimensional (3D) scaffold cultures as compared with traditional monolayer (MNL) cultures. Cytodex 3 microcarrier-expanded human fetal MSC (hfMSC) cultures (MC-hfMSCs) achieved 12- to 16-fold expansion efficiency (6×10
<sup>5</sup>
–8×10
<sup>5</sup>
cells/mL) compared to 4- to 6-fold (1.2×10
<sup>5</sup>
–1.8×10
<sup>5</sup>
cells/mL) achieved by traditional MNL-expanded hfMSC culture (MNL-hfMSCs;
<italic>p</italic>
<0.05). Both MC-hfMSCs and MNL-hfMSCs maintained similar colony-forming capacity, doubling times, and immunophenotype postexpansion. However, when differentiated under
<italic>in vitro</italic>
two-dimensional (2D) osteogenic conditions, MC-hfMSCs exhibited a 45-fold reduction in alkaline phosphatase level and a 37.5% decrease in calcium deposition compared with MNL-hfMSCs (
<italic>p</italic>
<0.05). Surprisingly, when MC-hfMSCs and MNL-hfMSCs were seeded on 3D macroporous scaffold culture or subcutaneously implanted into nonobese diabetic/severe combined immunodeficient mice, MC-hfMSCs deposited 63.5% (
<italic>p</italic>
<0.05) more calcium and formed 47.2% (
<italic>p</italic>
<0.05) more bone volume, respectively. These results suggest that the mode of hfMSC growth in the expansion phase affects the osteogenic potential of hfMSCs differently in various differentiation platforms. In conclusion, MC cultures are advantageous over MNL cultures in bone tissue engineering because MC-hfMSCs have improved cell expansion capacity and exhibit higher osteogenic potential than MNL-hfMSCs when seeded
<italic>in vitro</italic>
into 3D scaffolds or implanted
<italic>in vivo</italic>
.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="O Donoghue, K" uniqKey="O Donoghue K">K O'Donoghue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Zy" uniqKey="Zhang Z">ZY Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caplan, Ai" uniqKey="Caplan A">AI Caplan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prockop, Dj" uniqKey="Prockop D">DJ Prockop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Blanc, K" uniqKey="Le Blanc K">K Le Blanc</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Blanc, K" uniqKey="Le Blanc K">K Le Blanc</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruder, Sp" uniqKey="Bruder S">SP Bruder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Zy" uniqKey="Zhang Z">ZY Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Zy" uniqKey="Zhang Z">ZY Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rowley, J" uniqKey="Rowley J">J Rowley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schop, D" uniqKey="Schop D">D Schop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oh, Sk" uniqKey="Oh S">SK Oh</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sart, S" uniqKey="Sart S">S Sart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eibes, G" uniqKey="Eibes G">G Eibes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schop, D" uniqKey="Schop D">D Schop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santos, Fd" uniqKey="Santos F">FD Santos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Ly" uniqKey="Sun L">LY Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tseng, Pc" uniqKey="Tseng P">PC Tseng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, J" uniqKey="Chan J">J Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Ak" uniqKey="Chen A">AK Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pittenger, Mf" uniqKey="Pittenger M">MF Pittenger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcbeath, R" uniqKey="Mcbeath R">R McBeath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Ws" uniqKey="Hu W">WS Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shahar, A" uniqKey="Shahar A">A Shahar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hewitt, Cj" uniqKey="Hewitt C">CJ Hewitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reddig, Pj" uniqKey="Reddig P">PJ Reddig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benoit, Ds" uniqKey="Benoit D">DS Benoit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malaval, L" uniqKey="Malaval L">L Malaval</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goshima, J" uniqKey="Goshima J">J Goshima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larsen, Kh" uniqKey="Larsen K">KH Larsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beck, Gr" uniqKey="Beck G">GR Beck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mathews, S" uniqKey="Mathews S">S Mathews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, Jp" uniqKey="Rodriguez J">JP Rodriguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Decaris, Ml" uniqKey="Decaris M">ML Decaris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Zy" uniqKey="Zhang Z">ZY Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horwitz, Em" uniqKey="Horwitz E">EM Horwitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Qf" uniqKey="Wu Q">QF Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Hs" uniqKey="Yang H">HS Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arvidson, K" uniqKey="Arvidson K">K Arvidson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janicki, P" uniqKey="Janicki P">P Janicki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malda, J" uniqKey="Malda J">J Malda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melero Martin, Jm" uniqKey="Melero Martin J">JM Melero-Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Souza, Gr" uniqKey="Souza G">GR Souza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cukierman, E" uniqKey="Cukierman E">E Cukierman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kale, S" uniqKey="Kale S">S Kale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnsdorf, Ej" uniqKey="Arnsdorf E">EJ Arnsdorf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malda, J" uniqKey="Malda J">J Malda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malda, J" uniqKey="Malda J">J Malda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frondoza, C" uniqKey="Frondoza C">C Frondoza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruder, Sp" uniqKey="Bruder S">SP Bruder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Javazon, Eh" uniqKey="Javazon E">EH Javazon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meredith, Je" uniqKey="Meredith J">JE Meredith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Werb, Z" uniqKey="Werb Z">Z Werb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ginsberg, Mh" uniqKey="Ginsberg M">MH Ginsberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bornstein, P" uniqKey="Bornstein P">P Bornstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lobb, Rr" uniqKey="Lobb R">RR Lobb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekblom, P" uniqKey="Ekblom P">P Ekblom</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Biores Open Access</journal-id>
<journal-id journal-id-type="iso-abbrev">Biores Open Access</journal-id>
<journal-id journal-id-type="publisher-id">biores</journal-id>
<journal-title-group>
<journal-title>BioResearch Open Access</journal-title>
</journal-title-group>
<issn pub-type="ppub">2164-7844</issn>
<issn pub-type="epub">2164-7860</issn>
<publisher>
<publisher-name>Mary Ann Liebert, Inc.</publisher-name>
<publisher-loc>140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23593561</article-id>
<article-id pub-id-type="pmc">3620494</article-id>
<article-id pub-id-type="publisher-id">10.1089/biores.2013.0001</article-id>
<article-id pub-id-type="doi">10.1089/biores.2013.0001</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Microcarrier Culture for Efficient Expansion and Osteogenic Differentiation of Human Fetal Mesenchymal Stem Cells</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Goh</surname>
<given-names>Tony Kwang-Poh</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Zhi-Yong</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Allen Kuan-Liang</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Reuveny</surname>
<given-names>Shaul</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Choolani</surname>
<given-names>Mahesh</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Chan</surname>
<given-names>Jerry Kok Yen</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Oh</surname>
<given-names>Steve Kah-Weng</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<aff id="aff1">
<label>
<sup>1</sup>
</label>
<institution>Bioprocessing Technology Institute</institution>
, Agency for Science, Technology, and Research (A*STAR),
<country>Singapore</country>
.</aff>
<aff id="aff2">
<label>
<sup>2</sup>
</label>
Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine,
<institution>Shanghai Jiao Tong University</institution>
, Shanghai,
<country>China</country>
.</aff>
<aff id="aff3">
<label>
<sup>3</sup>
</label>
<institution>National Tissue Engineering Center</institution>
, Shanghai,
<country>China</country>
.</aff>
<aff id="aff4">
<label>
<sup>4</sup>
</label>
Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine,
<institution>National University of Singapore</institution>
,
<country>Singapore</country>
.</aff>
<aff id="aff5">
<label>
<sup>5</sup>
</label>
Cancer and Stem Cell Biology Program,
<institution>Duke-NUS Graduate Medical School</institution>
,
<country>Singapore</country>
.</aff>
<aff id="aff6">
<label>
<sup>6</sup>
</label>
Department of Reproductive Medicine,
<institution>KK Women's and Children's Hospital</institution>
,
<country>Singapore</country>
.</aff>
</contrib-group>
<author-notes>
<corresp>Address correspondence to:
<italic>Dr. Steve Oh, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore. E-mail:</italic>
<email xlink:href="mailto:steve_oh@bti.a-star.edu.sg">steve_oh@bti.a-star.edu.sg</email>
</corresp>
<corresp>
<italic>Dr. Jerry Chan, Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore. E-mail:</italic>
<email xlink:href="mailto:jerrychan@nus.edu.sg">jerrychan@nus.edu.sg</email>
</corresp>
<fn id="fn1" fn-type="equal">
<label>
<sup>*</sup>
</label>
<p>These authors contribute equally to this article.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>4</month>
<year>2013</year>
<pmc-comment>string-date: April 2013</pmc-comment>
</pub-date>
<pub-date pub-type="pmc-release">
<month>4</month>
<year>2013</year>
<pmc-comment>string-date: April 2013</pmc-comment>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>2</volume>
<issue>2</issue>
<fpage>84</fpage>
<lpage>97</lpage>
<permissions>
<copyright-statement>Copyright 2013, Mary Ann Liebert, Inc.</copyright-statement>
<copyright-year>2013</copyright-year>
</permissions>
<self-uri xlink:type="simple" xlink:href="biores.2013.0001.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>Stirred microcarrier (MC) culture has been suggested as the method of choice for supplying large volumes of mesenchymal stem cells (MSCs) for bone tissue engineering. In this study, we show that in addition to the improvement in cell expansion capacity, MSCs propagated and harvested from MC culture also demonstrate higher osteogenic potency when differentiated
<italic>in vivo</italic>
or
<italic>in vitro</italic>
in three-dimensional (3D) scaffold cultures as compared with traditional monolayer (MNL) cultures. Cytodex 3 microcarrier-expanded human fetal MSC (hfMSC) cultures (MC-hfMSCs) achieved 12- to 16-fold expansion efficiency (6×10
<sup>5</sup>
–8×10
<sup>5</sup>
cells/mL) compared to 4- to 6-fold (1.2×10
<sup>5</sup>
–1.8×10
<sup>5</sup>
cells/mL) achieved by traditional MNL-expanded hfMSC culture (MNL-hfMSCs;
<italic>p</italic>
<0.05). Both MC-hfMSCs and MNL-hfMSCs maintained similar colony-forming capacity, doubling times, and immunophenotype postexpansion. However, when differentiated under
<italic>in vitro</italic>
two-dimensional (2D) osteogenic conditions, MC-hfMSCs exhibited a 45-fold reduction in alkaline phosphatase level and a 37.5% decrease in calcium deposition compared with MNL-hfMSCs (
<italic>p</italic>
<0.05). Surprisingly, when MC-hfMSCs and MNL-hfMSCs were seeded on 3D macroporous scaffold culture or subcutaneously implanted into nonobese diabetic/severe combined immunodeficient mice, MC-hfMSCs deposited 63.5% (
<italic>p</italic>
<0.05) more calcium and formed 47.2% (
<italic>p</italic>
<0.05) more bone volume, respectively. These results suggest that the mode of hfMSC growth in the expansion phase affects the osteogenic potential of hfMSCs differently in various differentiation platforms. In conclusion, MC cultures are advantageous over MNL cultures in bone tissue engineering because MC-hfMSCs have improved cell expansion capacity and exhibit higher osteogenic potential than MNL-hfMSCs when seeded
<italic>in vitro</italic>
into 3D scaffolds or implanted
<italic>in vivo</italic>
.</p>
</abstract>
<kwd-group kwd-group-type="author">
<title>Key words</title>
<kwd>bioreactor</kwd>
<kwd>bone tissue engineering</kwd>
<kwd>fetal human mesenchymal stem cells</kwd>
<kwd>
<italic>in vivo</italic>
ectopic bone formation</kwd>
<kwd>microcarrier</kwd>
</kwd-group>
<counts>
<fig-count count="7"></fig-count>
<table-count count="3"></table-count>
<ref-count count="64"></ref-count>
<page-count count="14"></page-count>
</counts>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Chan, Jerry Kok Yen" sort="Chan, Jerry Kok Yen" uniqKey="Chan J" first="Jerry Kok Yen" last="Chan">Jerry Kok Yen Chan</name>
<name sortKey="Chen, Allen Kuan Liang" sort="Chen, Allen Kuan Liang" uniqKey="Chen A" first="Allen Kuan-Liang" last="Chen">Allen Kuan-Liang Chen</name>
<name sortKey="Choolani, Mahesh" sort="Choolani, Mahesh" uniqKey="Choolani M" first="Mahesh" last="Choolani">Mahesh Choolani</name>
<name sortKey="Goh, Tony Kwang Poh" sort="Goh, Tony Kwang Poh" uniqKey="Goh T" first="Tony Kwang-Poh" last="Goh">Tony Kwang-Poh Goh</name>
<name sortKey="Oh, Steve Kah Weng" sort="Oh, Steve Kah Weng" uniqKey="Oh S" first="Steve Kah-Weng" last="Oh">Steve Kah-Weng Oh</name>
<name sortKey="Reuveny, Shaul" sort="Reuveny, Shaul" uniqKey="Reuveny S" first="Shaul" last="Reuveny">Shaul Reuveny</name>
<name sortKey="Zhang, Zhi Yong" sort="Zhang, Zhi Yong" uniqKey="Zhang Z" first="Zhi-Yong" last="Zhang">Zhi-Yong Zhang</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Belgique/explor/OpenAccessBelV2/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000170 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000170 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Belgique
   |area=    OpenAccessBelV2
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:3620494
   |texte=   Microcarrier Culture for Efficient Expansion and Osteogenic Differentiation of Human Fetal Mesenchymal Stem Cells
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:23593561" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a OpenAccessBelV2 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Dec 1 00:43:49 2016. Site generation: Wed Mar 6 14:51:30 2024